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Abstract—A well-known problem in directional statistics — the
study of data distributed on the unit sphere — is that current
models disregard the curvature of the underlying sample space.
This ensures computationally efficiency, but can influence results.
To investigate this, we develop efficient inference techniques for
data distributed by the curvature-aware spherical normal distri-
bution. We derive closed-form expressions for the normalization
constant when the distribution is isotropic, and a fast and accu-
rate approximation for the anisotropic case on the two-sphere. We
further develop approximate posterior inference techniques for
the mean and concentration of the distribution, and propose a fast
sampling algorithm for simulating the distribution. Combined,
this provides the tools needed for practical inference on the unit
sphere in a manner that respects the curvature of the underlying
sample space.

I. INTRODUCTION

Directional statistics considers data distributed on the unit
sphere, i.e. ‖xn‖ = 1. The corner-stone model is the von
Mises-Fisher distribution [19] which is derived by restricting
an isotropic normal distribution to lie only on the unit sphere:

vMF(x | µ, κ) ∝ exp
(
−κ

2
‖x− µ‖2

)
∝ exp (κ xᵀµ) ,

‖x‖ = ‖µ‖ = 1, κ > 0. (1)

Evidently, the von Mises-Fisher distribution is constructed from
the Euclidean distance measure ‖x−µ‖, i.e. the length of the
connecting straight line. A seemingly more natural choice of
distance measure is the arc-length of the shortest connecting
curve on the sphere, which amounts to the angle between two
points, i.e. dist(x,µ) = arccos(xᵀµ). From this measure, it
is natural to consider the distribution

SN(x | µ, λ) ∝ exp

(
−λ

2
arccos2(xᵀµ)

)
,

‖x‖ = ‖µ‖ = 1, λ > 0,

(2)

with concentration parameter λ. This is an instance of the
Riemannian normal distribution [20] which is naturally deemed
the spherical normal distribution. This is the topic of interest
in the present manuscript.

At this point, the reader may wonder if the choice of
distance measure is purely academic or if it influences practical
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Fig. 1. Likelihood of the spherical mean under the von Mises-Fisher and
spherical normal models. Top row: Two observations are moved further and
further apart until they are on opposite poles (coloring show the sum of the
likelihood terms for the data). Middle row: The likelihood of the mean under a
von Mises-Fisher distribution. As the data moves further apart, the variance of
the likelihood grows until it degenerates into the uniform distribution. Bottom
row: The likelihood of the mean under a spherical normal distribution. As
the observations moves apart, the likelihood becomes increasingly anisotropic
until it stretches along the equator. This is the most natural result.

inference. We therefore consider a simple numerical experiment,
where we evaluate the likelihood of the mean µ of a von Mises-
Fisher and a spherical normal distribution. We consider one
observation on the north pole, and another observations which
we move along a great circle from the north to the south pole.
When the two observations are on opposite poles the mean µ
cannot be expected to be unique; rather intuition dictate that any
point along the equator (the set of points that are equidistant
to the poles) is a suitable candidate mean. Figure 1 shows the
experiment along with the numerically evaluated likelihood of
µ. We observe that under the von Mises-Fisher distribution,
this likelihood is isotropic with an increasing variance as the
observations move further apart. When the observations are
on opposite poles, the likelihood becomes uniform over the
entire sphere, implying that any choice of mean is as good as
another. This is a rather surprising result, that align poorly with
geometric intuition. Under the spherical normal distribution,
the likelihood is seen to be anisotropic, where the variance
increase more orthogonally to the followed great circle, than
it does along the great circle. Finally, when the observation
reaches the south pole, the likelihood concentrates in a “belt”



Fig. 2. Flat versus curved metrics. Straight lines (purple) correspond to
Euclidean distances used by the von Mises-Fisher distribution. This flat metric
is in contrast to the spherical arc-length distance (yellow geodesic curves).
Under this distance measure, geodesic triangles are “fatter” than corresponding
Euclidean triangles. This distortion, which is the key characteristics of the
sphere, is disregarded by the von Mises-Fisher.

along the equator, implying that any mean along the equator is
a good candidate. This likelihood coincide with the geometric
intuition.

The core issue is that the Euclidean distance measure applied
by the von Mises-Fisher distribution is a flat metric [8] as
illustrated in Fig. 2. This imply that the von Mises-Fisher
distribution is incapable of reflecting the curvature of the sphere.
As curvature is one of the defining mathematical properties
of the spherical sample space, it is a serious limitation of the
von Mises-Fisher model that this is disregarded as it may give
misleading results. For practical inference, there is, however,
no viable alternative that respect the curvature of the spherical
sample space. We fill this gap in the literature and contribute

• closed-form expressions for the normalization constant of
the isotropic spherical normal distribution (Sec. III-A) and
an efficient and accurate approximation for anisotropic
case on the two-sphere;

• maximum likelihood (Sec. IV) and approximate Bayesian
inference techniques (Sec. V) for the spherical normal;

• an efficient sampling algorithm for the spherical normal
(Sec. VI).

As examples of these techniques, we provide a new clustering
model on the sphere (Sec. IV-C) and a new algorithm for
Kalman filtration on the sphere (Sec. V-B). Relevant source
code will be published alongside this manuscript.

II. BACKGROUND AND RELATED WORK

a) Spherical geometry.: We start the exposition with a
brief review of the geometry of the unit sphere. This is a
compact Riemannian manifold with constant unit curvature. It
has surface area AD−1 = 2πD/2

Γ(D/2) , where Γ is the usual Gamma
function. It is often convenient to linearize the sphere around a
base point µ, such that points on the sphere are represented in
a local Euclidean tangent space Tµ (Fig. 3). The convenience
stems from the linearity of tangent space, but this comes at
the cost that Tµ gives a distorted view of the curved sphere.
Since the maximal distance from µ to any point is π, we are
generally only concerned with tangent vectors v ∈ Tµ where
‖v‖ ≤ π. A point x ∈ SD−1 can be mapped to Tµ via the

Fig. 3. The tangent space Tµ of the sphere and related operators.

logarithm map,

Logµ(x) = (x− µ (xᵀµ))
θ

sin(θ)
,

θ = arccos(xᵀµ),

(3)

with the convention 0/sin(0) = 1. The inverse mapping, known
as the exponential map, moves a tangent vector v back to the
sphere,

Expµ(v) = µ cos(‖v‖) + sin(‖v‖)/‖v‖v. (4)

A tangent vector v ∈ Tµ can be moved to another tangent
space Tµ′ by a parallel transport. This amounts to applying a
rotation R that move µ to µ′ [9].

b) Distributions on the sphere.: Since the unit sphere is
a compact space, we can define a uniform distribution with
density

Uniform(x) = A−1
D−1 =

Γ(D/2)

2πD/2
. (5)

The corner-stone distribution on the unit sphere is the already
discussed von Mises-Fisher distribution [19], which is derived
by restricting the isotropic normal distribution to the unit
sphere. Consequently it is defined with respect to the Euclidean
distance measure. The mean parameter of the von Mises-
Fisher distribution can be estimated with maximum likelihood
in closed-form, but the concentration parameter κ must be
estimated using numerical optimization [19]. Bayesian analysis
is simplified since the distribution is conjugate with itself for the
mean, and with the Gamma distribution for the concentration.

The von Mises-Fisher distribution can be extended to be
anisotropic by restricting an anisotropic normal distribution
to the unit sphere [16], giving the Fisher-Bingham (or Kent)
distribution,

p(x) =
1

C
exp

(
κγᵀ

1x + β[(γᵀ
2x)2 − (γᵀ

3x)2]
)
, (6)

where the normalization constant C can be evaluated in closed-
form on S2. Like the von Mises-Fisher distribution, this use
the Euclidean distance function, and therefore does not respect
the curvature of the sphere.

One approach to constructing an anisotropic curvature-
aware distribution is to assume that Logµ(x) follow a zero-
mean anisotropic normal distribution [28]. This tangential
normal distribution is simple, and since it is defined over the
Euclidean tangent space, standard Bayesian analysis hold for
its precision (i.e. it is conjugate with the Wishart distribution).
However, the distribution disregard the distortion of the tangent
space: following the change of variable theorem we see



that the tangential normal over S2 has density p(x) =
N (x | µ,Σ) |det(∂xLogµ)| = N (x | µ,Σ) θ/sin(θ), where
θ = arccos(xᵀµ). Surprisingly, this distribution is thus bimodal
with modes at ±µ. This rather unintuitive property indicate
that one should be careful when applying this model.

An approach related to ours is that of Purkayastha [21]
who study p(x) ∝ exp(−κ arccos(xᵀµ)) and show that the
maximum likelihood estimate of µ is the intrinsic median on
the sphere.

c) Manifold statistics.: The spherical normal distribution,
which we consider in this manuscript, is an instance of the
general Riemannian normal distribution. While this distribution
has seen significant theoretical studies [20, 29], practical tools
for inference are lacking. Generally, its normalization constant
depend on both mean and concentration parameters and is
unattainable in closed-form. Even evaluating the gradient of
the log-likelihood with respect to the mean, thus, require
expensive Monte Carlo schemes [5, 31]. Similar concerns hold
for the concentration parameters. A key contribution of this
paper is that we provide tools for the spherical setting that
drastically simplify and speed up parameter estimation. We
further provide tools for approximate Bayesian inference on
Riemannian manifolds — a topic that has yet to be addressed
in the literature.

d) Applications of directional statistics.: The use of
directional distributions span many branches of science, ranging
from modeling wind directions [19], protein shapes [10], gene
expressions [6] to fMRI time series [22]. In these applications,
the directional model appear due to normalization of the
data. Histograms, such as word counts, can also be efficiently
modeled as directional data [6]; in fact, the arc-length distance
on the sphere correspond to the distance between discrete
distributions under the Fisher-Rao metric [4], which is another
indication that we need curvature-aware models. Other recent
applications include clustering surface normals to aide robot
navigation [27, 28], and speaker direction tracking [30]. At
the foundational level, directional statistics also appear in
probabilistic estimates of the principal components of Euclidean
data [14, 26].

III. BASIC PROPERTIES OF THE SPHERICAL NORMAL

The spherical normal distribution as presented in Eq. 2 is
isotropic. Noting that arccos2(xᵀµ) = Logµ(x)ᵀLogµ(x) is
merely the squared Euclidean norm measured in the tangent
space Tµ allows us to generalize Eq. 2 to be anisotropic:

SN(x | µ,Λ) ∝ exp

(
−1

2
Logµ(x)ᵀΛLogµ(x)

)
, (7)

where the concentration parameter Λ is a symmetric positive
semidefinite matrix. This is defined in Tµ and consequently
has an eigenvector µ with eigenvalue zero.

When the concentration goes towards zero, it is easy to see
that the spherical normal tends towards the uniform distribution,
i.e. when Λ = λI we have

lim
λ→0+

SN(x | µ, λI) = Uniform(x). (8)

When λ goes towards infinity, the spherical normal becomes a
delta function. Similar properties hold for the von Mises-Fisher
distribution [19].

It is worth noting that this general spherical normal distri-
bution is the spherical distribution with maximal entropy for a
given mean and covariance [20]. Note that this is with respect
to the probability measure induced by the spherical metric.
Similar statements hold for the von Mises-Fisher distribution
[19], but with respect to the measure induced by the Euclidean
metric.

The spherical normal, thus, share many desirable properties
with the von Mises-Fisher distribution, while still being
curvature-aware.

A. Normalizing the spherical normal

Equation 2 only specifies the spherical normal distribution
up to a constant. In the online supplements1 we show the
following result:

Proposition 1 (Isotropic normalization). The normalization
constant of the isotropic spherical normal distribution (2) over
SD−1 is given by Eq. 9a when D is even and by Eq. 9b when
D is odd (see Fig. 4). Here erf is the imaginary error function
[1], and Re[·] and Im[·] takes the real and imaginary parts of
a complex number, respectively.

Remark 1. While the complex unit appear in Eq. 9 the entire
expression evaluates to a real number.

The anisotropic spherical normal distribution (7) does,
unfortunately, not appear to have a closed-form expression
for its normalization constant, and we must resort to approx-
imations. Here we consider the anisotropic spherical normal
over the ever-present S2 and provide a simple deterministic
approximation that, in our experience, provides a relative error
of approximately 10−4. This is more than sufficient for practical
tasks. To derive this, we first express the distribution in the
tangent space of the mean,

Z2(Λ) =

∫
S2

exp

(
−1

2
Logµ(x)ᵀΛLogµ(x)

)
dx (10)

=

∫
‖v‖≤π

exp

(
−1

2
vᵀΛv

)
det(J)dv, (11)

where v = Logµ(x) and det(J) = sin(‖v‖)/‖v‖ denotes the
Jacobian of Expµ(x). This expression is independent of the
choice of orthogonal basis of the tangent space, so we need
only consider the case where Λ = diag(λ1, λ2, 0). Writing
Eq. 11 in polar coordinates (r, θ) then shows

Z2(Λ) =

∫ 2π

0

∫ π

0

exp
{
− r2

2
(λ1 cos2(θ)

+ λ2 sin2(θ))
}

sin(r)drdθ

(12)

=
1

2π

∫ 2π

0

Z1

(
(λ1 − λ2) cos2(θ) + λ2

)
dθ. (13)

1http://www2.compute.dtu.dk/~sohau/papers/fusion2018/hauberg_
fusion2018_supplements.pdf



Z (even)
1 (λ) =

AD−2

2D−2

(
D − 2
D/2− 1

)√
π

2λ
erf

(
π

√
λ

2

)
+
AD−2

2

√
2π

λ

(−1)
D/2−1

2D−3

·
D/2−2∑
k=0

(−1)k
(
D − 2

k

)
exp

(
− (D − 2− 2k)2

2λ

)
Re

[
erf

(
πλ− (D − 2− 2k)i√

2λ

)] (9a)

Z (odd)
1 (λ) = AD−2

(−1)
(D − 3)/2

2D−3

√
π

2λ

(D − 3)/2∑
k=0

(−1)k
(
D − 2

k

)
exp

(
− (D − 2− 2k)2

2λ

)
·
{

Im

[
erf

(
(D − 2− 2k)i√

2λ

)]
+ Im

[
erf

(
πλ− (D − 2− 2k)i√

2λ

)]} (9b)

Fig. 4. Normalization constants for the isotropic spherical normal distribution, when D is even and odd. Here erf is the imaginary error function, while Re[·]
and Im[·] takes the real and imaginary parts of a complex number, respectively.

Fig. 5. Left: The inverse of Z1(λ). Right: Relative errors when computing
Z2(Λ).

This does not appear to have a closed-form expression, but
does lend itself to a good approximation. Noting that 1/Z1(λ) is
almost a straight line (see left panel of Fig. 5), we approximate

Z2(Λ) ≈
∫ 2π

0

1

a ((λ1 − λ2) cos2(θ) + λ2) + b
dθ (14)

=
1√

det (aΛ + bI)
, (15)

where a and b are estimated by fitting a straight line to 1/Z1(λ).
In Sec. IV-C we consider an EM algorithm for mixtures of
spherical normal distributions. Here we track the relative
approximation error of the normalization constant (using
expensive numerical integration as ground truth) through the
entire run of the EM algorithm. The right panel of Fig. 5 shows
a histogram of these errors. From this data, we observe that
the relative error of our proposed approximation is between
2.1 · 10−9 and 6.1 · 10−4 with an average of 7.9 · 10−5. This
is plenty accurate for practical inference tasks.

B. Rotations and convolutions

In the spherical domain we cannot perform addition and
multiplication, but similar operations are available. Here we
state without proof that spherical normals are closed under
rotation

x ∼ SN(µ,Λ) ⇒ Rx ∼ SN(µ,RΛRᵀ), (16)

where R is a rotation matrix. Two independent spherical
normally distributed variables can (informally) be “added” by
convolving their distributions. When these variables have the
same mean, then

px(x) = SN(x | µ,Λx)
py(y) = SN(y | µ,Λy)

}
⇒

(px ? py)(z) = SN (z | µ, Λx + Λy) ,

(17)

where ? denotes convolution. In Sec. V-B we use both results
in a spherical Kalman filter.

C. A note on covariances
The dispersion of the spherical normal is parametrized by a

concentration matrix Λ. From this the variance and covariance
of the distribution is defined as [20]

Var[x] =

∫
SD−1

arccos2(xᵀµ) SN(x | µ,Λ)dx (18)

Cov[x] =

∫
SD−1

Logµ(x)Logµ(x)ᵀ SN(x | µ,Λ)dx.

The empirical counterparts of these expressions are found by
replacing integrals with averages as usual. Generally we can
evaluate these expressions numerically by sampling (Sec. VI),
though we note that in the case of an isotropic spherical normal
over S2, the variance can be expressed in closed-form (see
supplements1). The expression is, however, somewhat more
convoluted than in the Euclidean setting where the variance is
the inverse concentration (precision). Note that the variance is
bounded by π2 since the maximal spherical distance is π.

IV. MAXIMUM LIKELIHOOD ESTIMATION

We now consider maximum likelihood estimation for the
spherical normal. As usual, we write the log-likelihood of data
x1:N

f(µ,Λ) = log

(
N∏
n=1

SN(xn | µ,Λ)

)

= −1

2

N∑
n=1

Logµ(xn)ᵀΛLogµ(xn)−N log(Z2(Λ)).

(19)



Algorithm 1 Offline maximum likelihood: µ

1: Initialize µ as a random data point.
2: repeat
3: ∇µ ← − 1

N

∑N
n=1 Logµ(xn).

4: µ← Expµ

(
− 1

2∇µ

)
.

5: until ‖∇µ‖ < 10−5.

Algorithm 2 Online maximum likelihood: µ

1: Initialize µ← x1.
2: for n = 2 to . . . do
3: µ← Expµ

(
1
nLogµ(xn)

)
.

4: end for

A. The mean

Since the normalization constant does not depend on µ, it
is easy to see that the derivative of the log-likelihood with
respect to the mean is

∂f

∂µ
= − 1

N

N∑
n=1

Logµ(xn)ᵀΛ. (20)

The mean can then be found by standard Riemannian gradient
descent [2], but it is easier to consider the steepest descent [5]
given by ∇µ = − 1

N

∑N
n=1 Logµ(xn). The optimization then

amounts to mapping the data to the tangent at the current µ,
computing its Euclidean average, and mapping it back to the
sphere. This is summarized in Algorithm 1.

Alternatively, the mean can be computed by repeated
geodesic interpolation [23], which can be done in an online
fashion. From two points, the mean is estimated as the midpoint
of the connecting geodesic; when given a third point, the
mean is updated by going 1/3 along the geodesic between
the two-point mean and the third point, and so forth. This is
summarized in Algorithm 2. Salehian et al. [23] show that this
simple estimator converges to the true mean. This algorithm can
also be seen as stochastic gradient descent with a particularly
efficient step-size selection.

B. The concentration matrix

Using our approximation of the normalization constant (15),
the gradient of the log-likelihood with respect to Λ is (expressed
in a two-dimensional basis of Tµ)

∂f

∂Λ
= −1

2

{
N∑
n=1

Logµ(xn)Logµ(xn)ᵀ

− aN (aΛ + b I)
−1

}
.

(21)

An optimum can be found using standard Riemannian op-
timization [2] over the symmetric positive definite cone.
Initializing with the inverse covariance of Logµ(x) usually
ensures convergence in 3−4 iterations.

This initialization coincides with the standard “least squares”
estimator of the inverse covariance on general Riemannian
manifolds [5]. It is therefore not surprising that only few
iterations are required, and when computational speed is of
the utmost importance, this estimator is a good approximation.
Pennec [20] provides an alternative approximate estimator for
small concentration matrices that compensates for the curvature
of the sample space.

C. Example: EM algorithm for mixture models

It is straight-forward to extend the presented maxi-
mum likelihood estimators to mixture models, i.e. p(x) =∑K
k=1 πkSN(x | µk,Λk), where the responsibilities πk satisfy∑
k πk = 1, πk ≥ 0. The derivation follows the well-known

Euclidean analysis [7] and will not be repeated here.
As an example, we consider clustering of surface normals

extracted from depth images [11, 25]. This is, e.g., useful for
robot navigation [27, 28]. In practice, such data is highly noisy
due to limitations of the depth-sensing camera, so we extend the
mixture model to include a component with uniform distribu-
tion, i.e. p(x) =

∑K
k=1 πkSN(x | µk,Λk)+πK+1·Uniform(x).

The left panel of Fig. 6 shows example data, the contours of
the estimated spherical normals, and the corresponding regions
on the sphere where each component is dominant. The center
panels show the corresponding image segmentation. This seems
to correspond well to the scene geometry. It is interesting to
note that the uniform component mostly captures edge and
shadow areas where surface normals are unstable. In the figure,
we consider 5 spherical normal components.

Next we sample 50 random depth images from the NYU
Depth Dataset [25], which depicts indoor environments. In
such scenes, a few surface normals tend to dominate as most
furniture has similar normals as the walls, floors and ceilings.
We perform clustering on these 50 images using both a mixture
of spherical normal distributions and a mixture of von Mises-
Fisher distributions. For each model, we select the optimal
number of components using the Akaike Information Criteria
(AIC) [3] measured on held-out data. The right-most panel of
Fig. 6 show a histogram of the number of selected components
for both mixture models. We see that significantly fewer
components are needed when using a mixture of spherical
normals than when using a mixture of von Mises-Fisher
distributions. This indicate that the von Mises-Fisher model
tend to over-segment the depth images.

V. APPROXIMATE BAYESIAN INFERENCE

Thus far, we have considered maximum likelihood estimation
for the spherical normal, however, some may prefer a Bayesian
machinery. Here we consider the mean and concentration
separately.

A. Unknown mean, known concentration

Setting a spherical normal prior over the mean p(µ) =
SN(µ | µ0,Λ0) while assuming a spherical normal likelihood
p(x1:N | µ,Λ) =

∏
n SN(xn | µ,Λ) quickly reveals that the

resulting posterior is not a spherical normal. This suggests



Fig. 6. Clustering of surface normals; see text for details.

that approximations are in order. First, we note that the log-
posterior,

g(µ) = log(p(µ | x1:N ,Λ,µ0,Λ0)) (22)

= −1

2

N∑
n=1

Logµ(xn)ᵀΛLogµ(xn)

− 1

2
Logµ0

(µ)ᵀΛ0Logµ0
(µ) + const,

(23)

is simultaneously expressed in tangent spaces at both µ and
µ0, which complicates the analysis. Due to the symmetry of
the spherical normal, we can, however, rewrite Eq. 23 as

g(µ) = −1

2

N∑
n=1

Logµ(xn)ᵀΛLogµ(xn) (24)

− 1

2
Logµ(µ0)ᵀRΛ0R

ᵀLogµ(µ0) + const,

where R is the parallel transport from Tµ0
to Tµ. The maximum

a posteriori (MAP) estimate of the mean can then be found
with Riemannian gradient descent, where the gradient is

∂g

∂µ
= −1

2

N∑
n=1

Logµ(xn)ᵀΛ− 1

2
Logµ(µ0)ᵀRΛ0R

ᵀ.

(25)

The optimal µN can be found akin to Algorithm 1. This is,
however, only a point estimate and does not approximate the
full posterior. Here we consider a Laplace approximation [7]
as these generalize easily to the spherical setting. Since the
metric in Tµ reduces to the identity around the origin, this
amounts to approximating the concentration of the posterior
ΛN with the Riemannian Hessian of g(µ) at µN [2].

Figure 7A shows an example with a single observation with
a spherical normal likelihood, as well as a spherical normal
prior over the unknown mean. The intensity of the sphere is
a numerical evaluation of the true posterior, while the orange
curve outlines the Laplace approximation of the mean posterior.
This appears to be a good approximation.

B. Example: directional Kalman filter

The tools presented thus far allow us to build a model akin to
the Kalman filter [15] over the unit sphere. Previous algorithms
for Riemannian Kalman filters predominantly rely on unscented
transforms to adapt to the nonlinear state space [13, 17]. Let

yt be the unobserved variable at time t with initial density
y0 ∼ SN(µ0,Λ0) and assume the predictive distribution

p(yt+1 |yt) = SN
(
yt+1

∣∣∣ Rµ, RΛ0R
ᵀ + [Λpred]

µ

)
,

(26)

where R is a rotation matrix encoding the expected temporal
development and [Λpred]

µ
denotes the concentration of the

predictive distribution expressed in the basis of Tµ. Assum-
ing a spherically normal likelihood, the suggested Laplace
approximation can be used to estimate the posterior.

We implement this for tracking the direction of the left femur
(thigh bone) of a person walking [12]. Figure 7B shows the
original data (blue), the spherical normal filtered path (orange),
and a von Mises-Fisher filtered path (purple). We see that the
spherical normal filter smooths the observed data as expected,
while the von Mises-Fisher filter appears to have a bias that
takes the filtered path outside the data support.

C. Unknown concentration, known mean

Following standard approaches, we here assume a Wishart
prior p(Λ | Λ0,m) = W(Λ | Λ0,m) for the concentration,
where we assume the precision is expressed with respect to
an orthogonal basis of Tµ. As before, we note that this prior
is not conjugate to the spherical normal, and again employ a
Laplace approximation of the posterior. The sample space of
the posterior is the cone of positive definite matrices, so the
Laplace approximation need to be adapted to this constraint.

The log-posterior in this setting is

h(Λ) = m−(D−1)−1
2 log det(Λ)− 1

2
Tr
(
Λ−1

0 Λ
)

− 1

2

N∑
n=1

Logµ(xn)ᵀΛLogµ(xn)−N log(Z2(Λ)).

(27)

As in the maximum likelihood setting, we apply the approxi-
mate normalization constant (15). The derivative then become

∂h

∂Λ
= −1

2

{
(D −m)Λ−1 + Λ−1

0

+

N∑
n=1

Logµ(xn)Logµ(xn)ᵀ − aN (aΛ + b I)
−1

}
.

(28)

This can then be optimized using standard Riemannian op-
timization [2] to find a maximum a posteriori estimate of
Λ. As for the mean, we can build a Laplace approximation



Fig. 7. A: Laplace approximation of the mean posterior. B: data (blue) and the filtered path (orange). C: samples from a Laplace approximation to the
concentration posterior. D: acceptance rates for the sampling algorithm.

Algorithm 3 Sampling x ∼ SN(µ,Λ).

1: repeat
2: v ∼ N

(
0,
(
Λ + D−2

π I
)−1
)

.

3: r ←
exp(− 1

2vᵀΛv)( sin(‖v‖)
‖v‖ )

D−2

exp(− 1
2vᵀ(Λ+D−2

π I)v)
.

4: u ∼ Uniform(0, 1).
5: until ‖v‖ ≤ π and u ≤ r.
6: x← Expµ(v).

of the posterior of Λ. Extending the standard derivation of
the Laplace approximation [18] shows that the approximate
posterior of Λ follow a matrix log-normal distribution over the
positive definite cone [24], where the concentration is given by
the Riemannian Hessian of the log-posterior at ΛMAP. As an
example, Fig. 7C shows samples from the Laplace posterior
estimated from 50 observations and a Wishart prior. The choice
of a Wishart prior is not essential as there are no conjugate
properties to exploit.

D. Unknown mean and concentration

The concentration matrix Λ is fundamentally tied to the
mean µ since it is expressed with respect to a basis of Tµ.
Changing µ, thus, renders Λ meaningless. This complicate a
joint model of both µ and Λ, and we do not investigate the
issue further in this manuscript.

VI. SAMPLING

In many computational pipelines it is essential to be able
to draw samples from the applied distributions. We therefore
provide a simple, yet efficient, algorithm for simulating the
spherical normal. Expressed in the tangent space of µ the
spherical normal has distribution

SNTµ(v) ∝ exp

(
−1

2
vᵀΛv

)(
sin(‖v‖)
‖v‖

)D−2

. (29)

We note that exp(−(D − 2)‖v|‖2/2π) ≥ ( sin(‖v‖)/‖v‖)
D−2 for

‖v‖ ≤ π. Since this envelope is reasonably tight, we propose
a basic rejection sampling [7] scheme where tangent vectors
are proposed from N (0,Λ + (D − 2)/πI). This is summarized
in Algorithm 3 and Fig. 7D shows the acceptance rate for 1/λ1

and 1/λ2 in the range (0, π2]. On average the acceptance rate
over this domain is 82%; for large concentrations (the common
scenario) the acceptance rate is higher. This is quite efficient.

VII. SUMMARY AND OUTLOOK

This paper contributes the first practical tools for efficient
curvature-aware inference over the unit sphere. We provide
a closed-form expression for the normalization constant of
isotropic spherical normal distributions in any dimension.
From this we build good approximations for the anisotropic
case in S2. We provide efficient algorithms for maximum
likelihood estimation of the mean and concentration parameters
of the distribution, and exemplify these with an EM algorithm
for mixtures of spherical normals. We further provide tools
for approximate Bayesian inference in the form of Laplace
approximations for the posteriors of both the mean and the
concentration parameters. We exemplify these approximations
with a spherical Kalman filter. Finally, we provide a simple
yet efficient sampling algorithm for simulating the spherical
normal.

Several questions, however, remain open. Most importantly,
our approximation to the anisotropic normalization constant
does not extend beyond S2, which is a strong limitation. This
is similar to established models in directional statistics, where
the anisotropic Fisher-Bingham distribution only has a known
normalization constant for S2.

The proposed Laplace approximations carry over to other
Riemannian manifolds, where Bayesian inference is rarely
applied. Perhaps more importantly, the Laplace approximation
of the posterior concentration matrix also carry over to the
Euclidean domain, where it can be of value when approximating
posteriors over precision matrices. The resulting matrix log-
normal distribution over the positive definite cone is signifi-
cantly more informative than the commonly applied Wishart
distribution, as it can capture anisotropic distributions over the
positive definite cone.

It may be beneficial to consider variational approximations to
the posteriors rather than the proposed Laplace approximations.
This should be feasible when using the proposed approximate
normalization constant.
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