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Abstract. Data visualization tools should create low-dimensional repre-
sentations of data that emphasize structure and suppress noise. However,
such non-linear amplifications of structural differences can have side
effects like spurious clustering in t-SNE (Amid and Warmuth [1]). We
present a more general class of spurious structure, namely broken symme-
try, defined as visualizations that lack symmetry present in the underlying
data. We develop a simple workflow for detection of broken symmetry
and give examples of spontaneous symmetry breaking in t-SNE and other
well-known algorithms such as GPLVM and kPCA. Our extensive, quan-
titative study shows that these algorithms frequently break symmetry,
thereby highlighting new shortcomings of current visualization tools.

1 DMotivation

Data visualization is a core tool in the machine learning toolbox. Data sets
are visualized for exploration, to formulate hypotheses and to make modeling
decisions. Visualization is commonly used for interpretation of learned models, e.g.
visualization of latent variables of a generative model to understand representa-
tions. Data visualization is also very useful for debugging. For these applications
faithfulness is a concern — can we trust the structure revealed in a visualization?
Most data of interest is high dimensional, hence can not be directly visualized.
Rather, some form of dimensionality reduction is required, which inevitably will
lead to loss of information. Popular schemes such as t-SNE [27], aim at two or
three-dimensional representations that capture both local and global structure
in data. Fig. 1 shows a two-dimensional t-SNE visualization of images from the
COIL-20 dataset [20]; the given example concerns a wooden object on a turntable
that is viewed from multiple, equidistant angles forming full 360° rotation. Such
an incremental physical rotation leads to a set of images with a simple topological
structure which can be quantified by the neighborhood graph. More specifically,
we form a graph with the images as nodes and connect neighboring nodes along
the rotation path to obtain the graph of a circle. The neighborhood graph presents
us with a strong physical symmetry and we naturally expect a visualization of the
data to reveal this pattern by a structure which is topologically equivalent to a
circle. Evidently, this does not happen: The visualization has broken the symmetry
and “invented” a difference between neighboring points that is non-physical.
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The significance of transformations and the
ensuing question of symmetry preservation goes
beyond the physical rotations of the COIL data
set. Parameterized transformations are key to
modern data augmentation strategies. The ques-
tion of preservation of symmetries in augmented
data sets is then related to whether given symme-
tries are successfully represented during learning.

Our contribution is to identify a new, gen-
eral class of spurious structures in data visual-
ization, namely spontaneously broken symmetry,
defined as representations that lack symmetry
present in the underlying data. We provide a
topological, quantitative measure to detect bro-
ken symmetry (Sec. 2) allowing for a systematic

Fig. 1. We analyse a set of im-
ages of an object subject to a
360° rotation on a turntable. The
nearest neighbor graph forms a
simple circle, however when the
set is visualized using t-SNE the
symmetry is lost.

study. Our empirical studies (Sec. 3) show that widely used visualization tech-
niques break simple symmetries like rotations, hence, challenging the notion that

they conserve global structure.

2 Symmetries, Graphs, and Persistent Homology

Symmetry groups. We consider symmetries, i.e.
a property of a system that remains unchanged
under a given transformation. The images of the
wooden toy in Fig. 1 are formally equivariant
when the toy is rotated physically on the turn-
table, while the outputs of a deep network for
image based object classification ideally would
be invariant (symmetric) under rotation.
Mathematically, such transformations and
symmetries are described by Lie groups [11]. A
real Lie group is a smooth differentiable manifold
on which points are connected through a group
operation and its inverse. For instance, rotation
matrices form a smooth group with the matrix
multiplication group operation. The unit circle
can then be generated by a single unit vector
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Fig.2. The latent space of a
model that preserves symmetry
(@) and one that does not (b).
(¢) A barcode as a function of
thresholds B;.

and its multiplication with all members of the group of rotation matrices. If the
rotation group governs a physical phenomenon then we expect to observe data
along a path that topologically is a circle, disregarding observation noise.

This paper focus on situations where the governing group is known and
investigate if its structure is preserved by common visualization techniques. This
is achieved by verifying if the group topology remains intact under visualizations.

Discrete approximations. In practice, we only observe a finite number of data
points, rather than the entirety of a group. We can, however, approximate the
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path spanned by the observations with a graph, where points are connected if
their generating group elements are close under the group metric. For instance,
we may connect rotated images in a graph if their rotation angles are similar.

Measuring broken symmetry. For visualization, we map data to a low-dimensional
space (typically R?); we let X = {x;} denote data coordinates in this low-
dimensional space. We can now determine if a symmetry has been preserved
under visualization by asking if the associated graph can be recovered from the
low-dimensional coordinates. As the graph informs as to which points should be
neighbors, we measure for each set of neighbors the radius of the ball needed to
include one in the other’s neighborhood graph. To compare across methods, we
scale all distances by their median
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where G denotes the graph associated with the generating group. We rely on the
median due to its high breakdown point [15]. We, thus, measure
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Bmedian
We can then threshold this measure such that, we say that a symmetry has
been broken if B;; > B; for any pair or equivalently, max(B;;) > B;. We define
Binax := max(B;;). Note that this measure does not distinguish between one or
multiple instances of broken symmetry.

Persistent homology. The measure above is linked with persistent homology [12].
This is a key mathematical tool in topological data analysis that has been shown
to be robust to perturbations of the input data [6]. Following Carlsson [5], we
place balls on each data point with radius € and points falling within this ball
defines a neighborhood. This defines a topological space {2.. By varying €, we can
create multiple topological spaces and let the Betti numbers b;({2.) quantify the
structure of the topological space. The number by represents the approximate
number of connected components and b; the number of circles or holes.

In persistent homology, we study a spectrum of neighborhood sizes. For a
known generating group, we would know its Betti numbers, and may ask which
(if any) € yield the given Betti numbers in the visualization point set. This allows
us to consider multiple thresholds of our measure (2) of symmetry.

Barcodes. A broken symmetry is defined by the maximum of the normalized
pairwise distances Bp,ax being greater than a threshold B;. This we can represent
by a bar ranging from zero to By.x that visualizes the birth and death of
symmetry. Stacking such bars (as in Fig. 2) yields a barcode. This lets us inspect
the sensitivity of a chosen threshold for multiple models visually as each bar
corresponds to a model [10]. The ‘sharper’ the transition from short bars to long
bars is, the more robust the conclusion is. The barcode in Fig. 2 suggests that a
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Fig. 3. (a) Bmax vs. the perplexity for t-SNE. Each blue line represents the mean over
30 repeats for an object in COIL-20. The dotted, red line marks B; = 3 and the black
lines represent mean and standard error over all objects. (b) Histogram of models. (¢)
Barcode for the mean (black lines in (a) of objects. (d) Latent space in model with
perplexities 50 (Bmax is small). (e) Latent space in model with perplexities 5 (Bmax is
large).

choice of B; = 3 is robust as any value in By € [2, 8] yields the same conclusions.
For quantitative comparisons across experiments we consistently use B; = 3
though this may be suboptimal for some models.

3 Experiments

We consider four methods representing the spectrum of visualization techniques:

t-SNE matches an exponential distribution of pairwise distances in data
space with a t-distribution of pairwise distances in the latent space [27]. The
visualization is controlled by a perplerity parameter that quantifies the effective
number of neighbors used in the exponential distribution over pairwise distances.
This is a randomized model as implemented in scikit learn [22].

TriMap [2] is a recent method that relies on an elaborate triplet weighting
scheme such that point triplets are weighted with their pairwise distance before
obtaining the final triplet weight w;jr = (y (8 + @it fomax). Here ¢, (u) = log(1 +
~u), where the the locality parameter ~ is said to place focus on either local or
global structure. The method is randomized and experiments were performed
using software provided by Amid and Warmuth [2] where the default value is
v = 500.

Kernel principle component analysis (kPCA) [25] extends classic PCA
through the kernel trick. We use the squared exponential kernel k(z;,z;) =
exp (—llz: — =;11°/x), which is controlled by the scale parameter A. The model is
deterministic and experiments were performed using scikit learn [22].

Gaussian process latent variable model (GPLVM) [17] visualizes data
using a latent representation with a Gaussian process prior with covariance
function k;; = 0 exp (—1/2||z; — x;|?) + 026;;, where z;, z; denote latent points.
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The model is deterministic for a given initial condition of the hyperparameters 6
and o2, 0y and oZ. Experiments were performed using Pyro [4].

In all experiments, we vary method parameters over a large range, and
randomized methods are repeated multiple times and reported numbers are
averages. Experimentally, we focus on the most elementary symmetry of interest:
the rotation group. We consider images from (1) COIL-20 where objects are
rotated 360° in 72 steps and (2) MNIST where we synthetically rotate images
with up to 360° and 5% Gaussian noise is added to the pixel intensities. We
perform a detailed analysis of each model’s behavior, and quantitatively compare
and summarize in Sec. 3.5.

3.1 t-Distributed Stochastic neighborhood Embedding (t-SNE)

To investigate possible symmetry breaking in t-SNE, we fit 30 t-SNE models
to images of each COIL-20 object over a large span of perplexity parameters.
We measure Bpmax = max B;; and report averages over the 30 models (the blue
lines in Fig. 3a)!. As perplexity increase, Bpax becomes smaller. This is to be
expected as perplexity controls the smoothness of the t-SNE model. In 73% of all
models, we observe broken symmetry (Bpax > 3). The barcodes reveal that this
percentage is not particular sensitive to the choice of threshold (the red dotted
line correspond to B; = 3). On MNIST, we observe a similar pattern (omitted
due to space constraints) with 96.5% of all models having a broken symmetry.

In our experience, t-SNE tends to amplify small gaps in the data, leading
to broken symmetry. This is linked to the ‘spurious clustering’ effect observed
by Amid and Warmuth [1]. We generally observe that random initialization of
t-SNE seems to better preserve symmetries than initialization by other methods
such as PCA or Isomap. This former approach requires multiple restarts and
choosing the embedding with lowest KL divergence.

3.2 TriMap

Amid and Warmuth [2] developed TriMap motivated by the spurious clustering
effect in t-SNE, and we hypothesized that TriMap would lead to less symmetry
breaking. However, the evidence in Fig. 4 does not support that conclusion. As
before, each blue line shows the average By,ax for 30 randomly initialized models
for each object in COIL-20 over a wide span of the vy parameter. Here 77% of all
models are estimated to show broken symmetry, which is roughly on par with
t-SNE. The barcode indicates that the choice of threshold is robust, though we
find some inter-object variability (omitted). Our findings for MNIST are similar
with 93.32% estimated symmetry breaking.

3.3 Kernel Principal Component Analysis (kPCA)

In kPCA, we examine symmetries as a function of the kernel scale parameter
A. The barcode (Fig. 5) shows the robustness of the conclusion of preserved

! Bmax axis is cut off intentionally as the value for some object diverge
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Fig. 4. (a) Bmax vs. the locality parameter v for TriMap. Each blue line represents the
mean over 30 repeats for an object in COIL-20. The dotted, red line marks B; = 3 and
the black lines represent mean and standard error over all objects. (b) Histogram of
models. (¢) Barcode for the mean (black lines in (a) of objects. (d) Latent space in
model with v = 1000. (e) Latent space in model with v = 0.

symmetry for the mean across COIL-20 objects. For large values of the scale
parameter, the conclusion is robust as B; can vary, but for smaller values, our
conclusions become sensitive to the specific choice of B;.

In the non-linear regime (small values of \), Bedian (1) is driven to small
values (Fig. 5d) and By diverges. In the linear regime (large values of \), the
model approaches PCA which explains the flattening (Fig. 5e).

In 42% of models, we observe broken symmetry and note that five objects
in COIL-20 give rise to broken symmetries: Object 2 (wooden toy), object 16
(round bottle), object 16 (ceramic vase), object 18 (tea cup) and object 20 (round
container). Of these, four are rotationally symmetric in the plane of rotation, sup-
porting our hypothesis that additional symmetry can induce symmetry breaking.

On MNIST data, the rate of broken symmetries was 7.23%. One possible
explanation for this reduction, is that if PCA on the MNIST data does not induce
symmetry breaking then fewer models will break the symmetry because kPCA
converges to PCA in the linear regime.

3.4 Gaussian Process Latent Variable Model (GPLVM)

We investigated the GPLVM design space by varying the initial values of the
kernel hyperparameters, 6y and o2 all with identical initialization of the latent
space (isomap [26]). In Fig 6a, g is fixed and o3 is varying and in Fig 6b, o2
is fixed while 0y varies. An interesting thing to notice is while we mostly get
consistent results, sometimes a small change in the initial condition induces a
large change in the By.x leading to somewhat complex behavior.

The loss is often an indicator of broken symmetry as we saw with the KL
divergence for t-SNE. If the parameter space contains symmetry-preserving
models then these generally have lower loss than models that break symmetry.
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Fig. 5. (a) Bmax vs. the scale parameter A for kPCA. Each blue line represents an
object in COIL-20. The dotted, red line marks B; = 3 and the black lines represent
mean and standard error over all objects. (b) Histogram of models. (¢) Barcode for the
mean of objects (black lines in (a)). (d) Latent space of model with log A = 3 (Bmax is
large). (e) Latent space of model with log A = 6 (Bmax is small).

The hyperparameters 6 and o2 converge to the final values independent of the
model preserving the symmetry. This means that the difference in loss between
symmetry-preserving and symmetry-breaking models must be accounted for by
the latent variables. It also means that it is not possible to detect a broken
symmetry from the optimized hyperparameters but rather, one have to consider
the latent variables to detect a broken symmetry.

Like in kPCA, we find broken symmetries in the most symmetric objects.
In the GPLVM, this is linked to the choice of initialization of the latent space.
Overall, we found broken symmetries in 65.48% of the models and similarly in
MNIST (46.32%).

3.5 Summary of experiments

We found broken symmetry in all models with a high prevalence as summarized in
Fig. 7. Note that we did not tune the parameters but varied important parameters
across large ranges and used default parameters for others.

All objects in COIL-20 are indeed symmetric in data space according to
our estimator. One may expect that high-level features may be less susceptible
to broken symmetry than raw data. To investigate we extracted features using
ResNet18 [13] and found no broken symmetries in the extracted features and no
consistent, significant difference when looking at symmetry in the models trained
on extracted features. We noticed that the most symmetric objects generally
experienced more broken symmetry across models.

4 Related Works

Data visualization is important at many steps in the machine learning process.
Visualization is used exploratively to form hypotheses [3], for understanding
latent representations in supervised learning [8] and generative models [9].
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Fig. 6. (a) Bmax vs. the initial value of the noise variance o for GPLVM. (b) Bmax
vs. the initial value of the kernel variance 6y for GPLVM. Each blue line represents an
object in COIL-20. The dotted, red line marks B; = 3 and the black lines represent
mean and standard error over all objects. (a) Parameter space in og with fixed 6. (b)
Parameter space in 6y with fixed o3. (¢) Histogram of models in a. (d) Histogram of
models in b. (e) Barcode for the mean of objects (black lines in (a) and (b)). (f) Latent
space of model with fp = 1 and o3 = 0.2. (g) Latent space of model with fy = 0.2 and
o2 =0.2.

The desiderata of visualization are discussed by Kaski et al. [16] and Venna
et al. [28], who argue that visualizations should be trustworthy, meaning that
samples appearing similar (e.g., neighbors) in the visualization should be similar
in a physical sense. Also, they point out that data points close in a physical sense
should be close in visualization. They noted the similarity with the concepts of
precision and recall in information retrieval. Our concept of broken symmetry is
related to the “recall” dimension, i.e., data that are physical neighbors, should
also be visualized as such. The precision and recall criteria together measure the
faithfulness of the visualization, see also Najim [19] for a related quantitative
measure of the preservation of neighborhood relations in visualizations.

The immensely popular visualization scheme t-SNE [27] is constructed with
the aim of representing both global and local structure. The original motivation
for t-SNE included a critique of its predecessor SNE [14] for creating crowded
visualizations, i.e., visualizations that did not show a clear separation of known
clusters. Crowding is closely related to the trustworthiness concept of [16, 28|.
By using a long-tailed distribution of the representations, t-SNE aims to fix
the crowding problem. However, this emphasis of local dissimilarity comes at a
price as noted in [18], simple manifolds like lines and sheets are broken apart
in clusters. These clustering problems are examples of broken symmetry in our
definition. Motivated by the problem of over-fitting cluster structure Amid and
Warmuth [2] proposed TriMap. We observed, however, that TriMap cannot heal
the problem of broken symmetry.

For detecting symmetries, we used topological data analysis [5], specifically
persistent homology. Using this, we examined all values of thresholds simulta-
neously rather than study just a single threshold. Conveniently, Cohen-Steiner
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Fig. 7. Each panel shows the rate of broken symmetries in percent at B; = 3 with the
mean and standard error plotted displayed on the axis for t-SNE, TriMap, kPCA, and
GPLVM. Top, left pane) Summary of results on COIL-20. Top, right pane) Summary
of results on MNIST. Bottom, left pane) Summary of results on features extract from
COIL-20 using ResNet-18. Bottom, right pane) Summary of results on features extracted
from MNIST using ResNet-18.

et al. [6] showed that the persistent homology tool is robust under pertubations
of the data. [23] used persistent homology in its classical form whereas we have
adapted it slightly as we knew which Betti numbers were required to preserve
the symmetry. Our work exploits the coordinate and deformation invariances in
topology and these properties aid in detecting symmetries as various deformations
of the “circle” graph.

5 Discussion

We have investigated to which extend common visualization techniques are able
to preserve simple symmetries, and have largely found the answer to be negative.

5.1 Empirical findings

We have investigated four popular algorithms that also represent different
branches of the literature, namely t-SNE [27], TriMap [2], kPCA [25] and the
GPLVM [17]. We have performed a systematic study of the influence of parameter
choices in these methods by training more than 85.000 models over a wide pa-
rameter span. To quantitatively summarize these models’ performance, we have
introduced a simple scheme for detecting whether known symmetries are broken.
Tools from persistent homology verify that this scheme is generally reliable, with
some deviations for kPCA (see below).

t-SNE was found to be particularly sensitive to local optima and generally we
found a need for multiple restarts. Fortunately, we generally observe that smaller
KL reported values imply less symmetry breaking. Even with such mechanisms



10 CW Feldager et al.

in place, we still see an overwhelming number of broken symmetries. Symmetry
breaking can, to some extend, be reduced by increasing the perplexity parameter,
but this also limits the flexibility and expressivity of the model.

TriMap, which was developed in part to alleviate problems with t-SNE,
overall had comparable behavior to t-SNE with regards to broken symmetry. The ~y
parameter, that controls the trade-off between capturing local or global structure,
was found to have practically no effect with regards to symmetry breaking. We
did not expect this, but have manually verified that broken symmetry is prevalent
across large spans of ~.

kPCA was in a sense the most successful method according to our estimator.
Kernel PCA, however, has a tendency to collapse points on to each other when
mapping only two latent dimensions in the non-linear regime leading to strong
symmetry breaking. On the other hand, kPCA reduces to conventional PCA in
the limit of large kernel length scales, showing less symmetry breaking.

GPLVM was generally found to be sensitive to choice of initial parameters.
While we have found it helpful to consider multiple restarts and choosing the
model with highest likelihood, broken symmetries remain rather prevalent.

High-level features. One could suspect that symmetries are broken more
commonly when working with raw data than with high-level abstract features,
e.g., as those extracted by deep neural networks. We found no broken symmetries
directly in the high-level features though when applying visualization algorithms,
the prevalence was indeed high.

Summary. Our general finding is that symmetries are broken consistently
across the studied methods. It is generally possible to manually tweak parameters
to enforce that a known symmetry remains intact, but such strategies are not
possible when the symmetry is unknown?, e.g. for knowledge discovery. We also
note that default parameters of publicly available implementations of the studied
methods generally perform poorly with regards to broken symmetry.

5.2 Faithful representations

At the heart of our study is the quest for faithful representations, i.e. representa-
tions that reflect the underlying physics of the data generating process. These
have wider applicability than just visualization as studied here. For instance, a
representation that is not faithful will most likely not result in a fair prediction.
A broken symmetry can be viewed as model that violates the Lipschitz continu-
ity condition. Indiwidual fairness [7] can then no longer be ensured as similar
indiwiduals should be treated similarly.

Similar statements can be made for interpretable models, where ‘almost
discontinuous’ models are generally difficult to interpret. From a purely predictive
point of view, it is strictly not required that representations are faithful, though
there is some evidence in that direction [24].

2 Tt should be emphasized that while we consider known symmetries, we only do so in
order to make quantitative statements.
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Finally, we note that visualization may be particularly sensitive to symmetry
breaking as we tend to embed onto R?. While it is well-known that only few
graphs (namely the planar ones) can be embedded in R?, then all graphs can be
embedded in R? [21]. This suggests that symmetries are likely to be broken when
data is forced onto a two-dimensional view (as is often the case in visualization),
and indeed our experiments indicate that symmetry breaking is less frequent when
embedding into three or more dimensions (omitted due to space constraints).

5.3 Concluding remarks

We have here pointed to a previously unnoticed problem in visualizations, namely
broken symmetries. Through a systematic study of more than 85.000 trained
models, we have found an alarming rate at which even the most simple symmetries
are spontaneously broken during data visualizations. This suggest a need for
both new methods that can reliably visualize high-dimensional data, but also for
more systematic and quantitative evaluations of visualization techniques.

We have purposefully not investigated more complex symmetries as these
raise complications that are beyond existing techniques; for instance, the two-
dimensional torus is mathematically impossible to embed in R? without breaking
the underlying symmetry. This calls for visualization techniques that embed onto
curved surfaces in order to preserve symmetries, just as we use a sphere when we
visualize global geoinformatics patterns.
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