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Abstract. We present an analysis of the spatial covariance structure of
an articulated motion prior in which joint angles have a known covari-
ance structure. From this, a well-known, but often ignored, deficiency of
the kinematic skeleton representation becomes clear: spatial variance not
only depends on limb lengths, but also increases as the kinematic chains
are traversed. We then present two similar Gaussian-like motion priors
that are explicitly expressed spatially and as such avoids any variance
coming from the representation. The resulting priors are both simple and
easy to implement, yet they provide superior predictions.
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1 Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis. These systems usually perform some sort of optimisation for
finding the best configuration of body parts. This optimisation is often guided
by a system for predicting future motion. This paper concerns such a predictive
system for general purpose tracking. Unlike most previous work, we build the
actual predictive models in spatial coordinates, rather than working directly in
the space of configuration parameters.

In the computer vision based scenario, the objective is to estimate the hu-
man pose in each image in a sequence. When only using a single camera, or a
narrow baseline stereo camera, this is inherently difficult due to self-occlusions.
This manifests itself in that the distribution of the human pose is multi-modal
with an unknown number of modes. To reliably estimate this pose distribution
we need methods that cope well with multi-modal distributions. Currently, the
best method for such problems is the particle filter [2], which represents the
distribution as a set of weighted samples. These samples are propagated in time
using a predictive model and assigned a weight according to a data likelihood. As
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such, the particle filter requires two subsystems: one for computing likelihoods
by comparing the image data to a sample from the pose distribution, and one
for predicting future poses. In terms of optimisation, the latter guides the search
for the optimal pose. In practice, the predictive system is essential in making the
particle filter computationally feasible, as it can drastically reduce the number
of needed samples.

1.1 The Kinematic Skeleton

Before discussing the issues of human motion analysis, we pause to introduce
the actual representation of the human pose. In this paper, we use the kinematic
skeleton (see Fig. 1a), which is by far the most common choice [1]. This repre-
sentation is a collection of connected rigid bones organised in a tree structure.
Each bone can be rotated at the point of connection between the bone and its
parent. We will refer to such a connection point as a joint.

(a) (b)

Fig. 1. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The circles, are collectively referred
to as the end-effectors. (b) The derivative of an end point with respect to a joint angle.
This is computed as the cross product of the rotational axis rn and the vector from
the joint to the end-effector.

We model the bones as having known constant length (i.e. rigid), so the
direction of each bone constitute the only degrees of freedom in the kinematic
skeleton. The direction in each joint can be parametrised with a vector of angles,
noticing that different joints may have different number of degrees of freedom.
We may collect all joint angle vectors into one large vector θ representing all
joint angles in the model. This vector will then be confined to the N dimensional
torus TN .

Forward Kinematics From known bone lengths and a joint angle vector θ, it
is straight-forward to compute the spatial coordinates of the bones. Specifically,
the purpose is to compute the spatial coordinates of the end points of each bone.
This process is started at the root of the tree structure and moves recursively
along the branches, which are known as the kinematic chains.
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The root of the tree is placed at the origin of the coordinate system. The end
point of the next bone along a kinematic chain is then computed by rotating
the coordinate system and translating the root along a fixed axis relative to the
parent bone, i.e.

al = Rl (al−1 + tl) , (1)

where al is the lth end point, and Rl and tl denotes a rotation and a translation
respectively. The rotation is parametrised by the relevant components of the
pose vector θ and the length of the translation corresponds to the known length
of the bone. We can repeat this process recursively until the entire kinematic
tree has been traversed. This process is known as Forward Kinematics [3].

The rotation matrix Rl of the lth bone is parametrised by parts of θ. The
actual number of used parameters depends on the specific joint. For elbow joints,
we use one parameter, while we use three parameters to control all other joints.
These two different joint types are respectively known as hinge joints and ball
joints.

Using forward kinematics, we can compute the spatial coordinates of the end
points of the individual bones. These are collectively referred to as end-effectors.
In Fig. 1a these are drawn as circles. We will denote the coordinates of all end-
effectors by F (θ). We will assume the skeleton contains L end-effectors, such
that F (θ) ∈ R3L.

It should be clear that while F (θ) ∈ R3L, the end-effectors does not cover
all of this space. There is, for instance, an upper bound on how far the hands
can be apart. Specifically, we see that F (θ) ∈M ⊂ R3L, whereM is a compact
differentiable manifold embedded in R3L (since TN is compact and F is an
injective function with full-rank Jacobian).

Derivative of Forward Kinematics Later, we shall be in need of the Jacobian
of F . This consists of a column for each component of θ. Each such column can
be computed in a straightforward manner [4]. Let rn denote the unit-length
rotational axis of the nth angle and ∆nl the vector from the joint to the lth
end-effector. The entries of the column corresponding to the lth end-effector can
then be computed as ∂θ[n]Fl = rn×∆nl. This is merely the tangent of the circle
formed by the end-effector when rotating the joint in question as is illustrated
in Fig. 1b.

Joint Constraints In the human body, bones cannot move freely. A simple
example is the elbow joint, which can approximately only bend between 0 and
120 degrees. To represent this, θ is confined to a subset Θ of TN . With this
further restriction,M becomes a manifold with boundary.

For simplicity, Θ is often defined by confining each component of θ to an
interval, i.e. Θ =

∏N
n=1[ln, un], where ln and un denote the lower and upper

bounds of the nth component. This type of constraints on the angles is often
called box constraints [5].
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1.2 Related Work

Most work in the articulated tracking literature falls in two categories. Either
the focus is on improving the image likelihoods or on improving the predictions.
Due to space constraints, we forgo a review of various likelihood models as this
paper is focused on prediction. For an overview of likelihood models, see the
review paper by Poppe [1].

Most work on improving the predictions, is focused on learning motion spe-
cific priors, such as for walking [6–12]. Currently, the most popular approach is
to restrict the tracker to some subspace of the joint angle space. Examples in-
clude, the work of Sidenbladh et al [10] where the motion is confined to a linear
subspace which is learned using PCA. Similarly, Sminchisescu and Jepson [8] use
spectral embedding to learn a non-linear subspace; Lu et al [9] use the Laplacian
Eigenmaps Latent Variable Model [13] to perform the learning, and Urtasun et
al [14] use a Scaled Gaussian Process Latent Variable Model [15]. This strategy
has been improved even further by Urtasun et al [12] and Wang et al [7] such
that a stochastic process is learned in the non-linear subspace as well. These
approaches all seem to both stabilise the tracking and make it computationally
less demanding. The downside is, of course, that the priors are only applicable
when studying specific motions.

When it comes to general purpose priors, surprisingly little work has been
done. Such priors are not only useful for studying general motion but can also
be useful as hyperpriors for learning motion specific priors. The common under-
standing seems to be that the best general purpose prior is to assume that the
joint angles follow a Gaussian distribution. Specifically, many researchers assume

pangle(θt|θt−1) ∝ N (θt|θt−1, Σθ) UΘ(θt) , (2)

where UΘ denotes the uniform distribution on Θ enforcing the angular con-
straints and the subscript t denotes time. We shall call this model the Angular
Prior. In practice, Σθ is often assumed to be diagonal or isotropic. This model
has, amongst others, been applied by Sidenbladh et al [10], Balan et al [16] and
Bandouch et al [17]. At first sight, this model seems quite innocent, but, as we
shall see, it has a severe downside.

1.3 Our Contribution and Organisation of the Paper

In Sec. 2 we provide an analysis of the spatial covariance of the common motion
prior from Eq. 2. While the formal analysis is novel, its conclusions are not
surprising. In Sec. 3, we suggest two similar motion priors that are explicitly
designed to avoid the problems identified in Sec. 2. This work constitutes the
main technical contribution of the paper. In order to compare the priors we
implement an articulated tracker, which requires a likelihood model. We briefly
describe a simple model for this in Sec. 4. The resulting comparison between
priors is performed in Sec. 5 and the paper is concluded in Sec. 6.
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2 Spatial Covariance Structure of the Angular Prior

While the covariance structure of θt in Eq. 2 is straight-forward, the covariance
of F (θt) is less simple. This is due to two phenomena:

1. Variance depends on distance between joint and end-effector.When
a joint angle is changed, it alters the position of the end point of the limb
attached to the joint. This end point is moved on a circle with radius corre-
sponding to the distance between the joint and the end point. This means
the end point of a limb far away from the joint can change drastically with
small changes of the joint angle.

2. Variance accumulates. When a joint angle is changed, all limbs that are
further down the kinematic chain will move. This means that when, e.g.,
the shoulder joint changes both hand and elbow moves. Since the hand also
moves when the elbow joint changes, we see that the hand position varies
more than the elbow position.

Neither of these two phenomena seem to have come from well-founded modelling
perspectives.

To get a better understanding of the covariance of limb positions, we seek an
expression for cov[F (θt)]. Since F (θt) lies on a non-linear manifoldM in R3L,
such an analysis is not straight-forward. Instead of computing the covariance on
this manifold, we compute it in the tangent space at the mean value θ̄t = E(θt)
[18]. This requires the Logarithm map of M, which we simply approximate by
the Jacobian Jθ̄t

= ∂θt
F (θt)|θt=θ̄t

of the forward kinematics function, such that

cov[F (θt)] ≈ cov[Jθ̄t
θt] = Jθ̄t

cov[θt]JT
θ̄t

= Jθ̄t
Σθt

JT
θ̄t

. (3)

As can be seen, the covariance of the limb positions is highly dependent on the
Jacobian of F . A slightly different interpretation of the used approximation is
that we linearise F around the mean, and then compute the covariance.

We note that
∥∥∂θt[n]Fl

∥∥ = ‖∆nl‖, meaning that the variance of a limb is
linearly dependent on the distance between the joint and the limb end point. This
is the first of the above mentioned phenomena. The second phenomena comes
from the summation in the matrix product in Eq. 3. It should be stressed that
this behaviour is a consequence of the choice of representation and will appear in
any model that is expressed in terms of joint angles unless it explicitly performs
some means of compensation. We feel this is unfortunate, as the behaviour does
not seem to have its origins in an explicit model design decision. Specifically,
it hardly seems to have any relationship with natural human motion (see the
discussion of Fig. 2a below).

In practice, both of the above mentioned phenomena are highly visible in
the model predictions. In Fig. 2a we show 50 samples from Eq. 2. Here, the
joint angles are assumed to be independent, and the individual variances are
learned from ground truth data of a sequence studied in Sec. 5. As can be seen
the spatial variance increases as the kinematic chains are traversed. In practice,
this behaviour reduces the predictive power of the model drastically; in our



6 Søren Hauberg, Stefan Sommer, and Kim Steenstrup Pedersen

experience the model practically has no predictive power at all. Bandouch et
al [17] suggested using Partitioned Sampling [19] to overcome this problem. This
boils down to fitting individual limbs one at a time as the kinematic chains are
traversed, such that e.g. the upper arm is fitted to the data before the lower
arm. While this approach works, we believe it is better to fix the model rather
than work around its limitations. As such, we suggest expressing the predictive
model directly in terms of spatial limb positions.

(a) pangle (b) pproj (c) pT

Fig. 2. Fifty samples from the different priors. The variance parameters for these dis-
tributions were assumed independent and was learned from ground truth data for a
sequence studied in Sec. 5. (a) The angular prior pangle. (b) The projected prior pproj.
(c) The tangent space prior pT .

3 Two Spatial Priors

Informally, we would like a prior where each limb position is following a Gaussian
distribution, i.e.

pidea(θt|θt−1) = N (F (θt)|F (θt−1), Σ) . (4)

This is, however, not possible as the Gaussian distribution covers the entire
R3L, whereas F (θt) is confined toM. In the following, we suggest two ways of
overcoming this problem.

3.1 Projected Prior

The most straight-forward approach is to define p(θt|θt−1) by projecting Eq. 4
ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σproj)] . (5)

When using a particle filter for tracking, we only need to be able to draw samples
from the prior model. We can easily do this by sampling from Eq. 4 and pro-
jecting the result ontoM. This, however, requires an algorithm for performing
the projection.
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Let xt denote a sample from Eq. 4; we now seek θ̂t such that F (θ̂t) =
projM[xt]. We perform the projection in a direct manor by seeking

θ̂t = min
θt

∣∣∣∣xt − F (θt)
∣∣∣∣2 s.t. l ≤ θt ≤ u , (6)

where the constraints corresponds to the joint limits. This is an overdetermined
constrained non-linear least-squares problem, that can be solved by any standard
algorithm. We employ a projected steepest descent with line-search [5], where
the search is started in θt−1. To perform this optimisation, we need the gradient
of Eq. 6, which is readily evaluated as ∂θt‖xt − F (θt)‖2 = 2(xt − F (θt))

TJθt .
In Fig. 2b we show 50 samples from this distribution, where Σproj is assumed

to be a diagonal matrix with entries that have been learned from ground truth
data of a sequence from Sec. 5. As can be seen, this prior is far less variant than
the Gaussian prior pangle on joint angles.

3.2 Tangent Space Prior

While the projected prior provides us with a suitable prior, it does come with
the price of having to solve a non-linear least-squares problem. If the prior is
to be used as e.g a regularisation term in a more complicated learning scheme,
this can complicate the models substantially. As an alternative, we suggest a
slight simplification that allows us to skip the non-linear optimisation. Instead
of letting F (θt) be Gaussian distributed in R3L, we define it as being Gaussian
distributed in the tangent space T ofM at F (θt−1). That is, we define our prior
such that

pT (θt|θt−1) = NT (F (θt)|F (θt−1), ΣT ) , (7)

where NT denotes a Gaussian distribution in T . A basis of the tangent space is
given by the columns of the Jacobian Jθt−1 . From Eq. 3 we know that the co-
variance structure near F (θt−1) in this model is ΣT = Jθt−1ΣθJT

θt−1
. In general,

Jθt−1 is not square, so we cannot isolate Σθ from this equation simply by invert-
ing Jθt−1

. Instead, we take the straight-forward route and use the pseudoinverse
of Jθt−1

, such that

ptang(θt|θt−1) ∝ N
(
θt
∣∣θt−1,J

†
θt−1

ΣT
(
J†θt−1

)T)UΘ(θt) , (8)

where J†θt−1
= (JT

θt−1
Jθt−1

)−1JT
θt−1

denotes the pseudoinverse of Jθt−1
. If we

consider Jθt−1 a function from TN to T then J†θt−1
is indeed the inverse of this

function. One interpretation of this prior is that it is the normal distribution
in angle space that provides the best linear approximation of a given normal
distribution in the spatial domain.

To sample from this distribution, we generate a sample x ∼ N (0, ΣT ). This is
then moved into the joint angle space by letting θt =

(
J†θt−1

)T
x+θt−1. In order

to respect joint limits, we truncate joint values that exceeds their limitations.
This simple scheme works well in practice.
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In Fig. 2c we show 50 samples from this distribution, where ΣT is the same
as the projected prior in Fig. 2b. As can be seen, this prior behaves somewhat
more variant than pproj, but far less than pangle.

4 Visual Measurements

To actually implement an articulated tracker, we need a system for making visual
measurements, i.e. a likelihood model. To keep the paper focused on prediction,
we use a simple likelihood model based on a consumer stereo camera1. This
camera provides a dense set of three dimensional points Z = {z1, . . . ,zK} in
each frame. The objective of the likelihood model then becomes to measure
how well a pose hypothesis matches the points. We assume that each point is
independent and that the distance between a point and the skin of the human
follows a zero-mean Gaussian distribution, i.e.

p(Z|θt) ∝
K∏

k=1

exp

(
−D

2(θt, zk)

2σ2

)
, (9)

where D2(θt, zk) denotes the square distance between the point zk and the skin
of the pose θt. To make the model robust with respect to outliers in the data we
threshold the distance function D such that it never exceeds a given threshold.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, we define the skin of a bone as a cylinder
with main axis corresponding to the bone itself. Since we only have a single view
point, we discard the half of the cylinder that is not visible. The skin of the entire
pose is then defined as the union of these half-cylinders. The distance between
a point and this skin can then be computed as the smallest distance from the
point to any of the half-cylinders.

5 Experimental Results

To build an articulated tracker we combine the likelihood model with the sug-
gested priors using a particle filter. This provides us with a set of weighted
samples from which we estimate the current pose as the weighted average.

We seek to compare the three suggested priors, pangle, pproj and ptang. As the
base of our comparison, we estimate the pose in each frame of a sequence using
a particle filter with 10.000 samples, which is plenty to provide a good estimate.
This will then serve as our ground truth data. As we are studying a general
purpose motion model, we assume that each prior has a diagonal covariance
structure. These variances are then learned from the ground truth data to give
each prior the best possible working conditions.

We apply the three prior models to a sequence where a person is standing
in place and mostly moving his arms. We vary the number of particles in the
1 http://www.ptgrey.com/products/bumblebee2/
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three tracking systems between 25 and 1500. The results are available as videos
on-line2 and some selected frames are available in Fig. 3. The general tendency
is that the projected prior provides the most accurate and smooth results for a
given number of particles. Next, we seek to quantify this observation.

(a) pangle (b) pproj (c) pT

Fig. 3. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.

To compare the attained results to the ground truth data, we apply a simple
spatial error measure [16, 20]. This measures the average distance between limb
end points in the attained results and the ground truth data. This measure is
then averaged across frames, such that the error measure becomes

E =
1

TL

T∑
t=1

L∑
l=1

||alt − a′lt|| , (10)

where alt is the spatial end point of the lth limb at time t in the attained results,
and a′lt is the same point in the ground truth data. This measure is reported for
the different priors in Fig. 4a. As can be seen, the projected prior is consistently
better than the tangent space prior, which in turn is consistently better than
the angular prior. One explanation of why the projected prior outperforms the
tangent space prior could be thatM has substantial curvature. This explanation
is also in tune with the findings of Sommer et.al [21].

If the observation density p(Zt|θt) is noisy, the motion model acts as a
smoothing filter. This can be of particular importance when observations are
2 http://humim.org/eccv2010/
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missing, e.g. during self-occlusions. Thus, when evaluating the quality of a mo-
tion model it can be helpful to look at the smoothness of the attained pose
sequence. To measure this, we simply compute the average size of the temporal
gradient. We approximate this gradient using finite differences, and hence use

S =
1

TL

T∑
t=1

L∑
l=1

||alt − al,t−1|| (11)

as a measure of smoothness. This is reported in Fig. 4b. It can be seen that the
projected prior and the tangent space prior give pose sequences that are almost
equally smooth; both being consistently much more smooth than the angular
prior. This is also quite visible in the on-line videos.

So far we have seen that both suggested priors outperform the angular prior
in terms of quality. The suggested priors are, however, computationally more
demanding. One should therefore ask if it is computationally less expensive to
simply increase the number of particles while using the angular prior. In Fig. 4c
we report the running time of the tracking systems using the different priors. As
can be seen, the projected prior is only slightly more expensive than the angular
prior, whereas the tangent space prior is somewhat more expensive than the two
other models. The latter result is somewhat surprising given the simplicity of
the tangent space prior; we believe that this is caused by choices of numerical
methods. In practice both of the suggested priors give better results than the
angular prior at a fixed amount of computational resources, where the projected
prior is consistently the best.
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Fig. 4. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.018 for the angular prior, 0.008
for the projected prior and 0.009 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.0028 for the angular prior, 0.0009 for the projected
prior and 0.0016 for the tangent space prior. (c) The computational time as a function
of the number of particles.

We now repeat the experiment for a second sequence, using the same param-
eters as before. In Fig. 5 we show the tracking results in selected frames for the



Gaussian-like Spatial Priors for Articulated Tracking 11

three discussed priors. As before, videos are available on-line2. Essentially, we
make the same observations as before: the projected prior provides the best and
most smooth results, followed by the tangent space prior with the angular prior
consistently giving the worst results. This can also be seen in Fig. 6 where the
error and smoothness measures are plotted along with the running time of the
methods. Again, we see that for a given amount of computational resources, the
projected prior consistently provides the best results.

(a) pangle (b) pproj (c) pT

Fig. 5. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.

6 Discussion

We have presented an analysis of the commonly used prior which assumes Gaus-
sian distributed joint angles, and have shown that this behaves less than desirable
spatially. Specifically, we have analysed the covariance of this prior in the tangent
space of the pose manifold. This has clearly illustrated that small changes in a
joint angle can lead to large spatial changes. Since this instability is ill-suited
for predicting articulated motion, we have suggested to define the prior directly
in spatial coordinates.

Since human motion is restricted to a manifoldM⊂ R3L, we, however, need
to define the prior in this domain. We have suggested two means of accomplishing
this goal. One builds the prior by projecting onto the manifold and one builds
the prior in the tangent space of the manifold. Both solutions have shown to
outperform the ordinary angular prior in terms of both speed and accuracy. Of
the two suggested priors, the projected prior seems to outperform the tangent
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Fig. 6. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.021 for the angular prior, 0.007
for the projected prior and 0.015 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.002 for the angular prior, 0.0004 for the projected
prior and 0.001 for the tangent space prior. (c) The computational time as a function
of the number of particles.

space prior, both in terms of speed and quality. The tangent space prior does,
however, have the advantage of simply being a normal distribution in joint angle
space, which can make it more suitable as a prior when learning a motion specific
model.

One advantage with building motion models spatially is that we can express
motion specific knowledge quite simply. As an example, one can model a person
standing in place simply by reducing the variance of the persons feet. This type
of knowledge is non-trivial to include in models expressed in terms of joint angles.

The suggested priors can be interpreted as computationally efficient approx-
imations of a Brownian motion on M. We therefore find it interesting to in-
vestigate this connection further along with similar stochastic process models
restricted to manifolds. In the future, we will also use the suggested priors as
building blocks in more sophisticated motion specific models.
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