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Abstract. Image segmentation relies heavily on neural networks which
are known to be overconfident, especially when making predictions on
out-of-distribution (OOD) images. This is a common scenario in the
medical domain due to variations in equipment, acquisition sites, or
image corruptions. This work addresses the challenge of OOD detec-
tion by proposing Laplacian Segmentation Networks (LSN): methods
which jointly model epistemic (model) and aleatoric (data) uncertainty
for OOD detection. In doing so, we propose the first Laplace approxi-
mation of the weight posterior that scales to large neural networks with
skip connections that have high-dimensional outputs. We demonstrate on
three datasets that the LSN-modeled parameter distributions, in combi-
nation with suitable uncertainty measures, gives superior OOD detection.
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1 Introduction

Segmentation is extensively used to quantify organs or anomalies and highlight
important image features to clinicians. Its widespread application necessitates
strict requirements for safe and interpretable operation. However, modern ap-
proaches rely on neural networks which are infamously overconfident on predic-
tions outside of their training distributions [13]. As a result, downstream predic-
tions may be confidently incorrect despite their high accuracy on in-distribution
(ID) data, rendering every following analysis based on the prediction unreliable.
Thus, detecting gradual distribution shifts is crucial for medical imaging tasks.

In this work, we study Laplace approximations (LA) for epistemic un-
certainty quantification in binary image segmentation models. Current Laplace
approximations [8] scale quadratically with the output dimension of the neural
network, which prevent their usage in segmentation. We develop a fast Hessian
approximation for deep architectures with skip connections, which are integral
components of segmentation networks, e.g., U-net [31]. This enables us to com-
bine the aleatoric logit distribution of Stochastic Segmentation Networks (SSN)
[25] with Laplace approximations for epistemic uncertainty quantification.
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We leverage aspects of the ValUES framework [15] to measure the effects of
uncertainty estimation on OOD detection. We investigate how useful the inferred
uncertainties are for OOD detection and how well LSNs can separate aleatoric
and epistemic uncertainty. On three medical binary segmentation tasks, we show
that the proposed method provides competitive outlier classification performance
and assigns higher uncertainty to OOD datasets. The code is available.4

2 Background

While several different sources and taxonomies of uncertainties have been pro-
posed [12,17], the Bayesian framework [4,16] distinguishes between two of them:
aleatoric and epistemic. These can be derived directly from the Bayesian model
average (BMA) predictive distribution

p(y|x,D) =

∫
p(y|x, θ)︸ ︷︷ ︸
likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ, (1)

where (x, y) is an input-output pair, D is the training data and θ the model
parameters. The Shannon entropy H(·) of the predictive distribution is a com-
mon measure of total predictive uncertainty [14]. This predictive entropy can be
decomposed into the expected entropy as a measure of aleatoric uncertainty, and
the mutual information, I, representing epistemic uncertainty [16]:

H(p(y|x,D))︸ ︷︷ ︸
predictive entropy

= Ep(θ|D)[H(p(y|x, θ))]︸ ︷︷ ︸
expected entropy - aleatoric

+ I[p(y, θ|x,D)]︸ ︷︷ ︸
mutual information - epistemic

[33]. (2)

Aleatoric uncertainty represents noise or variations that arise from ambi-
guities in the data, e.g., vague tumor boundaries resulting from gradual tissue
infiltration. Epistemic uncertainty, in this framework measured as mutual infor-
mation I, quantifies the degree to which the model itself should be trusted. How-
ever, recent works caution against using this decomposition by demonstrating
behavioral incoherences of mutual information [33,34,37], calling for new formu-
lations to calculate epistemic uncertainty. Table 1 lists the measures included
in our study, such as expected pairwise KL-divergence (EPKL) [33]: a recently
proposed method which uses pairwise comparisons between the predictive dis-
tributions of possible models and weights to calculate epistemic uncertainty. We
also consider the pixel-wise variance of mean predictions averaged over samples
from the posterior distribution, a measure we call Pixel Variance. Prior work
[15,26] suggests there is no universal method for uncertainty estimation. Thus,
the measure of magnitude of a targeted uncertainty type becomes a design choice
that needs to be selected for the dataset and task at hand.

Kendall et al. [16] recommend jointly modelling aleatoric and epistemic un-
certainty for regression and classification tasks in computer vision. Prior methods
that model both types of uncertainty typically combine Mean-Variance networks
4 https://github.com/kilianzepf/laplacian_segmentation

https://github.com/kilianzepf/laplacian_segmentation
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Table 1: Overview of uncertainty measures with targeted uncertainty types.
Targeted Type Uncertainty Measure Definition
Predictive Predictive Entropy H(Eq(θ|D)[p(y|x, θ)])
Aleatoric Expected Entropy Eq(θ|D)[H(p(y|x, θ))]
Epistemic Mutual Information I(p(y, θ|x,D))

Epistemic Expected Pairwise KL Eq(θ|D)[Eq(θ̃|D)[DKL(p(y|x, θ)||p(y|x, θ̃))]]
Epistemic Pixel Variance Varq(θ|D)[sigmoid(µθ)]

with diagonal covariance matrices and Dropout [16] or utilize Gaussian-Process
based convolutional layers [30]. Recent works, however, focus on modeling either
one or the other component [18,25]. Generally, aleatoric uncertainty techniques
rely on mixing deterministic segmentation architectures with generative com-
ponents [3,19,35]. Common epistemic modeling techniques incorporate dropout,
ensembles and multi-head models [16,20,21,32].

Fairly evaluating the performance of uncertainty estimation techniques on
real-world tasks is challenging due to combinatorial design factors. Kahl et al.
[15] address this issue by providing a framework which standardizes evaluations
for uncertainty estimation methods. Our work coheres to this framework in the
sense that we determine how Prediction Models, Uncertainty Measures and Ag-
gregation strategies impact uncertainty estimation on OOD detection tasks for
a fixed U-net architecture. Our results add insight to the recent discussion which
calls into question the suitability of common uncertainty measures [33,34,37].

3 The Laplacian Segmentation Networks

To model the posterior distribution in Eq. (1) we apply Laplace’s method which
approximates the weight posterior with a Gaussian distribution q(θ) around a
local mode θmap using the Hessian matrix H [22]

q(θ) = N (θ|θmap,H
−1). (3)

Evaluating H is computationally infeasible because of the quadratic complexity
in network parameters and the large output dimensions for segmentation. We im-
prove upon Hessian approximation techniques [8,5] by extending recent progress
in scaling LA for images [24] to segmentation networks with skip connections.

3.1 Laplace Approximation of the Mean Network

We can reformulate the integral for the predictive distribution over the binary
predictions y in Eq. (1) by integrating over logits η to obtain

p(y|x,D) =

∫∫
p(y|η)p(η|x, θ)p(θ|D) dη dθ. (4)
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Following [16] and [25], we model the conditional distribution over logits p(η|x, θ)
as a normal distribution parametrized by neural networks µ and Σ :

η|x ∼ N (µ(x, θ1), Σ(x, θ2)), (5)

and assume pixel-wise independence for the predicted labels given the logits.
Thus, we can model p(y|η) for each pixel s as a Bernoulli distribution parametrized
by the sigmoid of the respective logit. Since the size of the covariance matrix
Σ scales quadratically with the number of pixels S in the image, we use the
low-rank parameterisation of [25]:

Σ(x) = D(x) + P (x)TP (x), (6)

i.e. the variance network Σ(x) is implemented with two networks D(x) and P (x).
The vectors θ1 ∈ Θ1 = RT and θ2 ∈ Θ2 = RT parameterize the mean and

variance networks (c.f. Eq. 5) and share the first t entries, i.e.we define the shared
weight vector θt of the network by

θt := (θ11 , . . . , θ1t) = (θ21 , . . . , θ2t) ∈ Θt = Rt. (7)

Then θ ∈ Θ = R(t+2·(T−t)) contains all model parameters

θ := (θt, θ1t+1
, . . . , θ1T , θ2t+1

, . . . , θ2T ). (8)

The post-hoc Laplace approximation first finds a mode θmap by minimizing

L(θ) = − logEp(η|x,θ)[p(y|η)]− log p(θ) ≈

− logsumexpM
m=1

(
S∑

s=1

log p(ys|η(m)
s )

)
+ log(M), (9)

where M logits η are sampled from the distribution in Eq. (5) and where the
term log p(θ) vanishes assuming a flat prior ∇θp(θ) = 0. Since current algorithms
for fast Hessian computations have no implementation for this loss function, we
instead make use of the shared weights in the parameter vectors to estimate the
mean and variance of the logit distribution based on the feature maps of a deep
deterministic segmentation model. Using only one convolutional layer each for
mean and variance estimation, we omit the entries of the variance heads on the
parameter vector θmap, i.e. we set

θ∗map := θmap
∣∣
(θt,θ1t+1

,...,θ1T )
∈ Θmean = RT . (10)

We can make use of the fact that the SSN loss function reduces to the binary cross
entropy loss under zero variance, which allows us to fall back on the fast Hessian
computation frameworks available. The posterior is then found by Laplace’s
method resulting in a Gaussian approximation in the parameter space Θmean

q(θ∗) = N
(
θ∗|θ∗map,H

∗−1
)
, (11)
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Fig. 1: Model overview - uncertainty measures are calculated by approximating
expectations by Monte Carlo-sampling mean networks from the Laplace approx-
imation q(θ∗) and predicting the respective logit distributions p(η|x, θ) for x.

with H∗ defined as H∗ = −∇θ∗∇θ∗ log p(θ∗|D)|θ∗=θ∗
map

. During inference we can
now sample segmentation networks from the posterior distribution in form of the
Laplace approximation. Each sampled segmentation network predicts one logit
distribution. Figure 1 gives an schematic overview of the proposed Laplacian
Segmentation Network (LSN) and derived uncertainty measures.

3.2 Fast Hessian Approximations for Segmentation Networks with
Skip Connections

Computation of second order derivatives for Segmentation Networks is expensive
due to the vast amount of parameters and pixels in the output. Standard meth-
ods approximate the Hessian with the diagonal of the Generalized Gauss Newton
(ggn) matrix [10,5]. This approximation, besides enforcing positive definiteness,
also allows for an efficient backpropagation-like algorithm. The required compute
scales linearly in the number of parameters and quadratic in the number pixels.
The quadratic dependency is prohibitive already with images of size 64 × 64.
We therefore make use of the diagonal backpropagation (db) proposed by [24],
which returns a trace-preserving approximation of the diagonal of the ggn. The
complexity of this approximation scales linearly with the number of pixels, al-
lowing the computation of the Hessian also for larger images. The idea is to add
a diagonal operator D in-between each backpropagation step. For each layer l

[∇θ∇θ log p(θ|D)]l
ggn
≈ [Jθfθ(x)

⊤H(L)Jθfθ(x)]l = (12)

= Jθf
(l)⊤

(
L∏

i=l+1

Jxf
(i)⊤H(L)

l+1∏
i=L

Jxf
(i)

)
Jθf

(l)

db
≈ Jθf

(l)⊤D
(
Jxf

(l+1)⊤D (. . . ) Jxf
(l+1)

)
Jθf

(l)
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where Jθ denotes the Jacobian and H(L) the Hessian of the binary cross entropy
loss with respect to the logits. The Hessian matrix can be expressed in closed
form as a diagonal matrix plus an outer product matrix.

Moreover, we extend the StochMan library [9] with support for skip-connection
layers. For a given submodule fθ, a skip-connection layer scf concatenates the
function with the identity, such that scf (x) = (fθ(x), x). The Jacobian is then
defined as Jxscf (x) := (Jxfθ(x), Ix). We utilize the block structure of the Ja-
cobian matrix and efficiently backpropagate its diagonal only. With a recursive
call on the submodule f , the backpropagation supports nested skip-connections,
i.e. when some submodules of f are skip-connections as well. This unlocks the
use of various curvature-based methods for segmentation architectures with skip
connection in future research. For a technical description of the used Hessian
approximation we refer to the supplementary material.

4 Experiments

Our method validation is based on the ValUES framework by [15] for evaluating
segmentation uncertainty. All benchmark models are constructed by combining
an aleatoric and an epistemic component, using the same U-net backbone archi-
tecture for comparability. As aleatoric components we consider mean predictions
of a U-net and mean-variance predictions of SSN, with diagonal and low-rank
covariance matrices. The epistemic components are implemented as Ensembles,
MC-Dropout and our post-hoc Laplace approximation. For the nine method com-
binations we calculate the following uncertainty measures: Predictive Entropy,
Expected Entropy, Mutual Information, Expected Pairwise KL (EPKL) [33] and
Pixel Variance. With exception of the EPKL all measures yield pixel-wise uncer-
tainty heatmaps. We consider sum aggregation as well as a patch based strategy
to take the uncertainty from pixel to image level. Patch aggregation sums uncer-
tainties within a 102 sliding window across the image, selecting the patch with
the highest uncertainty as the image-level score. Table 1 lists the calculated
uncertainty measures along their targeted uncertainty type and their definition.

All experiments are conducted on three datasets: the ISIC19 skin lesion
dataset [7,6,36], the BRATS dataset [23,1,2] and the first Prostate segmenta-
tion task from the QUBIQ 2021 challenge5. For the ISIC19 dataset we assign
three OOD datasets, representing distribution shifts: Derm-Skin (DERM), Clin-
Skin (CLINIC) [27] and the PAD-UFES-20 dataset [28]. The Derm-Skin dataset
contains 1,565 images of healthy skin, cropped out of the ISIC dataset. The
Clin-Skin dataset contains 723 images showing healthy skin gathered from so-
cial networks. The PAD-UFES-20 dataset contains 1570 photos of skin lesions
collected from smartphone cameras. For the BRATS and Prostate datasets, we
follow the experimental setup of [11] and augment the images with Motion, Spike,
Ghosting and Noise artifacts, which are regularly observed in MR images. For
training and implementation details we refer to the supplementary material.

5 https://qubiq21.grand-challenge.org
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Fig. 2: Left - OOD performance measured by AUROC across epistemic compo-
nents for Mutual Information (MI), Expected Pairwise KL (EPKL) and Pixel
Variance (PV). Models using Laplace Approximations with EPKL and PV reach
highest AUROC values on average. Right - Uncertainty Measures for predictive
and aleatoric uncertainty perform on par indicating weak disentanglement.

Image Level OOD detection can be viewed as a binary classification task
across the ID test set and all OOD test sets. We therefore calculate the Area
Under the Receiver Operating Characteristic Curve (AUROC) for all method
combinations, uncertainty measures and aggregation strategies to assess how
well different combinations can separate OOD from ID images. The AUROCs
were calculated with sklearn [29] using per image ground truth binary labels
(0-ID, 1-OOD) versus uncertainty scores as target predictions. Figure 3 shows
the mean AUROC values for different method combinations and uncetainty mea-
sures across datasets. Note that for the method combinations, which use a U-net
as an aleatoric component, the EPKL is not defined since it uses a KL diver-
gence term, which is again not defined for two Dirac measures. For the Prostate
and ISIC dataset, combinations of the LSN with EPKL and PV yield the high-
est AUROC values. On the BRATS dataset method combinations that use the
Laplace approximation range after models using Dropout. We find that over all
datasets method combinations that use the Laplace approximation for their pa-
rameter distribution yield the best OOD capabilities when combined with Pixel
Variance and EPKL as shown in the left plot of Figure 2.

Additionally, we evaluate how well certain distribution shifts are detected
by calculating the mean epistemic uncertainty assigned to a given OOD test
set and normalizing it by the uncertainty assigned to the respective ID test set
obtained from our ID dataset split. This compares how different distribution
shifts influence the absolute values of epistemic uncertainty assigned, providing
intuition on each method’s sensitivity to OOD data. In Table 2 we display which
method combinations on the EPKL measure are able to assign 5% and 10%
more uncertainty to the OOD set. Since the EPKL measure does not require
aggregation over pixels, we can compare the method combinations directly on
all datasets without bias introduced by a aggregation strategy. We find that the
LSN model can detect most distribution shifts in terms of assigning a higher
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Expected Pairwise KL (EPKL)

Mutual Information (MI) 

Pixel Variance (PV)

Fig. 3: OOD performance measured by AUROC across models, marginalized
over aggregation strategies, for Mutual Information (MI), Expected Pairwise KL
(EPKL) and Pixel Variance (PV). LSN models with EPKL and PV reach highest
AUROC values for Prostate and ISIC respectively.

EPKL. The method, however, fails to identify Random Motion augmentations
as ID, which have been used to augment images during training.

Table 2: OOD datasets with uncertainty measured by EPKL compared to ID
datasets. A orange check (✓) signifies an average uncertainty that is at least 5%
higher than the ID dataset, while a green check (✓) indicates a 10% or greater
increase in uncertainty. For the ID Motion dataset an orange check (✓*) signifies
an average uncertainty that is at most 5% lower than the ID dataset.

Prostate Brats ISIC

Model Motion Ghost Spike Blur Motion Ghost Spike Blur Clin Derm Padufes ✓ ✓

Ensemble SSN (diag.) ✗ ✓✓ ✓✓ ✗ ✗ ✓✓ ✓✓ ✗ ✓✓ ✓✓ ✓✓ 7 7
Ensemble SSN ✗ ✓✓ ✓ ✗ ✗ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ 8 7

Dropout SSN (diag.) ✗ ✓✓ ✓✓ ✗ ✗ ✓✓ ✓✓ ✗ ✓✓ ✓✓ ✓✓ 7 7
Dropout SSN ✓* ✓✓ ✓✓ ✗ ✗ ✓✓ ✓✓ ✗ ✗ ✗ ✓✓ 5 6

LSN (diag.) ✓* ✓ ✗ ✗ ✗ ✓✓ ✓✓ ✗ ✓✓ ✓✓ ✓✓ 7 5
LSN ✗ ✓✓ ✓✓ ✓ ✗ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ 9 8

5 Discussion and Conclusion

In this paper, we have demonstrated how Laplace approximations can scale
to image segmentation tasks, through a trace-preserving diagonal Hessian ap-
proximation. Importantly, this scales linearly with the number of image pixels,
unlike past work which exhibited a quadratic complexity. We have demonstrated
across different datasets that the parameter distributions obtained by Laplace’s
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method, in combination with suitable uncertainty measures, can lead to superior
OOD detection performance on image level.

Our experimental findings support the recent initiative in research for find-
ing better measures for epistemic uncertainty than Mutual Information [33].
Marginalizing over all datasets and aggregations strategies, our findings show
that EPKL and Pixel Variance, not Mutual Information, provide the strongest
discriminative power for classifying images as either ID or OOD (cf. Fig. 2, left).
Further we find that there is still a strong correlation between aleatoric and epis-
temic measures across all method combinations, visible by comparable AUROC
performance over all datasets(cf. Fig. 2, right).

Further research might investigate in more depth how different logit distri-
butions interplay with Laplace approximations in theoretically suggested uncer-
tainty measures that target aleatoric and epistemic uncertainty. The presented
method provides an extendable framework for other researchers to build upon.
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Supplementary to Laplacian Segmentation
Networks Improve Epistemic Uncertainty

Quantification

A Implementation and Training Details

Training configurations are provided in Table 1. All models were trained with
the Adam optimizer. The U-net backbone was constructed with feature maps of
size 8, 16, 32, 64, 128. Uncertainty measures were approximated from 50 samples
from the posterior and 20 samples from the logit distribution.

Table 1: Implementation and Training Details. Dropout models for the ISIC
dataset were trained with a 0.0005 learning rate to improve convergence.

Dataset

Configuration ISIC Prostate Brats
Epochs 60 150 600
Batch Size 32 10 32
Learning Rate 0.001* 0.001 0.001

B Fast Hessian Approximation

Consider a neural network (nn) fθ : X → Y with L layers. The parameter
θ = (θ1, . . . , θL) ∈ Θ is the concatenation of the parameters for each layer
i ∈ {1, ..., L}. The nn fθ = f

(L)
θL

◦ f
(L−1)
θL−1

◦ . . . ◦ f
(2)
θ2

◦ f
(1)
θ1

is a composition of
L functions f (L), f (L−1), . . . , f (1), where f (i) is parametrized by θi. Let x0 ∈ X
be the input and xi := f

(i)
θi

(xi−1) for i = 1, . . . , L, such that the nn output is
xL ∈ Y. We define the diagonal operator D : Rm×m → Rm×m on quadratic
matrices as

[D(M)]ij :=

{
Mij if i = j
0 if i ̸= j

∀i, j = 1, . . . ,m.

The Jacobian Jθfθ(x0) of the nn has a layer block structure, block i is

Jθifθ(x0) = Jθi

(
f
(i)
θi

◦ · · · ◦ f (L)
θL

)
(xi−1) =

 i+1∏
j=L

Jxj−1f
(j)
θj

(xj−1)

 Jθif
(i)
θi

(xi−1).

The Laplace approximation requires the Hessian H of the loss w.r.t. the
parameters ∇2

θL(fθ(x0)) ∈ R|θ|×|θ|. Using the chain rule it holds, that

∇2
θL(fθ(x0))︸ ︷︷ ︸

=:Hθ

= Jθfθ(x0)
⊤ · ∇2

xL
L(xL) · Jθfθ(x0)︸ ︷︷ ︸

=:ggnθ

+

|xL|∑
o=1

[∇xL
L(xL)]o ·∇2

θ[fθ(x0)]o,
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where [v]o refers to the o-th component of vector v and |v| to its length. We can
write the diagonal block ggnb(i)

θ = Jθifθ(x0)
⊤HLJθifθ(x0) of the i-th layer as

ggnb(i)
θ =Jθifθ(x0)

⊤ · HL · Jθifθ(x0) (1)

From this expression, plus the chain rule expansion of the Jacobian, we can
build an efficient backpropagation-like algorithm to compute ggnbθ, it start
from HL and then iterated backward over layers. The same holds for the di-
agonal approximation, which we refer to as ggndθ := D(ggnθ) = D(ggnbθ).
This approach already scales linearly in the number of parameter |θ|. On top of
that, the diagonal backpropagation approximates the diagonal of the Generalized
Gauss-Newton matrix. It is defined, for each layer i, by adding a diagonalization
operator in between each Jacobian product, marked red in Algorithm 1. Without
this extra operator the algorithm would return the exact diagonal.

Algorithm 1 Computation of dbθ

M = HL

for j = L,L− 1, . . . , 1 do
db(j)

θ = D
(
Jθjf

(j)
θj

(xj−1)
⊤ ·M · Jθjf

(j)
θj

(xj−1)
)

M = D
(
Jxj−1f

(j)
θj

(xj−1)
⊤ ·M · Jxj−1f

(j)
θj

(xj−1)
)

end for
dbθ = (db(1)

θ , . . . ,db(L)
θ )

return dbθ

Proposition. For an autoencoder network, the memory requirement of the
Algorithm scale linearly both in number of parameter and in number of pixels.

Proof. The bottlenecks are the storage of the matrixes db(j)
θ ∈ R|θj | and M ∈

R|xj−1| at each step j

Skip-connections For any given submodule gθ, a skip-connection layer sc(g)θ is
defined as x 7−→ (gθ(x), x). The Jacobian with respect to the parameter is the
same as the Jacobian of the gθ while the Jacobian with respect to the input is

Jxsc(g)θ(x) =
(
Jxgθ(x)

I

)
∈ R(O+I)×I .

Proposition. If M is diagonal, then one step of Alg 1 can be computed as

D
(
JxSC(g)θ(x)

⊤ ·M · JxSC(g)θ(x)
)
= D

(
Jxgθ(x)

⊤M11Jxgθ(x)
)
+D(M22).

Proof. Let M =

(
M11 M12

M21 M22

)
and then

JxSC(g)θ(x)
⊤·M · JxSC(g)θ(x) =

(
Jxgθ(x)

⊤ I
)(M11 M12

M21 M22

)(
Jxgθ(x)

I

)
= Jxgθ(x)

⊤M11Jxgθ(x) +M12Jxgθ(x) + Jxgθ(x)
⊤M21 +M22
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