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Abstract We present a probabilistic interpretation of

inverse kinematics and extend it to sequential data.

The resulting model is used to estimate articulated hu-

man motion in visual data. The approach allows us

to express the prior temporal models in spatial limb

coordinates, which is in contrast to most recent work

where prior models are derived in terms of joint angles.

This approach has several advantages. First of all, it al-

lows us to construct motion models in low dimensional

spaces, which makes motion estimation more robust.

Secondly, as many types of motion are easily expressed

in spatial coordinates, the approach allows us to con-

struct high quality application specific motion models

with little effort. Thirdly, the state space is a real vec-

tor space, which allows us to use off-the-shelf stochas-

tic processes as motion models, which is rarely possi-

ble when working with joint angles. Fourthly, we avoid

the problem of accumulated variance, where noise in

one joint affects all joints further down the kinematic

chains. All this combined allows us to more easily con-

struct high quality motion models. In the evaluation, we

show that an activity independent version of our model

is superior to the corresponding state-of-the-art model.

We also give examples of activity dependent models

that would be hard to phrase directly in terms of joint

angles.
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1 Introduction

Three dimensional articulated human motion analysis

is the process of estimating the configuration of body

parts over time from sensor input (Poppe, 2007). One

approach to this estimation is to use motion capture

equipment where e.g. electromagnetic markers are at-

tached to the body and then tracked in three dimen-

sions. While this approach gives accurate results, it is

intrusive and cannot be used outside laboratory set-

tings. Alternatively, computer vision systems can be

used for non-intrusive analysis. These systems usually

perform some sort of optimisation for finding the best

configuration of body parts. Such optimisation is often

guided by a system for predicting future motion. This

paper concerns a framework for building such predic-

tive systems. Unlike most previous work, we build the

actual predictive models in spatial coordinates, e.g. by

studying hand trajectories, instead of working directly

in the space of configuration parameters. This approach

not only simplifies certain mathematical aspects of the

modelling, but also provides a framework that is more

in tune with how humans plan, think about and discuss

motion.

Our approach is inspired by results from neurology

(Morasso, 1981; Abend et al, 1982) that indicates that

humans plan their motions in spatial coordinates. Our

working hypothesis is that the best possible predictive

system is one that mimics the motion plan. That is,

we claim that predictions of future motion should be

phrased in the same terms as the motion plan, i.e. in

spatial coordinates. This is in contrast to most ongoing

research in the vision community where predictions are

performed in terms of the pose representation, e.g. the

joint configuration of the kinematic skeleton.
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Fig. 1 A rendering of the kinematic skeleton. Each bone is

computed as a rotation and a translation relative to its parent.
Any subset of the circles, are collectively referred to as the end-

effectors.

For long, researchers in computer animation have

arrived at similar conclusions (Kerlow, 2003; Erleben

et al, 2005). It is quite difficult to pose a figure in terms

of its internal representation. For most work, animators

instead pose individual bones of the figure in spatial co-

ordinates using an inverse kinematics system. Such a

system usually seeks a configuration of the joints that

minimises the distance between a goal and an attained

spatial coordinate by solving a nonlinear least-squares

problem. In this paper, we recast the least-squares op-

timisation problem in a probabilistic setting. This then

allows us to extend the model to sequential data, which

in turn allows us to work with motion models in spatial

coordinates rather than joint angles.

2 The Pose Representation

Before discussing the issues of human motion analysis,

we pause to introduce the actual representation of the

human pose. In this paper, we use the kinematic skele-

ton (see fig. 1), which, amongst others, was also used

by Sidenbladh et al (2000) and Sminchisescu and Triggs

(2003). The representation is a collection of connected

rigid bones organised in a tree structure. Each bone

can be rotated at the point of connection between the

bone and its parent. We will refer to such a point of

connection as a joint.

Since bone lengths tend to change very slowly in

humans (e.g. at the time scale of biological growth),

these are modelled as being constant and effectively we

consider bones as being rigid. Hence, the direction of

each bone constitute the only degrees of freedom in the

kinematic skeleton. The direction in each joint can be

parametrised with a vector of angles, noticing that dif-

ferent joints may have different number of degrees of

freedom. We may collect all joint angle vectors into one

large vector θ representing all joint angles in the model.

Since each element in this vector is an angle, θ must be

confined to the N -dimensional torus, TN .

2.1 Forward Kinematics

From known bone lengths and a joint angle vector θ it

is straight-forward to compute the spatial coordinates

of the bones. Specifically, the purpose is to compute the

spatial coordinates of the end points of each bone. This

process is started at the root of the tree structure and

moves recursively along the branches, which are known

as the kinematic chains.

The root of the tree is placed at the origin of the co-

ordinate system. The end point of the next bone along

a kinematic chain is then computed by rotating the co-

ordinate system and then translating the root along a

fixed axis, i.e.

al = Rl (al−1 + tl) , (1)

where al is the lth end point, and Rl and tl denotes

a rotation and a translation respectively. The rotation

is parametrised by the relevant components of the pose

vector θ and the length of the translation corresponds

to the known length of the bone. We can repeat this

process recursively until the entire kinematic tree has

been traversed. This process is known as Forward Kine-

matics (Erleben et al, 2005).

The rotation matrix Rl of the lth bone is parame-

trised by parts of θ. The actual number of used param-

eters depends on the specific joint. For elbow, knee and

angle joints, we use one parameter, while we use three

parameters to control all other joints. These two differ-

ent joint types are respectively known as hinge joints

and ball joints.

Using forward kinematics, we can compute the spa-

tial coordinates of the end points of the individual bones.

These are collectively referred to as end-effectors. In

fig. 1 these are drawn as circles. In most situations, we

shall only be concerned with some subset of the end-

effectors. Often one is only concerned with body ex-

tremities, such as the head and the hands, hence the

name end -effectors. We will denote the spatial coordi-

nates of these selected end-effectors by F (θ).

2.2 Joint Constraints

In the human body, bones cannot move freely at the

joints. A simple example is the elbow joint, which can

approximately only bend between 0 and 160 degrees.

To represent this, θ is confined to a subset Θ of TN .

For simplicity, this subset is often defined by confining

each component of θ to an interval, i.e.

Θ =

N∏
n=1

[ln, un] , (2)
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where ln and un denote the lower and upper bounds of

the nth component. This type of constraints on the an-

gles is often called box constraints (Erleben et al, 2005).

More realistic joint constraints are also possible, e.g. the

implicit surface models of Herda et al (2004).

3 Challenges of Motion Analysis

Much work has gone into human motion analysis. The

bulk of the work is in non-articulated analysis, i.e. locat-

ing the position of moving humans in image sequences

and classifying their actions. It is, however, beyond the

scope of this paper to give a review of this work. The

interested reader can consult review papers such as the

one by Moeslund et al (2006).

In recent years, focus has shifted to articulated vi-

sual human motion analysis in three dimensions (Poppe,

2007). Here, the objective is to estimate θ in each im-

age in a sequence. When only using a single camera,

or a narrow baseline stereo camera, motion analysis is

inherently difficult due to self-occlusions and visual am-

biguities. This manifests itself in that the distribution

of the human pose is multi-modal with an unknown

number of modes. To reliably estimate this distribution

we need methods that cope well with multi-modal dis-

tributions. Currently, the best method for such prob-

lems is the particle filter (Cappé et al, 2007), which

represents the distribution as a set of weighted sam-

ples. Unfortunately, the particle filter is smitten by the

curse of dimensionality in that the necessary number of

samples grow exponentially with the dimensionality of

state space. The consequence is that the particle filter
is only applicable to low dimensional state spaces. This

is in direct conflict with the fact that the human body

has a great number of degrees of freedom.

The most obvious solution to these problems is to in-

troduce some activity dependent model of the motion,

such that the effective degrees of freedom is lowered.

Here it should be noted that the actual number of de-

grees of freedom in the human body (independently of

representation) is inherently large. So, while this ap-

proach works it does force us into building models that

does not generalise to other types of motion than the

ones modelled.

3.1 Dimensionality Reduction in Motion Analysis

Motion specific models can be constructed by reducing

the dimensionality of the angle space by learning a man-

ifold in angle space to which the motion is restricted.

A predictive motion model can then be learned on this

manifold. Sidenbladh et al (2000) learned a low-dimen-

sional linear subspace using Principal Component Anal-

ysis and used a linear motion model in this subspace.

In the paper a model of walking is learned, which is a

periodic motion, and will therefore be performed in a

nonlinear cyclic subspace of the angle space. The choice

of a linear subspace therefore seems to come from sheer

practicality in order to cope with the high dimension-

ality of the angle space and not from a well-founded

modelling perspective.

Sminchisescu and Jepson (2004) use Laplacian Eigen-

maps (Belkin and Niyogi, 2003) to learn a nonlinear mo-

tion manifold. Similarly, Lu et al (2008) use a Laplacian

Eigenmaps Latent Variable Model (Carreira-Perpinan

and Lu, 2007) to learn a manifold. The methods used

for learning the manifolds, however, assumes that data

is densely sampled on the manifold. This either requires

vast amounts of data or a low-dimensional manifold. In

the mentioned papers, low dimensional manifolds are

studied. Specifically, one-dimensional manifolds corre-

sponding to walking. It remains to be seen if the ap-

proach scales to higher dimensional manifolds.

Instead of learning the manifold, Elgammal and Lee

(2009) suggested learning a mapping from angle space

to a known manifold. They choose to learn a mapping

onto a two dimensional torus, which allows for analy-

sis of both periodic and aperiodic motion. By enforcing

a known topology, the learning problem becomes more

tractable compared to unsupervised methods. The ap-

proach is, however, only applicable when a known topol-

ogy is available.

Instead of just learning a manifold and restricting

the tracking to this, it seems reasonable also to use the
density of the training data on this manifold. Urtasun

et al (2005) suggested to learn a prior distribution in

a low dimensional latent space using a Scaled Gaussian

Process Latent Variable Model (Grochow et al, 2004).

This not only restricts the tracking to a low dimensional

latent space, but also makes parts of this space more

likely than others. The approach, however, ignores all

temporal aspects of the training data. To remedy this,

both Urtasun et al (2006) and Wang et al (2008) sug-

gested learning a low dimensional latent space and a

temporal model at once using a Gaussian Process Dy-

namical Model. This approach seems to provide smooth

priors that are both suitable for animation and track-

ing.

This approach, however, gracefully ignores the topol-

ogy of the angle space. Specifically, the approach treats

the angle space as Euclidean, and thus ignores both

the periodic nature of angles and the constraints on

the joints. To deal with this issue, Urtasun et al (2008)

suggested changing the inner product of the before-
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Fig. 2 One hundred random poses generated by sampling joint

angles independently from a Von Mises distribution with con-
centration κ = 500, corresponding to a circular variance of ap-

proximately 0.001 (for details of this sampling, see sec. 7.1.1).

Notice how the variance of spatial limb positions increase as the
kinematic chains are traversed.

mentioned Gaussian process to incorporate joint con-

straints.

3.2 The Case Against Predictions in Angle Space

When representing a pose as a set of joint angles θ, it

is tempting to build motion models p(θt|θt−1) in terms

of joint angles. This approach is, however, not without

problems.

The first problem is simply that the space of angles

is quite high dimensional. This does not rule out manual

construction of models, but it can make model learning

impractical.

The second problem is the relationship between spa-

tial limb positions and limb orientations implied by for-

ward kinematics. The spatial position of a limb is de-

pendent on the position of its parent. Thus, if we change

the direction of one bone, we change the position of all

its children. Now, consider a predictive model in an-

gle space that simply adds a little uncertainty to each

angle. For this simple model, we see that the variance

of the spatial position of limbs increases as we traverse

the kinematic chains (see fig. 2). In other words: the

position of a hand is always more uncertain than the

position of the elbow. This property does not seem to

come from a well-founded modelling perspective.

The third problem is that the angle space is topolog-

ically different from RN . If the joint angles are uncon-

strained, such that each angle can take on values in the

circular domain [0, 2π), they live on the N -dimensional

torus. Thus, it is necessary to restrict the motion mod-

els to this manifold, which rules out models that are

designed for RN .

If the joint angles are instead constrained, the topol-

ogy of the angle space changes significantly. If e.g. box

constraints are enforced the set of legal angles becomes

a box in RN . Specifically, it becomes the product space

∏N
n=1[ln, un], where ln and un are the lower and upper

constraints for the nth angle. Again, we cannot apply

motion models designed for RN , without taking special

care to ensure that the pose adheres to the constraints.

In either case, we cannot use motion models de-

signed for RN . This means that as long as we model

in terms of joint angles, it is not mathematically well-

defined to learn motion models using e.g. PCA. This

problem can be alleviated by picking a suitable inner

product for the angle space as suggested by Urtasun

et al (2008). While a carefully designed inner product

can solve the mathematical problems, it does not solve

the rest of the above-mentioned problems.

From a modelling point of view, these problems all

lead to the same fundamental question: which space is

most suitable for predicting human motion?

3.3 Experimental Motivation

For many years, experimental neurologists have stud-

ied how people move. Morasso (1981) measured joint

angles and hand positions while people moved their

hand to a given target. Abend et al (1982) expanded

on this experiment, and introduced obstacles that the

hand had to move around. Both made the same obser-

vation: joint angles show great variation between both

persons and trials, while hand positions consistently

followed the same path with low variation. Recently,

Ganesh (2009) made similar observations for actions

like punching and grasping in a computer vision based

tele-immersion system. One interpretation of these re-

sults is that the end-effector trajectories describes the

generic, i.e. the person independent, part of the motion.

This result is a strong indication that humans plan

body motion in terms of spatial limb trajectories rather

than joint angles. It is our claim that we can achieve

better predictions of human motion if we do so in the

same space as where the motion was planned. Hence, it

makes sense to build predictive models in end-effector

space rather than the space of joint angles.

One can arrive at the same conclusion by taking a

purely statistical point of view. The above-mentioned

experiments showed less variation in end-effector po-

sitions compared to joint angles. Thus, it seems more

robust to build or learn models in terms of end-effectors

as this describes the generic part of the motion.

3.4 Our Approach

Inspired by the results from neurology, we turn to mod-

elling human motion in terms of a few selected end-

effectors. Which end-effectors we choose to model de-
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pends on the studied motion. Our first assumption is

that we know some stochastic process that describes the

motion of these end-effectors. Our goal is then to pro-

vide a framework for moving this process back into the

angle space. From a practical point of view, we aim at

describing the pose distribution in angle space given the

end-effector positions. This problem is closely related

to inverse kinematics, which seeks a joint configuration

that attains the given end-effector positions.

This approach has several advantages.

1. Since we are only modelling few selected end-effectors

their spatial coordinates are more low-dimensional

than all angles. While the degrees of freedom in

the human body remains unchanged, the modelling

space becomes more low-dimensional. This makes

manual model crafting more practical, but more im-

portantly it also makes model learning much more

robust as fewer parameters need to be estimated.

2. Many types of motion can be easily described in spa-

tial coordinates, e.g. move foot towards ball is a de-

scription of kicking a ball, whereas the same motion

is hard to describe in terms of joint angles. These

types of motions are typically goal oriented. In com-

puter animation, this line of thinking is so common,

that inverse kinematics systems are integrated with

practically all 3D graphics software packages.

3. The stochastic motion process is expressed in spatial

coordinates, which is a real vector space, instead of

angles, which is on the N -dimensional torus. This

makes it easier to use off-the-shelf stochastic pro-

cesses as the motion model, since most processes

are designed for real vector spaces.

3.5 Inverse Kinematics in Tracking

The most basic fact of computer vision is that the world

is inherently spatial and that we study projections of

this spatial world onto the image plane. Articulated mo-

tion can be estimated as a direct optimisation in the

image plane, which requires the derivative of the likeli-

hood with respect to the pose parameters. As the im-

age data is inherently spatial this gradient depends on

a mapping from the spatial domain into the joint angle

space, i.e. an inverse kinematics system. Bregler et al

(2004) formalises this in terms of twists and products

of exponential maps as is common in the robotics lit-

erature (Murray et al, 1994). This leads to an iterative

scheme for optimising a likelihood based on the grey

value constancy assumption. This assumption works

well on some sequences, but fails to cope with changes in

the lighting conditions. Knossow et al (2008) avoids this

issue by defining the likelihood in terms of the chamfer-

distance between modelled contours and observed im-

age contours. To perform direct optimisation Knossow

et al finds the derivative of the projection of the con-

tour generator into the image plane with respect to the

pose parameters – again, this requires solving an inverse

kinematics problem. These direct methods works well

in many scenarios, but does not allow for an immediate

inclusion of a prior motion model.

In this paper, we focus on statistical models of hu-

man motion expressed in the spatial domain. This idea

of modelling human motion spatially is not new. Re-

cently, Salzmann and Urtasun (2010) showed how joint

positions can be modelled, while still adhering to the

constraints given by the constant limb lengths. In a sim-

ilar spirit, Hauberg et al (2010) has proposed that the

constraint problem can be solved by projection onto the

nonlinear manifold implicitly defined by enforcing con-

stant limb lengths. These ideas has also been explored

successfully in the motion compression literature, where

Tournier et al (2009) showed how spatial limb positions

could be compressed using principal geodesic analysis

(Fletcher et al, 2004). These approaches are different

from ours as we model goal positions of a few selected

end-effectors rather than considering all joints in the

kinematic skeleton.

When motion is estimated from silhouettes seen from

a single view-point inherent visual ambiguities creates

many local minima (Sminchisescu and Triggs, 2003).

Using a simple closed-form inverse kinematics system

allows Sminchisescu and Triggs to enumerate possible

interpretations of the input. This results in a more ef-

ficient sampling scheme for their particle filter, as it

simultaneously explores many local minima, which re-

duces the chance of getting stuck in a single local min-

imum. However, their approach suffers from the prob-

lems discussed in sec. 3.2, which makes it difficult to

incorporate application specific motion priors.

When modelling interactions with the environment,

inverse kinematics is an essential tool as it provides a

mapping from the spatial world coordinate system to

the joint angle space. Rosenhahn et al (2008) uses this

to model interaction with sports equipment, such as bi-

cycles and snowboards. They use the previously men-

tioned formalism of twists and products of exponen-

tial maps to derive an approximate gradient descent

scheme for estimating poses. In a similar spirit, Kjell-

ström et al (2010) models interaction with a stick-like

object. They solve the inverse kinematics problem us-

ing rejection sampling in joint angle space, leading to

a computational expensive approach due to the high

dimensionality of the joint angle space.

Previously, we (Hauberg et al, 2009; Engell-Nørre-

g̊ard et al, 2009) successfully used end-effector positions
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as the pose representation, which provided a substantial

dimensionality reduction. When comparing a pose to

an image, we used inverse kinematics for computing

the entire pose configuration. This paper provides the

full Bayesian development, analysis and interpretation

of this approach.

Courty and Arnaud (2008) have previously suggested

a probabilistic interpretation of the inverse kinematics

problem. We share the idea of providing a probabilis-

tic model, but where they solve the inverse kinemat-

ics problem using importance sampling, we use inverse

kinematics to define the importance distribution in our

particle filter.

3.6 Organisation of the Paper

The rest of the paper is organised as follows. In the

next section, we derive a model, that allows us to de-

scribe the distribution of the joint angles in the kine-

matic skeleton given a set of end-effector goals. In sec. 5

we show the needed steps for performing inference in

this model as part of an articulated motion analysis

system. These two sections constitute the main tech-

nical contribution of the paper. To actually implement

a system for articulated motion analysis, we need to

deal with observational data. A simple system for this

is described in sec. 6 and in sec. 7 we show examples

of the attained results. The paper is concluded with a

discussion in sec. 8.

4 Deriving the Model

The main objective of this paper is to construct a frame-

work for making predictions of future motion. Since

we are using the kinematic skeleton as the pose rep-

resentation, we need to model some distribution of θ.

As previously described we wish to build this distri-

bution in terms of the spatial coordinates of selected

end-effectors. To formalise this idea, we let g denote

the spatial coordinates of the end-effector goals. Intu-

itively, this can be thought of as the position where

the human wishes to place e.g. his or her hands. Our

objective thus becomes to construct the distribution of

θ given the end-effector goal g. Formally, we need to

specify p(θ|g).

Given joint angles, we start out by defining the like-

lihood of an end-effector goal g as a “noisy” extension

of forward kinematics. Specifically, we define

p(g|θ) = N
(
g|F (θ),W−1) , (3)

where W is the precision (inverse covariance) matrix of

the distribution. Here, the stochasticity represents that

one does not always reach ones goals.

We do not have any good prior information about

the joint angles θ except some limits on their values.

So, we take a least-commitment approach and model

all legal angles as equally probable,

p(θ) = UΘ(θ) , (4)

where Θ is the set of legal angles, and UΘ is the uni-

form distribution on this set. In practice, we use box

constraints, i.e. confine each component of θ to an in-

terval. This gives us

p(θ) =

N∏
n=1

U[ln,un](θ[n]) , (5)

where ln and un denote the lower and upper bounds of

the nth component θ[n].

Using Bayes’ theorem, we combine eq. 3 and eq. 5

into

p(θ|g) =
p(g|θ)p(θ)

p(g)
∝ p(g|θ)p(θ) (6)

= N
(
g|F (θ),W−1) N∏

n=1

U[ln,un](θ[n]) . (7)

As can be seen, we perform a nonlinear transformation

F of the θ variable and define its distribution in the

resulting space. In other words we effectively define the

distribution of θ in the end-effector goal space rather

than angle space. It should be stressed that while p(θ|g)

looks similar to a normal distribution, it is not, due to

the nonlinear transformation F .

In the end, the goal is to be able to extract θ from

observational data such as images. We do this using a

straight-forward generative model,

p(X,θ,g) = p(X|θ)p(θ|g)p(g) , (8)

where X is the observation. This model is shown graph-

ically in fig. 3. It should be noted that we have yet to

specify p(g); we will remedy this at a later stage in the

paper.

4.1 Relation to Inverse Kinematics

Taking the logarithm of eq. 7 gives us

log p(θ|g) = −1

2
(g − F (θ))TW(g − F (θ))

+

N∑
n=1

logU[ln,un](θ[n]) + constant .
(9)
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Fig. 3 Graphical representation of the Probabilistic Inverse
Kinematics model given in eq. 8.

Maximising this corresponds to minimising

d2 (F (θ),g) =
1

2
(g − F (θ))TW(g − F (θ)) , (10)

subject to l ≤ θ ≤ u, where l and u are the vectors

containing the joint limits. This is the inverse kinemat-

ics model presented by Zhao and Badler (1994). Thus,

we deem eq. 7 Probabilistic Inverse Kinematics (PIK).

It should be noted that due to the nonlinearity of F ,

this optimisation problem is nonlinear, rendering max-

imum a posteriori estimation difficult. Since the end-

effector space is often much more low-dimensional than

the angle space, the Hessian of eq. 10 does not have

full rank. As a consequence the optimisation problem

is not guaranteed to have a unique solution. In fact, the

minima of eq. 10 often form a continuous subspace of

Θ. This can be realised simply by fixing the position of

a hand, and moving the rest of the body freely. Such

a sequence of poses will be continuous while all poses

attain the same end-effector position.

4.2 Sequential PIK

As previously mentioned we aim at building predictive

distributions for sequential analysis based on the end-

effector goals. To keep the model as general as possi-

ble, we assume knowledge of some stochastic process

controlling the end-effector goals. That is, we assume

we know p(gt|g1:t−1), where the subscript denotes time

and g1:t−1 = {g1, . . . ,gt−1} is the past sequence. In

sec. 7 we will show examples of such processes, but it

should be noted that any continuous process designed

for real vector spaces is applicable.

While we accept any continuous model p(gt|g1:t−1)

in end-effector goal space, we do prefer smooth motion

in angular space. We model this as preferring small tem-

poral gradients
∣∣∣∣∂θ
∂t

∣∣∣∣2. To avoid extending the state

with the temporal gradient, we approximate it using

finite differences,∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2 ≈ ||θt − θt−1||2 . (11)

Fig. 4 Graphical representation of the Sequential Probabilistic

Inverse Kinematics model given in eq. 13.

So, we introduce a first order Markov model in angle

space and define

log p(θt|gt,θt−1) = −1

2
(gt − F (θt))

TW(gt − F (θt))

− λ

2
||θt − θt−1||2 (12)

+

N∑
n=1

logU[ln,un](θt[n]) + constant ,

where λ controls the degree of temporal smoothness.

This is effectively the same as eq. 9 except poses close

to the previous one, θt−1, are preferred. This slight

change has the pleasant effect of isolating the modes of

p(θt|gt,θt−1), which makes maximum a posteriori es-

timation more tractable. Consider the previously given

example. A person can put his or her hands in a given

position in many ways, but no continuous subset of the

pose space can attain the given hand position and be

closest to the previous pose at the same time.

In summary, we have the following final generative

model

p(X1:T ,θ1:T ,g1:T ) = p(X1|θ1)p(θ1|g1)p(g1)

T∏
t=2

p(Xt|θt)p(θt|gt, θt−1)p(gt|g1:t−1) ,
(13)

where X1:T = {X1, . . . ,XT } denotes the sequence of

observations. This model is illustrated in fig. 4.

4.3 Designing Spatial Processes

One of the advantages of the Sequential PIK model

is that given a spatial model p(gt|g1:t−1) of the end-

effector goals, we can work with the corresponding model

in terms of joint angles. However, so far, we have avoided

the question of how to define such spatial models. We

will give specific examples in sec. 7, but until then, it

can be instructive to consider how one might design

such models.



8

Consider a person grasping for an object. Neurol-

ogists (Morasso, 1981; Abend et al, 1982) have shown

that people most often move their hands on the straight

line from the current hand position towards the object.

This can easily be modelled by letting the goal posi-

tion of the hand move along this line. The speed of

the hand could be modelled as a constant or it could

be controlled by another process. It should be stressed

that the immediate goal gt follows the mentioned line

and hence is different from the end goal (the position

of the object).

As a second example, consider a person walking.

Many successful models of such motions have been de-

rived in terms of joint angles as discussed in sec. 3.1.

Most of them does, however, not consider interaction

with the ground plane, which is an intrinsic part of

the motion. This interaction actually makes the motion

non-smooth, something most models cannot handle. By

modelling the goals of the feet it is easy to ensure that

one foot always is in contact with the ground plane and

that the other never penetrates the ground. The actual

trajectory of the moving foot could then be learned us-

ing, e.g. a Gaussian process (Rasmussen and Williams,

2006). Again, the immediate goal gt would move along

the curve represented by the learned process.

5 Inference

In the previous section a model of human motion was

derived. This section focuses on the approximations

needed to perform inference in the model. Due to the

inherent multi-modality of the problem, we use a par-

ticle filter to perform the inference. In the next section

this algorithm is described from an importance sam-

pling point of view as our choice of importance distri-

bution is non-conventional. Results will, however, not

be proved; instead the reader is referred to the review

paper by Cappé et al (2007).

We will assume that a continuous motion model

p(gt|g1:t−1) is available and that we can sample from

this distribution. Specific choices of this model will be

made in sec. 7, but it should be stressed that the method

is independent of this choice, e.g. further constraints

such as smoothness may be added.

We will also assume that a system p(Xt|θt) for mak-

ing visual measurements is available. Such a system will

be described in sec. 6, but the method is also indepen-

dent of the specifics of this system.

5.1 Approximate Bayesian Filtering

The aim of approximate Bayesian filtering is to estimate

the filtering distribution p(θt|gt,X1:t) by means of sam-

ples. Instead of drawing samples from this distribution,

they are taken from p(θ1:t|g1:t,X1:t) and then all values

of the samples but θt are ignored. Since the filtering

distribution is unknown, we turn to importance sam-

pling (Bishop, 2006). This means drawing M samples

θ
(m)
1:t from an importance distribution q(θ1:t|g1:t,X1:t)

after which moments of the filtering distribution can be

estimated as

h̄ =

∫
h(θt)p(θt|gt,X1:t)dθt

≈
M∑
m=1

w
(m)
t h

(
θ
(m)
t

) (14)

for any function h. Here we have defined the importance

weights as

w
(m)
t ∝

p
(
θ
(m)
1:t

∣∣g(m)
1:t ,X1:t

)
q
(
θ
(m)
1:t

∣∣g(m)
1:t ,X1:t

) ,

M∑
m=1

w
(m)
t = 1 . (15)

Unsurprisingly, eq. 14 is exact when M →∞.

The key to making this strategy work is to choose

an importance distribution, which ensures that the re-

sulting algorithm is recursive. With this in mind, it is

chosen that the importance distribution should be fac-

torised as

q(θ1:t|g1:t,X1:t) = q(θ1:t−1|g1:t−1,X1:t−1)

q(θt|gt,θt−1,Xt) .
(16)

With this choice, one can sample from q(θ1:t|g1:t,X1:t)

recursively by extending the previous sample θ
(m)
1:t−1 with

a new sample θ
(m)
t from q(θt|gt,θt−1,Xt). The weights

w
(m)
t−1 can also be recursively updated by means of

w
(m)
t ∝ w

(m)
t−1 p

(
Xt

∣∣θ(m)
t

)
r(m) (17)

with

r(m) =
p
(
θ
(m)
t

∣∣g(m)
t ,θ

(m)
t−1

)
q
(
θ
(m)
t

∣∣g(m)
t ,θ

(m)
t−1,Xt

) . (18)

When extending the previous sample, we need to

draw a sample from q(θt|gt,θt−1,Xt). This, however,

assumes that the true value of θt−1 is known, which

is not the case. Several strategies can be used to ap-

proximate this value. Sequential Importance Sampling

assumes that the previous sample positions were the

true value, i.e. θt−1 = θ
(m)
t−1. This is usually not sta-

ble, since small differences between the sample and the
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true value accumulates over time. The particle filter ap-

proximates the distribution of θt−1 with the weighted

samples from the previous iteration, i.e.

p(θt−1|gt−1,X1:t−1) ≈
M∑
m=1

w
(m)
t−1δ

(
θt−1 − θ

(m)
t−1

)
. (19)

The value of θt−1 is then approximated by sampling

from this distribution. This simply corresponds to a re-

sampling of the previous samples, where samples with

large weights have a high probability of surviving. Since

these samples are assumed to come from the true dis-

tribution p(θt−1|gt−1,X1:t−1), the associated weights

have to be reset, i.e. w
(m)
t−1 = 1/M for all m.

We have still to choose the importance distribu-

tion q(θt|gt,θt−1,Xt). The most common choice is in-

spired by eq. 18. Here, we note that r(m) = 1 if we

set q(θt|gt,θt−1,Xt) = p(θt|gt,θt−1), which simplifies

the weight update. With this choice, the resulting fil-

ter is called the Bootstrap filter. This cannot, however,

be applied for the model described in this paper, as we

cannot sample directly from p(θt|gt,θt−1). A different

importance distribution will be presented next.

5.2 The Importance Distribution

Inspired by the Bootstrap filter, we drop the observa-

tion Xt from the importance distribution, such that

q(θt|gt,θt−1,Xt) = q(θt|gt,θt−1). It would seem tempt-

ing to use p(θt|gt,θt−1) as the importance distribution.

It is, however, not straightforward to draw samples from

this distribution, so this choice does not seem viable. In-

stead, we seek a distribution that locally behaves simi-

larly to p(θt|gt,θt−1).

In sec. 4.2 we noted that p(θt|gt,θt−1) has isolated

modes. Thus, it seems reasonable to locally approxi-

mate this distribution using a Laplace approximation

(Bishop, 2006), which is a second order Taylor approx-

imation of the true distribution. This boils down to fit-

ting a normal distribution around the local mode θ∗t , us-

ing the Hessian of − log p(θt|gt,θt−1) as an approxima-

tion of the precision matrix. Assuming that F (θ∗t ) = gt,

i.e. the located pose actually reaches the given end-

effector goal, this Hessian matrix attains the simple

form

H = −(gt − F (θ∗t ))
TW

∂J

∂θ
+ JTWJ + λI (20)

= JTWJ + λI , (21)

where J is the Jacobian of F at θ∗t . This Jacobian con-

sists of a row for each component of θt. Each such row

can be computed in a straightforward manner (Zhao

and Badler, 1994). If r is the unit-length rotational

Fig. 5 The derivative of a joint is found as the cross product of
the rotational axis r and the vector from the joint to the end-

effector g.

axis of the nth angle and ∆g is the vector from the

joint to the end-effector, then the row is computed as
∂F

∂θt[n]
= r×∆g. This is merely the tangent of the circle

formed by the end-effector when rotating the joint in

question as is illustrated in fig. 5.

We, thus, have an easy way of computing the Laplace

approximation of p(θt|gt,θt−1), which we use as the

importance distribution. That is, we pick

q(θt|gt,θt−1,Xt)

= N
(
θt

∣∣∣θ∗t ,(JTWJ + λI
)−1)

UΘ(θt) .
(22)

Hence, we are using a local second order approximation

of the Bootstrap filter, while adhering to the joint con-

straints. It should be noted that we can easily sample

from this distribution using rejection sampling (Bishop,

2006). When using box constraints, this rejection sam-

pling can be performed one joint angle at a time and as

such does not impact performance in any measureable

way.

5.2.1 Solving the Nonlinear Least-Squares Problem

One assumption made in the previous section was that

we can compute the mode θ∗t of p(θt|gt,θt−1). Since

the modes of this distribution are isolated, we can eas-

ily locate a mode, using a nonlinear constrained least-

squares solver. In this paper, we are using a simple, yet

effective, gradient projection method with line search

(Nocedal and Wright, 1999).

To perform the optimisation, we need to compute

the gradient of log p(θt|gt,θt−1). This is given by

∂ log p(θt|gt,θt−1)

∂θt
=(gt − F (θt))

TWJ

−λ(θt − θt−1) .

(23)

When solving the nonlinear least-squares problem, we

start the search in θt−1, which usually ensures conver-

gence in a few iterations.
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6 Visual Measurements

In this section we define p(Xt|θt), i.e. we describe how

we compare an observation with a pose hypothesis. This

allows us to compute weights for the particle filter,

which then optimises the posterior. Since this paper

is focused on the prediction aspect of a tracker, we de-

liberately keep this part as simple as possible.

6.1 General Idea

To keep the necessary image processing to a minimum,

we use a small baseline consumer stereo camera from

Point Grey1. At each time-step, this camera provides

a set of three dimensional points as seen from a single

view point (see fig. 6). The objective of p(Xt|θt) is then

essentially to measure how well θt fits with these points.

Due to the small baseline, visual ambiguities will occur,

which leads to local maxima in the likelihood. This is

one reason for using a particle filter for performing in-

ference.

Let Xt = {x1, . . . ,xK} denote the set of three di-

mensional points provided by the stereo camera. Our

first simplifying assumption is that these are indepen-

dent and identically distributed, i.e.

p(Xt|θt) =

K∏
k=1

p(xk|θt) . (24)

We then define the likelihood of an individual point as

p(xk|θt) ∝ exp

(
−D

2(θt,xk)

2σ2

)
, (25)

where D2(θt,xk) denotes the squared distance between

the point xk and the surface of the pose parametrised

by θt.

We, thus, need a definition of the surface of a pose,

and a suitable metric.

6.2 The Pose Surface

The pose θt corresponds to a connected set of L bones,

each of which have a start and an end point. We, re-

spectively, denote these al and bl for the lth bone; we

can compute these points using forward kinematics. We

then construct a capsule with radius rl that follows the

line segment from al to bl. The surface of the lth bone

is then defined as the part of this capsule that is visible

from the current view point. This surface model of a

bone is illustrated in fig. 7a. The entire pose surface is

1 http://www.ptgrey.com/products/bumblebee2/

(a) (b)

Fig. 7 (a) An illustration of the surface of a bone. Here al and bl

denotes the end points of the bone, while c denotes the camera

position. For illustration purposes, we only show the cylindric
part of the capsules. (b) An illustration of the computation of

the point on the bone surface from a data point. To keep the

figure simple, we show data points x1 and x2 that share the same
nearest point p = p1l = p2l on the line segment between al and

bl. The vectors w1l and w2l are the vectors from p pointing

towards h1l and h2l.

then defined as the union of these bone surfaces. This

is essentially the same surface model as was suggested

by Sidenbladh et al (2000), except they used cylinders

instead of capsules. In general, this type of surface mod-

els does not describe the human body particularly well.

The capsule skin can, however, be replaced with more

descriptive skin models, such as the articulated implicit

surfaces suggested by Horaud et al (2009).

In the end, our objective is to compute the distance

between a data point and the surface. We do this by

first finding the nearest point on the surface and then

compute the distance between this point and the data

point. Since we define the pose surface bone by bone,

we can compute this distance as the distance to the

nearest bone surface, i.e.

D2(θt,xk) = min
l

(
d2(xk,hkl)

)
, (26)

where hkl is the nearest point (in the Euclidean sense)

on the lth bone and d2(xk,hkl) is the squared distance

between xk and hkl. Note that the minimisation in

eq. 26 can be trivially performed by iterating over all L

bones.

6.2.1 Finding Nearest Point on the Bone Surface

We thus set out to find the point on a bone surface

that is nearest to the data point xk. We start by finding

the nearest point on the capsule with radius rl around

the line segment from al to bl. We let pkl denote the

point on the line segment that is nearest to xk, and

then the nearest point on the capsule can be found as

p + rl
xk−pkl

||xk−pkl|| .

We now turn our attention to the part of the capsule

that can be seen from the camera. Points on this part

of the capsule can be described as the points where the

angle between the vectors from pkl to the camera and
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Fig. 6 A rendering of the data from the stereo camera from different views.

to the point on the surface should be no greater than 90

degrees. This is formalised by requiring (xk−pkl)
T (c−

pkl) ≥ 0, where c denotes the position of the camera.

If the nearest point is not on the visible part, then it

is on the border of the surface. Hence, the vector from

pkl to the nearest point must be orthogonal to the line

segment formed by al and bl, and the vector from pkl
to c. In other words, the nearest point on the surface

can then be computed as

hkl = pkl + rl
wkl

||wkl||
, (27)

where

wkl =

{
xk − pkl, (xk − pkl)

T (c− pkl) ≥ 0

sgn
(
xTk v

)
v, otherwise ,

(28)

with v = (c − pkl) × (bl − al). The geometry behind

these computations is illustrated in fig. 7b.

6.3 Robust Metric

We are now able to find the point on the surface of a

bone that is nearest to a data point xk. Thus, we are

only missing a suitable way of computing the squared

distance between the data point and the nearest point

on the bone surface. The most straight-forward ap-

proach is to use the squared Euclidean distance. This is,

however, not robust with respect to outliers. Looking at

fig. 6, we see that the data from the stereo camera con-

tains many outliers; some due to mismatches and some

due to other objects in the scene (i.e. the background).

To cope with these outliers, we could use any robust

metric. Here, we choose to use a simple thresholded

squared Euclidean distance, i.e.

d2(xk,hkl) = min
(
||xk − hkl||2, τ

)
. (29)

7 Results

We now have a complete articulated tracker, and so

move on to the evaluation. First, we compare our pre-

dictive model to a linear model in angle space. Then,

we show how the model can be extended to model in-

teractions between the person and objects in the envi-

ronment. Finally, we provide an example of an activity

dependent model from the world of physiotherapy.

In each frame, the particle filter provides us with a

set of weighted hypotheses. To reduce this set to a sin-

gle hypothesis in each frame, we compute the weighted

average, i.e.

θ̂t =

M∑
m=1

w
(m)
t θ

(m)
t , (30)

which we use as an estimate of the current pose. This

simple choice seems to work well enough in practice.

7.1 Linear Extrapolation in Different Spaces

We start out by studying an image sequence in which

a test subject keeps his legs fixed while waving a stick

with both hands in a fairly arbitrary way. This sequence

allows us to work with both complex and highly artic-

ulated upper body motions, without having to model

translations of the entire body. A few frames from this

sequence is available in fig. 8. This sequence poses sev-

eral problems. Due to the style of the motion, limbs

are often occluded by each other, e.g. one arm is often

occluded by the torso. As the sequence is recorded at

approximately 15 frames per second we also see motion

blur. This reduces the quality of the stereo reconstruc-

tion, which produces ambiguities for the tracker.

7.1.1 Angular Motion Model

For comparative purposes we build an articulated tracker

in which the predictive model is phrased in terms of
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Frame 91 Frame 159 Frame 268

Fig. 8 Frames 91, 159 and 268 from the first test sequence. On the top is one image from the camera; in the middle and in the bottom

is a rendering of the stereo data from two different view points. The final objective is to extract θt from such data.

independent joint angles. Specifically, we linear extrap-

olate the joint angles, i.e. we define the mean of the

predictive distribution as

θ̄t+1 = θt + (θt − θt−1) . (31)

The predictive distribution is then defined as a Von

Mises distribution (Bishop, 2006) with the above mean,

which is constrained to respect the joint limits. Pre-

cisely, the predictive distribution is defined as

p
(
θt+1

∣∣ θt,θt−1)
∝ UΘ(θt+1)

N∏
n=1

exp
(
κn cos(θt+1[n]− θ̄t+1[n])

) (32)

This model is conceptually the one proposed by Poon

and Fleet (2002), except our noise model is a Von Mises

distribution whereas a Normal distribution was previ-

ously applied.

7.1.2 End-effector Motion Model

We compare the linear predictor in angle space to a lin-

ear predictor in the space of end-effector goals. Specifi-

cally, we focus on the spatial positions of the head and

the hands, such that gt denotes the goal of these. We

then define their motion as

p(gt+1|gt,gt−1) = N (gt+1|gt + (gt − gt−1), σ2I). (33)

The predictive distribution in angle space is then cre-

ated as described in sec. 4.

7.1.3 Experimental Setup

To evaluate the quality of the attained results we po-

sition motion capture markers on the arms of the test

subject. We then measure the average distance between

the motion capture markers and the capsule skin of the

estimated pose. This measure is then averaged across

frames, such that the error measure becomes

E(θ1:T ) =
1

TM

T∑
t=1

M∑
m=1

D(θt,vmt) , (34)

where D(θt,vmt) is the shortest Euclidean distance be-

tween the mth motion capture marker and the skin at

time t.
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Fig. 13 The error measure E(θ1:T ) plotted as a function of the

number of particles. The shown results are averaged over several

trials; the error bars correspond to one standard deviation.

If the observation density p(θt|Xt) is noisy, then

the motion model tends to act as a smoothing filter.

This can be of particular importance when observations

are missing, e.g. during self-occlusions. When evaluat-

ing the quality of a motion model it, thus, can be helpful

to look at the smoothness of the attained pose sequence.

To measure this, we simply compute the average size of

the temporal gradient. We approximate this gradient

using finite differences, and hence use

S(θ1:T ) =
1

TL

T∑
t=1

L∑
l=1

||alt − al,t−1|| (35)

as a measure of smoothness.

7.1.4 Evaluation

To see how the two motion models compare we apply

them several times to the same sequence with a vari-

able number of particles. The tracker is manually ini-

tialised in the first frame. Visualisations of the attained

results for a few frames are available in fig. 9–12. Movies

with the same results are also available on-line2. Due

to the fast motions and poor stereo reconstructions,

both models have difficulties tracking the subject in all

frames. However, visually, it is evident that the end-

effector motion model provides more accurate tracking

and more smooth motion trajectories compared to the

angular motion model.

In order to quantify these visual results, we com-

pute the error measure presented in eq. 34 for results at-

tained using different number of particles. Fig. 13 shows

this. Here the results for each number of particles has

been averaged over several trials. It is worth noticing

that our model consistently outperforms the model in

angle space.

2 http://humim.org/pik-tracker/
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Fig. 14 The smoothness measure S(θ1:T ) plotted as a function

of the number of particles. Low values indicate smooth trajecto-
ries. The shown results are averaged over several trials; the error

bars correspond to one standard deviation.
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Fig. 15 The running time per frame of the tracking system when

using different motion models. The end-effector based model ap-
proximately requires 1.4 times longer per frame.

We also measure the smoothness S of the attained

pose sequences as a function of the number of particles.

This is plotted in fig. 14. As can be seen, our model is

consistently more smooth compared to the linear model

in angle space. This result is an indication that our

model is less sensitive to noise in the observational data.

In summary, we see that our model allows for im-

proved motion estimation using fewer particles com-

pared to a linear model in angle space. This, however,

comes at the cost of a computationally more expensive

prediction. One might then ask, when this model im-

proves the efficiency of the entire program. The answer

to this question depends on the computation time re-

quired by the visual measurement system as this most

often is the computationally most demanding part of

tracking systems. For our system, the running time per

frame is plotted in fig. 15. Comparing this with fig. 13,

we see that our model produces superior results for fixed

computational resources.
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 9 Results in frame 91, 159 and 268 using the angular model with 500 particles.

Frame 91; 2500 Particles Frame 159; 2500 Particles Frame 268; 2500 Particles

Fig. 10 Results in frame 91, 159 and 268 using the angular model with 2500 particles.

7.2 Human–Object Interaction

In the previous section we saw that the activity inde-

pendent end-effector model improved the results of the

angular model. However, results were still not perfect

due to the poor data. Inspired by the work of Kjell-

ström et al (2010) we now specialise the end-effector

model to include knowledge of the stick position. As-

sume we know the person is holding on to the stick and

that we know the end points of the stick. As the stick

is linear, we can write the hand positions as a linear

combination of the stick end points.

We now model the goal positions of the hands as

such a linear combination, i.e. we let

gt = s
(1)
t γt + s

(2)
t (1− γt) , (36)

where s
(i)
t denotes the end points of the stick. Here we

let γt follow a normal distribution confined to the unit

interval, i.e.

p(γt|γt−1) ∝ N
(
γt|γt−1, σ2

)
U[0,1](γt) . (37)

We now have a motion model that describes how the

person is interacting with the stick. To apply this model
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 11 Results in frame 91, 159 and 268 using the end-effector model with 500 particles.

Frame 91; 2500 Particles Frame 159; 2500 Particles Frame 268; 2500 Particles

Fig. 12 Results in frame 91, 159 and 268 using the end-effector model with 2500 particles.

we need to know the end points of the stick at each

frame. Here, we simply attain these by placing markers

from the optical motion capture system on the stick.

In practical scenarios, one would often only have the

two dimensional image positions of the stick end points

available. The model can be extended to handle this

by restricting the hand goals to the plane spanned by

the lines starting at the optical centre going through

the stick end points in the image plane (Hauberg and

Pedersen, 2011).

We apply this object interaction model to the same

sequence as before. In fig. 16 we show the attained re-

sults using 500 particles on the same frames as before.

As can be seen, the results are better than any of the

previously attained results even if we are using fewer

particles. This is also evident in fig. 17, where the track-

ing error is shown. In general, it should be of no surprise

that results can be improved by incorporating more ac-

tivity dependent knowledge; the interesting part is the

ease with which the knowledge could be incorporated

into the model.
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 16 Results in frame 91, 159 and 268 using the object interaction model.
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Fig. 17 The error measure E(θ1:T ) when using the object inter-
action model. The shown results are averaged over several trials;
the error bars correspond to one standard deviation.

7.3 The Pelvic Lift

We have seen that the suggested modelling framework

can be useful to create activity independent motion

models and to model interactions with objects. The

main motivation for creating the framework is, however,

to be able to easily model physiotherapeutic exercises.

As a demonstration we will create such a model for the

the pelvic lift exercise. The simple exercise is illustrated

in fig. 18. The patient lies on the floor with bend knees.

He or she must then repeatedly lift and lower the pelvic

region.

To model this motion we focus on the position of the

feet, the hands and the pelvic region. We fix the goals

of the feet and the hands, such that they always aim at

Fig. 18 An illustration of the pelvic lift exercise. The patient

lies on a flat surface with head, feet and hands fixed. The pelvic

region is lifted and lowered repeatedly.

the position in which the tracking was initialised, i.e.

gt+1 = g1 for hand and feet. (38)

The root of the kinematic skeleton is placed at the

pelvic region. We model the motion of the root as mov-

ing mostly up or downwards, by letting

roott+1 = roott + η , (39)

where η is from a zero-mean Normal distribution with

covariance diag(σ2, σ2, 16σ2). Here, the factor 16 en-

sures large variation in the up and downwards direc-

tions. We further add the constraint that roott+1 must

have a positive z-value, i.e. the root must be above

the ground plane. This model illustrates the ease with

which we can include knowledge of both the environ-

ment and the motion in the predictive process.

To illustrate the predictions given by this model, we

sample 10 particles from the model. These are drawn in

fig. 19. As can be seen, the position of the head, hands

and feet show small variation, whereas the position of

both the pelvic region and the knees shows more vari-

ation. It should be noted that the knees vary as we did
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Fig. 19 Ten samples from the tracking of the pelvic lift exercise.

Notice how the spine and pelvic region shows large variation in

the vertical direction, the knees shows large variation in all direc-
tions, while other limbs show low variation. The precision matrix

of the importance distribution used to generate one of these sam-

ples is shown in fig. 20.

Fig. 20 Precision matrix of the importance distribution used

for predicting one of the samples shown in fig. 19. Dark entries
correspond to positive values, light entries correspond to negative

values while the light grey covering most entries correspond to

zero.

not model their motion. To gain further insight into the

prediction, we plot the precision matrix of the impor-

tance distribution in fig. 20. It can be seen that this

matrix has a block-structure indicating that clusters of

joints are correlated.

We have applied this predictive model to a sequence

where a test subject performs the pelvic lift exercise.

The exercise is repeated 6 times and is successfully

tracked using 100 particles. A few selected frames are

available in fig. 21 and a movie is available on-line2.

8 Conclusion

In this paper we have presented a probabilistic exten-

sion of inverse kinematics. With this, we are able to

build predictive models for articulated human motion

estimation from processes in the spatial domain. The

advantages of this approach are many.

First, we have empirically demonstrated that our

spatial motion models improve the tracking using far

less particles, while they at the same time provide more

smooth motion trajectories compared to simple mod-

els in the space of joint angles. In our experience, the

traditional motion models in joint angle space actually

provide little to no predictive power. The basic issue is

that the spatial variance of limb coordinates tends to

accumulate with these models as the kinematic chains

are traversed. From a practical point of view this means

that limbs which are far down the kinematic chains are

rarely predicted correctly, meaning many particles are

required. Our model does not suffer from this issue as

we control the end positions of the chains. We believe

this is the main cause of the models efficiency.

Secondly, we saw that the model allows us easily to

take the environment into account. We saw this with

the stick example, where we could trivially incorporate

the stick position into the model. We also saw this with

the pelvic lift example, where we modelled the ground

plane.

Thirdly, our approach makes it easier to construct

high quality models of a large class of motions. Specifi-

cally, goal oriented motions are usually easy to describe

in spatial coordinates. This was demonstrated on the

pelvic lift exercise, which is trivial to describe spatially,

but complicated when expressed directly in terms of

joint angles.

Fourthly, our models mostly works in the low di-

mensional space of end-effector goals, which is simply

an ordinary Euclidean space. This makes it more prac-

tical to build motion models as we do not need to deal

with the topology of the space of joint angles.

We feel there is great need for predictive motion

models that are expressed spatially as this seems to

mimic human motion plans more closely. It is, how-

ever, not clear if our approach of modelling end-effector
goals is the best way to achieve spatial motion priors.

It could be argued that it would be better to model

the actual end-effector positions rather than their goals.

Our strategy do have the advantage that the resulting

optimisation problems are computationally feasible. It

also allows us to study stochastic processes in ordinary

Euclidean spaces. Had we instead chosen to model the

actual end-effector positions, we would be forced to re-

strict our motion models to the reachable parts of the

spatial domain, making the models more involved.

At the heart of our predictive models lies an inverse

kinematics solver that computes the mode of eq. 12. In

the future this solver should be extended with a collision

detection system, such that self-penetrations would be

disallowed. We are also actively working on determining

more restrictive joint limit models (Engell-Nørreg̊ard

et al, 2010). Both extensions would reduce the space

of possible poses, which would allow us to reduce the

number of particles even further.
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Image Data Stereo Data Estimated Pose

Fig. 21 Frames 71 and 159 from a sequence with a pelvic lift exercise. The exercise is repeated 6 times during approximately 200
frames. The video was recorded at approximately 10 frames per second.

References

Abend W, Bizzi E, Morasso P (1982) Human arm tra-

jectory formation. Brain 105(2):331–348

Belkin M, Niyogi P (2003) Laplacian Eigenmaps for di-

mensionality reduction and data representation. Neu-

ral Computation 15(6):1373–1396

Bishop CM (2006) Pattern Recognition and Machine

Learning. Springer

Bregler C, Malik J, Pullen K (2004) Twist based acqui-

sition and tracking of animal and human kinematics.

International Journal of Computer Vision 56:179–194
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