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Abstract

We propose novel finite-dimensional spaces of Rn → Rn

transformations, n ∈ {1, 2, 3}, derived from (continuously-

defined) parametric stationary velocity fields. Particu-

larly, we obtain these transformations, which are diffeomor-

phisms, by fast and highly-accurate integration of continu-

ous piecewise-affine velocity fields; we also provide an ex-

act solution for n = 1. The simple-yet-highly-expressive

proposed representation handles optional constraints (e.g.,

volume preservation) easily and supports convenient mod-

eling choices and rapid likelihood evaluations (facilitating

tractable inference over latent transformations). Its ap-

plications include, but are not limited to: unconstrained

optimization over monotonic functions; modeling cumula-

tive distribution functions or histograms; time warping; im-

age registration; landmark-based warping; real-time dif-

feomorphic image editing. Our code is available at

https://github.com/freifeld/cpabDiffeo

1. Introduction

Spaces of well-behaved transformations, particularly dif-

feomorphisms, play a key role in computer vision. Unfor-

tunately, current state-of-the-art representations of highly-

expressive diffeomorphisms are overly complicated. Thus,

despite their potential power and mathematical beauty, their

applicability is somewhat limited, especially when large

datasets are involved or when computing resources and time

are limited. Moreover, owing to their complexity, using

powerful inference tools in such spaces remains challeng-

ing. Motivated by not only the practicalities of probabilistic

modeling and statistical inference but also a desire to make

diffeomorphisms broadly accessible, we propose a repre-

sentation that combines simplicity, expressiveness, and ef-

ficiency. Particularly, we propose novel spaces of transfor-
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Figure 1: An Ω → Ω map, φθ(·, t) : x 7→ φθ(x, t), derived

from a CPA velocity field, vθ : Ω → Rn. (a) A 1D exam-

ple. Note vθ vanishes at fixed points of φθ(·, t). (b) Top:

A 2D vθ shown in select locations. Middle: Rather than

a Middlebury-style visualization, we use one emphasizing

the CPA property. The horizontal component, vθ
h (left), and

the vertical component, vθ
v (right), are shown as heat maps

whose colors range from blue = −λ, via green = 0, to

red = λ where λ = maxx∈Ω max(|vθ
h(x)|, |v

θ
v (x)|). Bot-

tom: Isrc ◦ φ
θ(·, 1) (where Isrc appears in Fig. 2). (c) a 2D

example with boundary and volume-preserving constraints.

mations that are based on (fast, highly-accurate) integra-

tion of Continuous Piecewise-Affine (CPA) velocity fields.

Existing spaces offer only subsets of the benefits of the

proposed spaces: 1) high expressiveness; 2) finite dimen-

sionality; 3) ease of implementation; 4) modest mathemat-

ical preliminaries; 5) convenient modeling choices; 6) ease

of handling optional constraints; 7) fast and highly-accurate

computations that lead to fast likelihood evaluations. These

in turn facilitate the use of inference tools – typified by the

case of analysis-by-synthesis methods – that are usually too

expensive for rich transformation spaces. Possible applica-

tions are numerous, as we demonstrate with: image editing;

optimization over monotonic functions; modeling Cumu-

lative Distribution Functions (CDFs) and histograms with

order-preserving geometry; time warps; landmark-based

image warping and animation. Another related potential ap-

plication is image registration.
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Figure 2: Samples from the prior (§ 3). (a-h) The top 3 rows echo those in Fig. 1b and Fig. 1c. The 4th row shows a

deformed grid overlaid on the image. The 5th row shows select trajectories. Note that the trajectories and transformations

are differentiable (hence continuous) but not piecewise affine. The tessellation in (e-h) is a refinement of the one in (a-d). (a)

& (e): T θ ∈M . (b) & (f): T θ ∈Mvp. (c) & (g): T θ ∈M∂ . (d) & (h): T θ ∈M∂,vp. See § 3 for details.

Henceforth, n ∈ {1, 2, 3} and Ω is either the whole of

Rn or an interval/rectangle/box (in which case, Ω ( Rn).

CPA velocity fields. We base our method on spaces of

CPA velocity fields (Fig. 1). The term ‘piecewise’ is w.r.t.

P , a tessellation (§ 3) of Ω. Let VΩ,P be such a space.

While VΩ,P depends on Ω and P , we will usually notation-

ally suppress these dependencies, and will just write V . One

appeal of these spaces is that they are finite-dimensional and

linear (but note that their elements, i.e. the velocity fields,

are usually nonlinear). Let d = dim(V). The spaces Rd

and V are identified with each other, where every θ ∈ Rd

is identified with exactly one element of V , denoted by vθ ,

and vice versa. A finer P implies a higher d and richer ve-

locity fields (Figs. 2 and 3). Appealingly, easily-imposed

optional constraints yield useful linear subspaces of V .

From CPA velocity fields to trajectories. Modulo a

detail (addressed in § 3.2) related to the case Ω ( Rn, any

continuous velocity field, whether Piecewise-Affine (PA) or

not, defines differentiable R → Ω trajectories. Particularly,

if x ∈ Ω then vθ ∈ V defines a trajectory, t 7→ φθ(x, t),
such that φθ(x, 0) = x; see Fig. 2. This trajectory is the

solution to the integral equation

φθ(x, t) = x+

∫ t

0

vθ(φθ(x, τ)) dτ , vθ ∈ V . (1)

Remark 1. Equation (1), whose solution, φθ(x, ·), appears

both inside and outside the integral, should not be con-

fused with the piecewise-quadratic Ω → Rn map, y 7→

∫ y

0n×1
vθ(x) dx. The latter, a popular tool in computer-

vision [40] and numerical analysis, is unrelated to our work.

CPA-Based (CPAB) transformations. Modulo that de-

tail, any continuous velocity field, whether PA or not, de-

fines a transformation; i.e., a map whose input and out-

put are viewed as points in Ω. Particularly, letting x vary

and fixing t, x 7→ φθ(x, t) is an Ω → Ω transforma-

tion. Without loss of generality we set t = 1 and define

T θ(·) , φθ(·, 1). Since we integrate CPA velocity fields,

we coin our transformations CPA-Based (CPAB). We write

T θ = exp(vθ) to indicate the relation between vθ and T θ;

the rational for this symbol is explained in our supplemental

material (henceforth referred to as Sup. Mat.). We let

M , exp(V) ,{exp(vθ) : vθ ∈ V} (2)

denote the space of CPAB transformations, again notation-

ally suppressing the dependencies on Ω and P; i.e., formally

we should write MΩ,P . Importantly, M is nonlinear.

Remark 2. CPAB transformations are not CPA (except in

degenerate cases): while T θ is continuous, it is not PA.

CPAB transformations are “nice”. E.g., they are dif-

feomorphisms, (T θ)−1 ∈M , and the inversion is easy.

Remark 3. x 7→ φθ(x, t = 1) should not be confused with

(the non-diffeomorphism, parametric optical-flow-like rep-

resentation) x 7→ x+ vθ(x), the latter being only a Taylor

approximation of the former. Thus, the way we utilize flex-

ible parametrized vector fields is different from, e.g., [31].
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Figure 3: Tessellating a 2D region in several resolutions.

Integration of CPA velocity fields. Integral equations

usually lack analytic solutions. Since CPA velocity fields

are Lipschitz-continuous and almost-everywhere smooth,

generic integration solvers are quite effective for them.

However, we can do even better. One of our contributions

is showing that integration of such fields is given in either

closed form (when n = 1) or almost closed form (n > 1).

Besides the obvious pluses (accuracy, computing time), this

solution makes it easier to interpret the resulting trajecto-

ries/transformation and is key to the theorems in § 3.

A specialized numerical solver. In practice, that solu-

tion has one shortcoming. It requires tedious bookkeeping

(if n > 1) and invoking certain routines (easy if n = 1 but

cumbersome if n > 1). This is especially a hurdle in GPU

implementations. We thus propose a practical alternative, a

specialized solver for integrating CPA velocity fields, which

is faster and more accurate than non-specialized solvers.

Convenient modeling, tractable inference. Smooth-

ness priors on M are easy to build and use. As is com-

mon with nonlinear spaces of nonlinear transformations, the

nonlinearity of (θ,x) 7→ T θ(x) prohibits closed-form pos-

terior or maximum likelihood calculations; however, since

(θ,x) 7→ T θ(x) is evaluated fast, so is θ 7→ p(data|T θ).
This facilitates the use of inference methods that rely on

multiple likelihood evaluations such as most Markov Chain

Monte Carlo (MCMC) methods. Lastly, CPAB transforma-

tions support coarse-to-fine analysis.

2. Related Work

CPA maps. In addition to fields such as numerical anal-

ysis and control theory, CPA maps are also used in com-

puter vision [7, 40]. Our use of them differs from such

works in that we integrate them as velocity fields to ob-

tain transformations. The ODE equivalent to Eqn. (1) is
dφθ(x,t)

dt
= vθ(φθ(x, t)). Unlike us, who solve it and ex-

ploit its link to transformations, Lin et al. [26] use it only as

a regression model for fitting patterns in velocity data.

Pattern theory. Representing objects via transforma-

tions acting on them is a cornerstone in Grenander’s pattern

theory. Our work is influenced by the impressive works

initiated by Grenander and continued in the geometry-

oriented subcommunities of computer vision and medical

imaging. Due to space limits, we mention only a few:

[15, 16, 8, 24, 42, 4, 1, 18, 17, 43, 30, 45, 9]. How-

ever, rather than focusing on complicated, possibly ∞-

dimensional spaces (whose both representations and asso-

P Nc Nv D = 6Nc d = 2Nv

P1 4 5 24 10

P2 16 13 96 26

P3 64 41 384 82

P4 256 145 1536 290

P5 1024 1025 6144 1090

Table 1: Values of Nc, Nv , D = dim(V ′
Ω,P), and d =

dim(VΩ,P) for the P’s shown in Fig. 3. See § 3.

ciated integration are in practice often discretized and/or

approximated), or the geometry of transformation spaces,

here we take a different approach, emphasizing simplicity

and practicality, in order to provide the larger computer-

vision community with a simple and powerful tool. Thus,

our text avoids the direct use of differential geometry, mod-

ulo an optional discussion in the Sup. Mat. The ability

to rapidly evaluate transformations accurately and to cap-

ture a wide range of deformations while keeping complex-

ity low sets this work apart from other works on diffeomor-

phisms. Also, in applications involving N landmark pairs,

most methods can deal with only small values ofN , as their

complexity is O(Np), p > 1 (e.g., some methods invert a

dense nN×nN matrix). Thus, e.g., they cannot utilize tools

for dense-correspondence extraction (e.g., [25]), highlight-

ing a disconnect with the larger computer-vision commu-

nity. Ours is O(N) and most computations are parallelized.

Finitely-many affine building blocks. The PA transfor-

mations from [7] should be confused with neither PA/CPA

velocity fields nor CPAB transformations; see Remark 2. In

fact, PA transformations are neither differentiable (or even

continuous) nor invertible. Closer to ours is the work of Ar-

signy et al. [3] who, like us, use finitely-many affine build-

ing blocks to build flexible stationary velocity fields. While

they spatially average the blocks, we use a CPA constraint

on them. A field in our space is usually not in their space

(so their integration is inapplicable to it) and vice versa, pre-

venting a direct comparison of integrations. Unlike in our

integration method, they use an approximation throughout;

i.e., they must approximate the entire trajectory. Their ap-

proximation differs from others in that it uses a weighted

sum of matrix exponentials. As the approximation holds

only near zero, they must divide the field by a large num-

ber (which is tied to #steps). To keep #steps small, they

smartly generalize the scaling-and-squaring method. Their

scheme is exact only for a single block; however, expres-

siveness requires more blocks, so the accuracy drops. It is

thus unsurprising they focus on a small number of blocks,

and that to save time they use their method only in the last

stage of inference. For similar dimensions of spaces of ve-

locity fields, we can use larger (hence fewer) steps than

them since most of our steps are exact. Unlike them, for

n = dim(Ω) = 1 (regardless of the number of blocks)
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Figure 4: Monotonic regression on synthetic data (top) by

inferring latent CPA fields (bottom), defined over 100 equal-

length cells. In the 4 leftmost columns we used a Gaussian

likelihood; in the 2 rightmost columns we used a robust

(Geman-McClure) one. Columns 1,3,5 show ML solutions.

The rest show MAP solutions with a smoothness prior. Re-

gardless of outliers/likelihood/prior, the function is increas-

ing (this is obtained effortlessly from the representation).

we solve exactly, while for n > 1 we solve exactly most

of the trajectory, and use a numerical solver in only parts

of it. Beyond the comparison of integrations, which favors

ours, our representation has additional advantages such that

it is simpler, suits better for a GPU implementation, han-

dles constraints and several modeling choices more easily,

and scales better with an increase in the number of blocks.

Discrete representations and approximations. Allas-

sonnire et al. [1] efficiently approximate diffeomorphisms

via non-differentiable maps. While we focus on a general-

purpose representation, Diffeomorphic demons [43] is a fast

registration tool based on discretely-defined fields, which as

its authors note, may be inconsistent with a diffeomorphic

framework and may not preserve orientation. They also

cannot impose volume preservation. Lastly, a computer rep-

resentation of a sequence of discrete fields requires plenty of

memory. Such issues can be obviated by adapting demons

to our compact and continuously-defined fields. More gen-

erally, approximations based on discretely-defined velocity

fields and/or discrete diffeomorphisms are widely used, e.g.,

in medical imaging [43]. Unlike these works, both our fields

and transformations are continuously-defined.

Statistics on manifolds and tangent spaces. Like oth-

ers, e.g. [3, 42, 11, 29, 13, 20], we deal with the nonlinearity

of the space of interest by utilizing the linear tangent space

at the identity. Though not explored here, other types of

statistics on manifolds [32, 12, 34, 38, 36, 21, 19, 41, 28,

44, 10, 23, 14] may also be applicable.

CDF/histogram modeling. Working with CDFs is pre-

ferred to working with densities since the latter might not

exist and, moreover, the Lp (or a sphere-based) distance be-

tween two densities might be arbitrarily large even if their

probability measures are essentially the same. One prin-

cipled approach to representing CDFs uses p-Wasserstein

spaces, usually p ∈ {1, 2}, the p = 1 case is related to Earth

Mover’s Distance [33]. A limitation of this approach is that

it requires bounded pth-moments and non-trivial compu-

tations. 1-Wasserstein methods also lack a full geometric
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Figure 5: CDF/histogram representation. 1st row: Nc = 3.

2nd row: Nc = 100. F0, not shown, is a CDF of a uniform

distribution on J = [−3, 3]. (a) vθ ∈ V∂([0, 1],P). (b)

F = T θ ◦ F0. (c) d
dx
F . Note it is not piecewise constant.

H0, not shown, is a cumsum of a 20-bin uniform histogram.

(e) H = T θ ◦H0, a cumsum of a new histogram h (f) h.

space whose elements are always valid histograms/CDFs,

complicating synthesis of new points. Methods that map a

histogram/density to a sphere (e.g., [35]) have such geome-

try but suffer from two issues. First, they do not respect the

ordering of the bins or the real line. While in some applica-

tions of histograms bin ordering is immaterial, it is strange

to ignore the ordering of R. Second, large moves on the

sphere lead to CDFs/histograms with negative values. The

problems above do not exist in our method.

Image warping. Also related to our work is the problem

of image warping [5, 2, 27, 6]. Unlike most methods, ours

is diffeomorphic and handles additional constraints easily.

Stationary Velocity Fields. Here we focus on Station-

ary Velocity Fields (SVF). While not all diffeomorphisms

can be defined via SVF, this popular approach (e.g., [3])

to reduce computations and simplifying inference still cap-

tures a wide range of real-world deformations. Our CPA

fields reduce computations and simplify inference even fur-

ther. While it is possible to use non-stationary CPA fields

(i.e., θ = func(t)), we are unaware of a specialized integra-

tion for these, so one may have to resort to standard solvers.

Either way, there may still be a practical gain since the di-

mension of the inference problem will remain finite (i.e., d
times the number of time steps) and our arguments related

to priors, constraints, and coarse-to-fine analysis still hold.

3. The Proposed Mathematical Representation

The lemmas/theorems below are proved in the Sup. Mat.

3.1. CPA Velocity Fields

A tessellation of Ω, denoted by P , is a set of Nc closed

subsets of Ω, {Uc}
Nc

c=1, also called cells, such that their

union is Ω and the intersection of any two adjacent cells

is just their shared border. An Nc
′-cell tessellation P ′,

Nc
′ > Nc, is a refinement of P , a relation denoted P ≺ P ′,

if each cell in P ′ is a subset of a cell in P . Unless stated

otherwise, it is assumed that the cells are either intervals



Input: P = {Cc}
Nc

c=1; (A1,θ, . . . , ANc,θ); U = a sequence

of Npts points in Ω; t > 0; Nsteps, nsteps ∈ Z+

Output: φθ(U, t) , {φθ(x, t)}
x∈U ⊂ Ω

∆t ← t/Nsteps ; δt ← ∆t/nsteps1

for c ∈ {1, .., Nc} do in parallel2

TAc,θ ,∆t ← exp(∆t
fiAc,θ)3

for x ∈ U do in parallel4

x0 ← x5

for i ∈ {1, .., Nsteps} do6

x̃temp = [ xT
temp 1 ]T ← TAγ(xi−1),θ ,∆t x̃i−17

if γ(xi−1) == γ(xtemp) then8

xi ← xtemp // analytic update9

else10

// inter-cell bdry crossed

xi ← genericODEsolver( ini. con.=xi−1, step11

size=δt, nsteps, v(·) : x 7→ Aγ(x),θx̃)

φθ(x, t)← xi12

Algorithm 1: Integrating vθ ∈ V . See Sup. Mat. for

details on the generic solver and a discussion on the

hypothetical concern related to powers of TAc,θ,∆t
.

(if n = 1), triangles (n = 2), or tetrahedra (n = 3). Let

Pvert = {ξ : ξ is a vertex of some Uc ∈ P} and let Nv de-

note its cardinality; e.g., see Fig. 3 and Table 1. Rather than

regarding Pvert as a set, we regard it as an orderedNv-tuple

(the ordering is arbitrary, but assumed fixed).

Fix P and let x ∈ Ω. We define the membership function

γ : Ω → {1, . . . , Nc} , γ : x 7→ min {c : x ∈ Uc} ; (3)

i.e., if x is not on an inter-cell border then γ(x) = c ⇐⇒
x ∈ Uc, while a border point is assigned to the cell of the

lowest index. A map, f : Ω → Rn, is called PA (w.r.t. P) if

{f |Uc
}Nc

c=1 are affine; i.e., f(x) = Aγ(x)x̃ where

Ac ∈ Rn×(n+1) ∀c ∈ {1, . . . , Nc} x̃ , [ x1 ] . (4)

A map, f : Ω → Rn, is called CPA if it is continuous and

PA. If f is CPA w.r.t. P it is CPA w.r.t. P ′ ≻ P . A vector

field v (on Ω) is an Ω → Rn map viewed as the mapping

of points to vectors; i.e., if x ∈ Ω then we view v(x) as an

n-dimensional “arrow”. The terms velocity field and vector

field will be used interchangeably. A vector-field space V
is a linear space whose elements are vector fields; dim(V)
may be finite or infinite. Let V ′

Ω,P and VΩ,P denote the

spaces of PA and CPA velocity fields on Ω w.r.t. P . Note

VΩ,P ⊂ V ′
Ω,P . For short, we will also write V ′ and V , sup-

pressing the dependency on Ω and P .

Lemma 1. V ′ and V are linear spaces, D , dim(V ′) =
(n2 + n) × Nc, d , dim(V) = n × Nv , and d ≤ D with

equality if and only if Nc = 1.

See, e.g., Table 1. A generic element of V ′ is denoted

by vA where A , (A1, . . . , ANc
) groups its Nc associated

Nc 5 25 45 65 85 105

our proposed solver 0.06 0.08 0.08 0.09 0.11 0.12

a generic solver 0.33 0.43 0.41 0.43 0.47 0.48

Table 2: Timing comparison (1D). Results, in [sec], are av-

erages of timings of integration of random CPA fields. The

tessellations, of [0, 1], consist of Nc intervals. Npts = 105,

Nsteps = 100 and nsteps = 10 (see Algorithm 1).

n × (n + 1) matrices. If A ∈ Rn×(n+1), then vec(A) ∈

Rn
2+n is its row-by-row flattening to a column vector.

Likewise, vec(A) , [ (vec(A1))
T ... (vec(ANc ))

T ]
T ∈ RD.

An inner product on V ′ is defined by 〈vA1
,vA2

〉 =
vec(A1)

Tvec(A2). We now explain how to build an or-

thonormal basis for V , how its elements are parametrized

by θ, and how PA velocity fields are projected onto V .

Lemma 2. An element of V is any vA ∈ V ′ such that

vec(A) satisfies a linear system of constraints, denoted by

Lvec(A) = 0; see Sup. Mat. for the construction of L.

Let B = [B1 ... Bd ] ∈ RD×d denote a specific orthonor-

mal basis of null(L): the one obtained via SVD of L. Let

θ = [ θ1 ... θd ]
T ∈ Rd. If vec(A) = Bθ then vA is CPA.

Particularly, vvec−1(Bj) is CPA for every j ∈ {1, . . . , d},

and {vvec−1(Bj)}
d

j=1
is a basis for V . For a visualization of

this basis, see Sup. Mat. Regardless of whether vA is CPA

or not, vvec−1(BBTvec(A)) is CPA. When earlier we de-

noted a generic element of V by vθ we meant that θ stands

for the coefficients w.r.t. the {vvec−1(Bj)}
d

j=1
basis:

vθ(x) = Aγ(x),θx̃ =
∑d

j=1
θjvvec−1(Bj)(x) (5)

where Aθ , (A1,θ, . . . , ANc,θ) , vec−1
Ä∑d

j=1 θjBj

ä
.

This basis is orthonormal w.r.t. the inner product 〈·, ·〉B :
V × V → R , (vθ1 ,vθ2) 7→ θT1 θ2. Let

vθ
vert , {vθ(ξ)}ξ∈Pvert

denote the ordered Nv-tuple of n-

dimensional values vθ takes at the Nv points in Pvert.

Lemma 3. Lθ 7→vθ

vert
, the map sending θ to vθ

vert, is a linear

bijection and its associated d × d matrix is given in closed

form. We denote its inverse by Lvθ

vert 7→θ .

If Ω ( Rn, let ∂Ω denote the boundary of Ω, and let

n : ∂Ω → Sn−1 denote the unit normal to ∂Ω.

Lemma 4. Optional constraints such as
〈
vθ(x),n(x)

〉
=

0 on ∂Ω and/or {tr(Ac) = 0}Nc

c=1, are linear and can thus

extend L to have more rows. The null space of the extended

L is a linear subspace (whose dimension is denoted by some

d′ < d) of the null space of the original L. Reusing the

symbol B = [B1 ... Bd′ ] ∈ RD×d′ to denote the orthonor-

mal basis of this new null space obtained via SVD of the

extended L, we get a d′-dimensional basis of CPA velocity

fields, {vvec−1(Bj)}
d′

j=1
, that satisfy the new constraint(s).



P P1 P2 P3 P4 P5

our proposed solver 0.06 0.09 0.15 0.24 0.27

a generic solver 0.22 0.23 0.25 0.26 0.28

Table 3: Timing comparison (2D). Results, in [sec], are av-

erages of timings of integration of random CPA fields. The

tessellations are as in Fig. 3, the image size is 512 × 512,

Nsteps = 100 and nsteps = 10 (see Algorithm 1).

The corresponding subspaces are denoted V∂ , Vtr and

V∂,tr = V∂ ∩ Vtr. We still denote an element of any of

these by vθ , with the understanding that then θ ∈ Rd
′

. We

also define, similarly to Eqn. (2), subsets of M : M∂ ,

exp(V∂), Mvp , exp(Vtr) and M∂,vp , exp(V∂,tr).

3.2. CPABased Transformations

Via Eqn. (1), vθ ∈ V implies T θ ∈ M , a relation de-

noted T θ = exp(vθ). The detail alluded to in § 1 is that for

Eqn. (1) to be well defined, φθ(x, τ) must always be in Ω,

the domain of vθ. This holds if Ω = Rn. It also holds if

Ω ( Rn and vθ ∈ V∂ . If Ω ( Rn and vθ ∈ V \ V∂ , it

might not. Also, some of the results below require both the

continuity and PA properties of vθ . We need a lemma.

Lemma 5. If Ω ( Rn, we can extend P and constrain the

velocity fields such that we obtain a linear subspace of V
whose elements extend to CPA fields on Rn. In which case,

we also redefine Ω to be equal to (the whole of) Rn.

Henceforth, if Ω ( Rn and we work with V (or Vtr),

as opposed to V∂ (or V∂,tr), we will assume the proce-

dure from Lemma 5 has been applied. Thus, T θ is al-

ways an Ω → Ω map, Eqn. (1) is well defined and vθ is

indeed CPA. Note that ∀x ∈ Ω, φθ(x, 0) = x and that

{x : vθ(x) = 0} are fixed points of T θ (see Fig. 1a). Let

us define a useful building block. If A ∈ Rn×(n+1), let

Ã =
î

A
01×(n+1)

ó
∈ R(n+1)×(n+1). Let expm denote the

matrix exponential. The last row of expm(Ã) is [ 01×n 1 ].

Moreover, det expm(Ã) > 0. Particularly, expm(Ã) is

invertible. If n = 1 or A has a special structure, expm(Ã)
has a closed form. Otherwise, since n is small and due to

the structure of Ã, a generic expm routine approximates it

well. Let t ∈ R and define ψtθ,c : Ω → Rn via

î
ψt

θ,c(x)

1

ó
, TAc,θ,tx̃ , TAc,θ,t , expm(tfiAc,θ) (6)

(a solution to an ODE with an affine velocity field, ξ 7→

Ac,θξ̃). We note that the solution to Eqn. (1) is the compo-

sition of a finite number, denoted by m, of such solutions:

φθ(x, t) = (ψtmθ,cm ◦ . . . ◦ ψt2θ,c2 ◦ ψ
t1
θ,c1

)(x) . (7)

As mentioned earlier, T θ is defined via T θ(x) = φθ(x, 1).
The compact form of Eqn. (7) hides an ugly truth: the num-

ber of the trajectory segments, m, their durations, {ti}
m
i=1,

Npts Nsteps P1 P2 P3 P4 P5

64 × 64 10 .001 .001 .002 .002 .006

64 × 64 100 .002 .003 .003 .005 .014

256 × 256 10 .004 .006 .009 .011 .014

256 × 256 100 .023 .028 .046 .064 .083

512 × 512 10 .011 .016 .025 .036 .041

512 × 512 100 .079 .129 .185 .287 .300

1024 × 1024 10 .031 .051 .083 .146 .143

1024 × 1024 100 .255 .414 .519 1.005 1.070

Table 4: Timings (in [sec]) for varying Npts and Nsteps.

The setup is as the one described in in Table 3.

and the indices of the cells involved, {ci}
m
i=1 (where a cell

may appear more than once), all depend on x. Except the

first cell, c1 = γ(x), they also depend on θ and t. Thus, a

more precise and cumbersome notation would be:

(ψ
tmx,θ,t

(x,θ,t)

θ,cmx,θ,t
(x,θ,t) ◦ . . . ◦ ψ

t2(x,θ,t)
θ,c2(x,θ,t)

◦ ψ
t1(x,θ,t)
θ,γ(x) )(x) .

Remark 4. While invertible affine matrices form a group,

φθ(·, t) : Ω → Ω is not affine, exactly because of the x-

dependencies mentioned above. In fact, since the above

quantities vary with x even within a cell, the continuous

x 7→ φθ(x, t) is not PA, hence not CPA.

A map, T : Ω → Ω, is a called a diffeomorphism (on

Ω) if T−1 exists and both T and T−1 are differentiable. Let

G be the space of (orientation-preserving) diffeomorphisms

on Ω. Let H ⊂ G be its restriction to diffeomorphisms

that can be obtained from differentiable stationary velocity

fields via integration; i.e., T (·) = φ(·, 1) where φ(x, t) =

x+
∫ t
0
v(φ(x, τ)) dτ with a differentiable v : Ω → Ω. Both

G and H are ∞−dimensional nonlinear spaces.

Theorem 1. (i) If α ∈ R then vθ = vαθ/α and φθ(·, t) =
φαθ(·, t/α). (ii) (T θ)−1 exists, is in M , and equals to

T−θ . (iii) M ⊂ G. (iv) If T θ ∈ Mvp then T θ is volume-

preserving (hence the vp). (v) M is a d-dimensional non-

linear space; similar statements hold for M∂ , Mvp and

M∂,vp, with their respective values of d′. (vi) If P1 ≺ P2 ≺
. . . is a tessellation sequence such that eventually all the

cells become arbitrarily small, then MΩ,Pm

m→∞
−−−−→ H .

Corollary 1. If n = 1, T θ is increasing. Let J be either R

or an interval. If F0 : J → Ω is either non-decreasing, in-

creasing, right-continuous, continuous, differentiable, a dif-

feomorphism, or a step function (7 non-mutually-exclusive

cases), then so is F θ , T θ ◦ F0 : J → Ω. If, in addition,

Ω = [0, 1], vθ ∈ V∂ and F0 is a CDF, then F θ is a CDF.

This gives an unconstrained parametrization of large

classes of increasing functions and CDFs/histograms via a

finite-dimensional linear space (Figs. 4 and 5). In the CDF

case, F0 need have neither a density nor finite moments.

Equation (7) is very useful. It justifies and leads to a sim-

ple proof of Theorem 1, provides an insight into the struc-
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Figure 6: Landmark-based warping. One example in each row. (a) Isrc (and src landmarks). (b) Isrc (and src/dst landmarks).

(c) The inferred vθ . (d) A new image is synthesized by warping Isrc using T θ (and dst & T θ(src) landmarks). (d) Animation.

ture of t 7→ φθ(x, t), and, when n = 1, leads to a closed-

form solution for x 7→ T θ(x). Lastly, when n ∈ {2, 3}, it

suggests a practical, essentially-exact solution.

Theorem 2. If n = 1 then mx,θ,t, {ti(x;θ, t)}
mx,θ,t

i=1 , and

{ci(x;θ, t)}
mx,θ,t

i=2 have closed forms. Thus, so does T θ(x).

If n > 1 then T θ(x) is given essentially in closed from

in the sense that Eqn. (7) still holds, but a generic expm

is needed (a mild issue) and, more importantly, to find the

quantities mentioned in Theorem 2 one needs to solve, for

every x, a number (depending on x) of sequential problems

of the form argmint>0 γ(expm(tÃ)ξ̃) 6= γ(ξ) where the

pair (ξ, A) ∈ Ω×Rn×(n+1) changes in each of these prob-

lems (while the set of all A’s is shared across different x’s,

we cannot know a-priori which A will appear in each prob-

lem). Doing this for n = 1 is easy, fast, and accurate. But

for n ≥ 2, partly since φθ(x, ·) may reenter a cell, this re-

quires tedious bookkeeping, multiple expm calls, and mul-

tiple invocations of a numerical solver. This leads to slow

approximated solutions that are hard to implement in GPU.

Inference over latent transformations often requires eval-

uating T θ for multiple values of θ (e.g., 10,000), and a

high Npts, where Npts is number of points to be trans-

formed (e.g., the number of pixels in an image). We thus

prefer a more practical alternative and propose a special-

ized solver for integrating CPA fields. This solver, summa-

rized in Algorithm 1, alternates between the analytic solu-

tion (with neither bookkeeping nor need to solve explicitly

for mx,θ,1, {ci(x;θ, 1)}
mx,θ

i=2 and {ti(x;θ, 1)}
mx,θ

i=1 ) and a

generic solver. Thus, our solver is both faster and more ac-

curate than a generic solver since most of the trajectory is

solved exactly, while only in small portions of the trajec-

tory does our solver resort to the generic one. Importantly,

the number of expm evaluations required is constant, Nc,
and grows with neither Npts nor t. In fact, since the algo-

rithm is highly accurate, fast, and simple, and since usually

Nc ≪ Npts, we prefer to use it even when n = 1.

Construction of Gaussian smoothness priors. It is

easy to build a Gaussian smoothness prior on V ′ (e.g., we

use a D × D covariance whose correlations decay with

inter-cell distances), denoted N (0D×1,ΣPA), and then the

V ′ → V map, A 7→ θ = BTvec(A), induces a prior on V:

p(θ) = N (0d×1,ΣCPA) where ΣCPA = BTΣPAB. See

Figs. 2 as well as Sup. Mat. for samples from p(θ).

4. Applications and Results

We focus here on 1D/2D; see Sup. Mat. for 3D.

Integration Accuracy. By construction, Algorithm 1 is

more accurate than any generic solver used as its subrou-

tine. We also verified empirically, by comparing the inte-

gration error (that we can compute this error at all, is by the

virtue of our closed-form solution) averaged over random

CPA velocity fields. See Sup. Mat. for more details.

Timings. We timed our implementation on an Nvidia

GTX 780 card. Tables 2 and 3 compare our solver and a

generic one. Our implementation can be further optimized;

e.g., we wrapped CUDA calls via python and not, say, C++.

Table 4 shows how Nsteps and Npts affect the timings. Em-

pirically, Nsteps = 10 typically sufficed for good results.

Real-Time diffeomorphic image editing. Our code in-

cludes a GUI where a user chooses velocities at some/all

vertices of P . Using Lemma 3, the Gaussian priors on vθ ,

and the fast integration, we compute, in real time, the con-

ditional warp, exp(E(vθ|user’s choice)). A video with a

demo is included in our Sup. Mat.

Expressiveness. While simple, CPAB transformations

capture a wide range of diffeomorphisms (obviously, like

any other work on diffeomorphisms, we make no claims

about capturing non-diffeomorphisms such as occlusions).

One way to see this is by inspecting samples from p(θ).
M also contains what is sometimes called large deforma-

tions (an overloaded term, used in some texts for elements

of G outside its identity component), e.g., a rectangle-to-

horseshoe morphing; see Sup. Mat. Expressiveness is also
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Figure 7: Nonlinear time warping in real MoCap Data. Left: a reference signal, s0, 5 other signals, {si}
5
i=1, and their mean,

s̄ = 1
5

∑5
i=1 si. The mean is smeared since {si}

5
i=1 are misaligned. Center: having inferred the warps, {T θi}

5

i=1, we unwarp

the signals, setting ui = si ◦ T
−θi . Note {ui}

5
i=1 are better aligned, as is evident by the details preserved in their mean,

ū = 1
5

∑5
i=1 ui. Right: warping ū by T θ̄+jσ1ξ1 where θ̄ = 1

5

∑5
i=1 θi, j ∈ {−6,−4,−2, 0, 2, 4, 6}, ξ1 is the first principal

component of {θi − θ̄}
5

i=1, and σ1 is the corresponding standard deviation.

exemplified in the experiments below (Figs. 6 and 7).

Inferring latent transformations. Reasoning over real-

world signals requires three oft-confounded stages: a rep-

resentation; a model (e.g., a likelihood); inference. While

these are related it is crucial to distinguish between them;

e.g., Horn and Schunk’s representation+model of optical

flow had been long regarded highly inaccurate, till modern

inference rendered it almost state-of-the-art [39]. Focusing

here on representations, we avoid advocating a particular

likelihood or inference type, and instead use, in a coarse-

to-fine manner, simple choices such as Gaussian likelihood

and either conjugate-gradient optimization or the Metropo-

lis algorithm (where, in the proposal, we use either global

or local moves, utilizing Lemma 3). Without claiming these

choices are optimal, these turned out to be effective.

Latent transformations arise in two typical settings: with

and without known correspondences. In the first, also called

(exact/inexact) diffeomorphic point matching [24, 18], one

has landmark pairs {(xi,yi)}
Npts

i=1 and seeks T : Ω → Ω

such that {T (xi) ≈ yi}
Npts

i=1 . We note that for n = 1, by

Corollary 1, our ability to easily solve this problem using

CPAB transformations means we can solve a monotonic

regression problem, as we demonstrate in Fig. 4. Partic-

ularly, by adding boundary constraints and simulated an-

nealing, we can well fit a CPAB transformation to any rea-

sonable CDF; see also our Sup. Mat. More generally,

but still for n = 1, our method can be used to solve in-

ference/optimization problems over monotonic functions,

CDFs and (cumulative sums of) histograms/filters (while re-

specting bin ordering). The case where n ∈ {2, 3} appears,

e.g., in landmark-based warping. As shown in Fig. 6, us-

ing real images and landmarks from a hands dataset ([37],

www2.imm.dtu.dk/pubdb/p.php?403), we infer a

transformation between different hands in different poses.

We then apply it to the whole source image, creating new

hands, whose appearance belongs to the source hands, with

geometry akin to the destination hands. We also animate the

source image by evaluating φθ for different t’s (including

outside of [0, 1]); e.g., Fig. 6e shows animated frames for

the example in the second row of Fig. 6a-6d. Our Sup. Mat.

contains more examples, including ones that show we can

handle a very large Npts. In the no-correspondences case,

there are two subsets of Ω, denoted Usrc and Udst, and two

feature maps, Isrc : Usrc → F and Idst : Udst → F , where

F is a feature space (e.g., color), and one seeks T : Ω → Ω
such that Idst ◦ T

−1 ≈ Isrc (or Isrc ◦ T ≈ Idst); e.g., this

is the case for time warps and landmark-free image regis-

tration. In Fig. 7 we show inferred time warps for MoCap

data [22]. A similar process can be applied to the images in

Fig. 6, though one may prefer information-theoretic mea-

sures to pixelwise likelihood. Lastly, we show an example

for statistics on the inferred transformations. Particularly,

Fig. 7 (right) shows warping ū (defined in the figure’s cap-

tion) along the 1st eigen warp (computed using PCA on the

inferred velocity fields); i.e., we use Euclidean statistics in

the linear V and map the results to the nonlinear M .

5. Conclusion

We proposed new well-behaved transformations that are

simple, expressive, efficient, and have many applications.

We showed the transformations are computed fast and ac-

curately and that they are highly expressive. Like the space

in [3], our spaces lack closure under composition; but since

T θ2 ◦ T θ1 ∈ G, our representation can still be used within

frameworks that apply consecutive transformations [43].

While this work focused on representation it was primar-

ily motivated by modeling and inference: e.g., the ability

to quickly run MCMC inference over diffeomorphisms is a

hallmark of the method, showing that simplicity pays off.

www2.imm.dtu.dk/pubdb/p.php?403


References

[1] S. Allassonnière, A. Trouvé, and L. Younes. Geodesic shoot-

ing and diffeomorphic matching via textured meshes. In

EMMCVPR. Springer, 2005. 3, 4

[2] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warp-

ing by radial basis functions: Application to facial expres-

sions. CVGIP, 1994. 4

[3] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A

log-euclidean polyaffine framework for locally rigid or affine

registration. In BIR. Springer, 2006. 3, 4, 8

[4] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Comput-
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