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Abstract

Lifelong place recognition is an essential and challenging
task in computer vision, with vast applications in robust local-
ization and efficient large-scale 3D reconstruction. Progress is
currently hindered by a lack of large, diverse, publicly available
datasets. We contribute with Mapillary Street-Level Sequences
(MSLS), a large dataset for urban and suburban place recog-
nition from image sequences. It contains more than 1.6 million
images curated from the Mapillary collaborative mapping plat-
form. The dataset is orders of magnitude larger than current
data sources, and is designed to reflect the diversities of true
lifelong learning. It features images from 30 major cities across
six continents, hundreds of distinct cameras, and substantially
different viewpoints and capture times, spanning all seasons
over a nine-year period. All images are geo-located with GPS
and compass, and feature high-level attributes such as road type.

We propose a set of benchmark tasks designed to push
state-of-the-art performance and provide baseline studies. We
show that current state-of-the-art methods still have a long
way to go, and that the lack of diversity in existing datasets has
prevented generalization to new environments. The dataset and
benchmarks are available for academic research.1

1. Introduction

Visual place recognition is essential for the long-term
operation of Augmented Reality and robotic systems [31].
However, despite its relevance and vast research efforts, it
remains challenging in practical settings due to the wide array
of appearance variations in outdoor scenes, as seen in the
examples extracted from our dataset in Figure 1.

Recent research on place recognition has shown that
features learned by deep neural networks outperform traditional

∗The main part of this work was done while Frederik Warburg was an intern
at Mapillary.

1www.mapillary.com/datasets/places

Figure 1: Mapillary SLS contains imagery from 30 major cities
around the world; red stands for training cities and blue for
test cities. See four samples from San Francisco, Trondheim,
Kampala and Tokyo with challenging appearance changes due
to viewpoint, structural, seasonal, dynamic, and illumination.

hand-crafted features, particularly for drastic appearance
changes [5, 31, 55]. This has motivated the release of several
datasets for training, evaluating and comparing deep learning
models. However, such datasets are limited, in at least three
aspects. First, none of them covers the many appearance
variations encountered in real-world applications. Second,
many of them have insufficient size for training large networks.
Finally, most datasets are collected in small areas, lacking the
geographical diversity needed for generalization.

This paper contributes to the progress of lifelong place
recognition by creating a dataset addressing all the challenges de-
scribed above. We present Mapillary Street-Level Sequences
(MSLS), the largest dataset for place recognition to date, with
the widest variety of perceptual changes and the broadest
geographical spread2. MSLS covers the following causes of
appearance change: different seasons, changing weather condi-
tions, varying illumination at different times of the day, dynamic

2See the video accompanying the paper for an overview and sample images.
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Type of appearance changes
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Nordland [36, 37] Natural + urban 728 km 182 km 1 year ∼115K 3 7 7 7 7 7 7

SPED [12] Urban - - 1 year ∼2.5M 3 3 7 3 3 7 7

KITTI [20] Urban + suburban 39.2 km 1.7 km 3 days ∼13K 7 7 3 3 7 7 7

Eynsham [14] Urban + suburban 70 km 35 km 1 day ∼10K 7 7 7 3 7 7 7

St. Lucia [21] Suburban 47.5 km 9.5 km 1 day ∼33K 7 7 7 3 7 7 7

NCLT [9] Campus 148.5 km 5.5 km 15 mon. ∼300K 3 7 3 3 7 7 7

Oxford RobotCar [32] Urban + suburban 1.000 km 10 km 1 year ∼27K 3 3 3 3 3 7 3

VL-CMU [8] Urban + suburban 128 km 8 km 1 year ∼1.4K 7 7 3 3 7 7 7

FAS [34] Urban + suburban 120 km 70 km 3 years ∼43K 3 3 3 3 7 7 3

Garden Point [41] Urban + campus <12 km 4 km 1 week ∼600 7 7 3 7 3 7 7

SYNTHIA [44] Urban 6 km 1.5 km - ∼200K 3 3 3 3 3 7 7

GSV [56] Urban - - - ∼60K 7 7 7 7 7 7 7

Pittsburgh 250k [51] Urban - - - ∼254K 7 7 3 3 7 7 7

TokyoTM/247 [50] Urban - - - ∼174K 3 7 3 3 3 7 3

TB-places [28] Gardens <100m <100m 1 year ∼60K 7 7 3 3 7 7 7

Mapillary SLS (Ours) Urban + suburban 11,560 km 4,228 km 7 years ∼1.68M 3 3 3 3 3 3 3

Table 1: Summary of place recognition datasets. Geographical coverage is the length of unique traversed routes. Total length
is the geographical coverage multiplied by the number of times each route was traversed. Temporal coverage is the time span from
the first recording of a route to the last recording. “-” stands for “not applicable”.

objects such as moving pedestrians or cars, structural modifica-
tions such as roadworks or architectural work, camera intrinsics
and viewpoints. Our data spans six continents, including diverse
cities like Kampala, Zurich, Amman and Bangkok.

In addition to the dataset, we make several contributions
related to its experimental validation. We benchmark par-
ticularly challenging scenarios such as day/night, seasonal
and temporal changes. We tackle a wider set of problems
not limited to image-to-image localization by proposing six
variations of MultiViewNet [16] to model sequence-to-sequence
place recognition. Moreover, we formulate two new research
tasks: sequence-to-image and image-to-sequence recognition,
and propose several feature descriptors that extend pretrained
image-to-image models to these two new tasks.

2. Related Works

Place Recognition. Place recognition consists of finding the
most similar place of a query image within a database of reg-
istered images [31, 55]. Traditional visual place descriptors are
based on aggregating local features using bag-of-words [45], Fis-
cher vectors [39] or VLAD [25]. Other hand-crafted approaches
exploit geometric and/or temporal consistency [15, 17, 33]
in image sequences. Torii et al. [50] synthesizes viewpoint
changes from panorama images with associated depth. These
synthetic images make the place descriptor, DenseVLAD
[4, 26], more robust to viewpoint and day/night changes.

As in other computer vision tasks, deep features have
demonstrated better performance than hand-crafted ones [55].
Initially, features from existing pre-trained networks were used
for single-view place recognition [7, 11, 46–48]. Later works

demonstrated that the performance improves if the networks
are trained for the specific task of place recognition [5, 22, 30].
One of the recent successes is NetVLAD [5, 55], which uses
a base network (e.g. VGG16) followed by a generalized VLAD
layer (NetVLAD) as an image descriptor. Other works, such
as R-MAC [49] and Chen et al. [13], extract regions directly
from the CNN response maps to form place descriptors.

Recent deep-learning-based methods exploit the temporal,
spatial, and semantic information in images or image sequences.
Radenovic et al. [42] proposes a pipeline to obtain large 3D
scene reconstructions from unordered images and uses these 3D
reconstructions as ground truth for training a Generalized Mean
(GeM) layer with hard positive and negative mining. Garg
et al. [18], on the other hand, uses single-view depth predictions
to recognize places revisited from opposite directions. Also,
addressing extreme viewpoint changes, Garg et al. [19] suggests
semantically aggregating salient visual information. The 3D
geometry of a place is also used by PointNetVLAD [2] that
combines PointNet and NetVLAD to form a global place
descriptor from LiDAR data. MultiViewNet [16] investigates
different pooling strategies, descriptor fusion and LSTMs to
model temporal information in image sequences. This research
is, however, hindered by the lack of appropriate datasets.

Place Recognition Datasets. Table 1 summarizes a set of
relevant place recognition datasets. Below we highlight more
details and compare our contributions against existing datasets.

Nordland [36, 37] contains 4 sequences of a 182km-long
train journey, traversed once per season. It captures seasonal
changes but contains small variations in viewpoint, camera
intrinsics, time of day or structural changes.



SPED [12] was curated from images taken by 2.5K
static surveillance cameras over 1 year. It contains dynamic,
illumination, weather and seasonal changes. However, it does
not include viewpoint changes or ego-motion.

KITTI [20], Eynsham [14] and St. Lucia [21] were all
recorded by car-mounted cameras. In all three cases the cars
drove in urban environments within a few days, capturing dy-
namic elements and slight viewpoint and weather changes, but
no long-term variations. There are several other datasets oriented
to autonomous driving collected over longer periods: NCLT [9]
(recorded over a period of 15 months in a campus environment),
Oxford RobotCar [32] (recorded from a car traversing the
same 10 km route twice every week for a year), VL-CMU [8]
(composed by 16 × 8 km street-view videos captured over one
year) and Freiburg Across Seasons (FAS) [34] (composed of
2 × 60 km summer videos and 1 × 10 km winter video over a
period of three years). None of these have geographical diversity,
nor do they have variations in the camera intrinsics. Moreover,
their viewpoint, structural and weather changes are minor.

Gardens Point [41] was recorded with a hand-held iPhone.
It contains day/night and significant viewpoint changes, but
a small representation of other appearance changes and has
a small size. SYNTHIA [44] contains 4 synthetic image
sequences along the same route. It includes varying viewpoints,
seasonal, weather, dynamic and day/night changes.

GSV [56] compiled a street-level image dataset from Google
Street View. However, it is relatively small at 60,000 images. It
is limited to a few US cities with no temporal changes and it is
composed of still images instead of sequences. Pittsburgh250k
[51] was also extracted from Google Street View panoramas
in Pittsburgh (10, 586 of them specifically, using two yaw
directions and 12 pitch directions). The limited geographical
span of these datasets results in a low number of unique places
compared to ours. Tokyo [50] comes in two versions: The
Tokyo Time Machine dataset (∼98K images) and Tokyo 24/7
(∼75K images). Tokyo 24/7 has significant day/night changes.
However, [5] comments that the trained model with the Tokyo
datasets shows signs of overfitting, probably caused by their
limited geographical coverage and size.

Notice that GSV, Pittsburgh250k and Tokyo have signif-
icant viewpoint variation but do not include information on
viewing direction for the images, and hence positive mining
of images with overlaps in view point is not straightforward. In
our Mapillary SLS, we include viewing direction information
for each image (see details in section 3).

Image retrieval is a similar task to place recognition, aiming
to find an image in a database that is the most similar to a query
image. There exist several image-retrieval datasets (typically
created from Flickr images) and established benchmarks, e.g.,
Holidays [24], Oxford5k, Paris6k [40], Revisited Oxford5k and
Paris6k [43], San Francisco Landmarks [10] and Google Land-
marks [35, 38]. They usually focus on single-image retrieval and
have a very large set of images from the same place, which limits

their application in benchmarking lifelong place recognition.

3. The Mapillary SLS Dataset
To push the state-of-the-art in lifelong place recognition,

there is a need for a larger and more diverse dataset. With this in
mind, we have created a new dataset comprised of 1.6 million
images from Mapillary3. In this section, we present an overview
of the curation process, characteristics, and statistics of the
dataset. With the available sequential information of the dataset,
we additionally propose two new research benchmark tasks.

3.1. Data Curation

Our goal is to create a dataset for place recognition with
images that (1) have wide geographical reach, reducing bias
towards highly populated cities in developed countries (2) are
visually diverse, capturing scenarios under varying weather,
lighting, and time, and (3) are tagged with reliable geometric
and sequential information, enabling new research and practical
applications.

3.1.1 Image Selection

Geographical Diversity. To ensure geographical diversity, we
start with a set of candidate cities for image selection. For each
candidate city, we create a regular grid of 500m2 cell size and
process each of the cells independently. For each cell, we ex-
tract a series of image sequences recorded within this cell. Each
sequence contains the image keys and their associated GPS coor-
dinates and raw compass angles (indicating viewing direction).

MSLS contains data from 30 cities spread over 6 continents.
See Figure 1 and Table 2 for details. It covers diverse urban and
suburban environments, as indicated by the distribution of cor-
responding OpenStreetMap (OSM)4 road attributes (Figure 3).
Unique User and Capture Time. To ensure variation in the
scene structure, time of day, camera intrinsics and view points
within each geographical cell, we only keep one sequence per
photographer and pick sequences from different days.
Consistent Viewing Direction. To ensure that viewing
direction measurement is reliable for selecting matching images,
we enforce consistency between raw compass angles (measured
by the capturing device) and the estimated viewing direction
computed with Structure from Motion (SfM)5. We select only
sequences in which at least 80% of the images’ computed
angles agree (≤30◦ difference) with the raw compass angle.

3.1.2 Sequence Clustering

To maximize the variety of the dataset, we opt for a larger
number of short sequences. The sequence length is curated to

3www.mapillary.com
4www.openstreetmap.org
5The estimated viewing directions were computed based on the relative

camera poses estimated using the default OpenSfM [1] pipeline with the camera
positions aligned with the GPS measurements
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Figure 2: Mapillary SLS pairs showing day/night, weather, seasonal, structural, viewpoint and domain changes.

Continent # Frames # Night Frames Geo. Coverage [km] Total Coverage [km] #Clusters
Europe 516 K 1,098 1,052 2,985 8,654
Asia 468 K 9,820 965 2,729 5,483
North America 431 K 3,968 171 4,616 6,504
South America 61 K 1,177 214 599 1,065
Australia 200 K 0 259 568 1,493
Africa 5 K 0 28 63 108
Total 1,681 K 16,063 4,228 11,560 23,307

Table 2: Continental coverage in Mapillary SLS.

match what researchers are currently using for sequence-based
place recognition.

Given this initial set of sequences from the image selection
process, we generate clusters of sequences that are candidates
for place recognition. To avoid sequences where the distance
between consecutive images is large, we first split each raw
sequence into subsequences if there is more than 30 m between
two consecutive frames. Then, we pairwise-match these
sub-sequences based on their distance, viewing direction, and
motion direction 6. This is done by searching among all the sub-
sequences and forming candidate clusters (sub-sequence pairs)
based on their distances to all other neighboring sub-sequences.

To form a candidate cluster, we use the following criteria:
Frames from sub-sequences A and B are clustered together
if: 1) Their distance is less than 30 m. 2) The difference
between their viewing directions is less than 40◦. 3) The
difference between their moving directions is less than 40◦.
In practice, we use a k-d tree to efficiently discover these
pairwise correspondences. The above criteria sometimes skip
intermediate images in a sequence, e.g., a sub-sequence might
have the images {1,2,4,5}, thus missing image 3. To avoid this
effect, we add all such skipped images back into the sequence.

After matching sub-sequence pairs into potential clusters,
we prune them to obtain the frames where both subsequences
overlap and hence can be used for sequence-to-sequence place
recognition. Since there might be more matching sequences,
we merge all pairwise clusters (e.g., we merge clusters A, B and

6The motion direction for each image is calculated using the GPS
measurement and the capture times of consecutive images in a sequence.

C if there are images that belong to clusters AB, AC and BC.)
We end up with clusters of sequences that have the same

geographical coverage and the same moving and viewing di-
rection. The sequences in the clusters are relatively short (5-300
frames), providing a very diverse set of sequential examples
for training and development of multi-view place descriptors.

Finally, we filter the resulting clusters enforcing: 1) that each
subsequence has 5 or more frames for proper evaluation of
multi-view place recognition models; and 2) that each cluster
has at least two sub-sequences, in order to have a sufficient
number of positive training and test samples.

Figure 3: Distribution of OSM road attributes for Mapillary SLS.

3.2. Image Attributes

For each image, we additionally provide several raw
metadata, post-processed metadata and image attributes that
are relevant for further research.



Metadata. We provide the raw GPS coordinates, capture
time (timestamp) and compass angle (which corresponds to
the absolute orientation) for each image. We also include
UTM coordinates and binary labels indicating the presence or
absence of the car control panel (calculated using a semantic
segmentation network).
Day and Night. We provide an attribute indicating whether
a sequence is captured during day or night time. We verified
that the day/night attribute could not be robustly estimated from
the capture time of the images. Therefore, we implemented a
day/night classifier based on the hue distribution of the entire
image and of the sky region identified using semantic segmenta-
tion. Given the prediction of each image, we then performed a
majority voting across the entire sequence to provide consistent
day/night tags. To obtain the sky region, we used a semantic
segmentation mask provided by Mapillary’s API. By manual
inspection, we found that such a classifier is sufficient.
Qualitative View Direction. We additionally include the
facing direction of the camera: forward, backward or sideways,
which is the relative orientation of the camera to its movement.
Road Attributes. Based on the GPS locations of the images,
we also tagged each sequence with road attributes (e.g.,
residential, motorway, path or others), which were obtained
from OpenStreetMap7 (OSM).

3.3. Data Overview

In this section, we provide an overview of the Mapillary SLS
dataset in terms of its diversity. In Figures 4a and 4b, we show
that the dataset covers all times of the day and months of the
year. Figures 4c and 4d show that the dataset spans nine years
and that the same places have been revisited with up to seven
years time difference, making MSLS the dataset with largest
time span for lifelong place recognition. Figures 4e and 4f show
large variety in sequence length and number of recordings for
the same places.

To highlight the broad variety and challenge, Figure 2 shows
image samples from our dataset, where each column contains
a query and a database image at a nearby location. In the first
column, the query images are taken during the day, whereas the
database image is taken at night. The second column shows an
example of drastic weather changes as well as a new roadworks
traffic sign. The third column shows images from Kampala;
a drastic change in environment compared to the images in the
first two columns from Copenhagen and San Francisco. Sea-
sonal and structural changes are visible in the two last columns,
as the sky-scraper on the left side of the road is under construc-
tion in the bottom image and stands finished in the top one.
More visual examples of vast variety of changes between query
and database images are available in the supplementary material.

7https://wiki.openstreetmap.org

(a) Hourly distribution (b) Monthly distribution

(c) Yearly distribution (d) Time difference [months]

(e) # of frames per sequence (f) # of sequences per cluster

Figure 4: Distribution of image sequences in Mapillary
SLS on a daily, monthly, yearly scale, time variation, and
sequence-related characteristics.

3.4. Data Partition and Evaluation

We divide the dataset into a training set (roughly 90%) and
a test set (the remaining 10%) containing disjointed sets of
cities. Specifically, the test set consists of images collected from
Miami, Athens, Buenos Aires, Stockholm, Bengaluru and Kam-
pala. We phrase four place recognition tasks combining single
images and sequences in the query and database. These tasks
will herefter be referred to as im2im, seq2seq, im2seq, and
seq2im (x2y stands for query x and database y), respectively.

In addition to evaluating on the whole test set, we suggest
the following three research challenges and provide a separate
scoreboard for each: Day/Night (how well the model recognizes
places from day and night and vice versa), Seasonal (how well
the model recognizes places between seasons, Summer/Winter
and vice versa being the most challenging) and New/Old (how
well the model recognizes places after several years).

Similar to previous works, we cast place recognition as
an image retrieval problem and use the top-5 recall as the
evaluation metric. For each cluster, we choose one sequence to
be the query and the remaining ones to be the database. In the
following we will use the query example to describe either a
query image or a query sequence. The query example is chosen
as the center frame(s) in the chosen query sequence. Only one
query example is chosen per query sequence, ensuring an equal

https://wiki.openstreetmap.org
https://wiki.openstreetmap.org


weight of every place in the evaluation independently of its
number of frames. We define the ground-truth matches as those
images within a radius of 25m of the query image with a view-
ing angle difference to it smaller than 40◦. A correct sequence
match is when any of the frames in the query sequence is less
than 25 meters away from any of the frames in the database
sequence. This definition also explains why seq2im is harder
than im2seq, as the area of correct matching is larger in the latter.

To avoid overfitting to the test set, we withhold the metadata
for the test set, except the ordering of the sequences. The test
set is divided into query and database sets to ease evaluation.
The test set is geographically far from the training set, ensuring
that there is no shared visual content, which is a problem for
existing datasets (Pittsburgh250k and Tokyo TM/Tokyo 24/7).

4. Experiments
In this section, we first present our training procedure for the

baseline methods. We show experimental results on the Map-
illary SLS dataset in both single-view and multi-view settings.

4.1. Training

For the baseline method, we have used NetVLAD [5] and
followed a similar training procedure and hyper-parameter
selection scheme. The model is trained with the triplet loss [52],
for which presenting hard triplets is critical to learn a good em-
bedding. We apply a simple, yet effective sub-caching method
with constant time and space use similar to Arandjelovic et al.
[6]. Both the query and positive images can be sampled from the
cache as well as negatives. It is important to keep the subset size
large enough to find adequately hard triplets. In our experiments,
we use 10,000 query images and refresh the cache every 1,000
iterations. We use 5 negative examples per triplet instead of
10 [5] as this allows us to fit a batch size of 4 into the memory.

4.2. Single-View Place Recognition

In Table 3, we benchmark the most common deep models
for im2im recognition, reporting their top-5 recall on several
challenging recognition cases, as well as their top-1/5/10 recall
on the entire test set. These challenging cases include summer
to winter (Su/Wi), day to night (Da/Ni), old to new (Ol/Ne)
and vice versa. We define old images as those taken between
2011–2016 and new images as those taken since 2018. The
goal is to separately evaluate the performance of each method
when exposed to seasonal, day/night and structural changes.

We evaluate two early models: Amosnet and Hybrid-
net [12] and two more recent ones: NetVLAD [5] and GeM
(Generalized Mean) [42]. Amosnet and Hybridnet have a
Caffe-net backbone followed by two fully connected layers.
NetVLAD [5] consists of a VGG16 core with a trainable VLAD
layer, and is the state-of-the-art on several place recognition
datasets. We evaluated the variant of GeM with VGG16
backbone architecture that is trained on 3d reconstructions of
120k images from Flikr (SfM-120k).

Query Positive Negative 1 Negative 2 Negative 3

Figure 5: Triplets with multiple negatives. Hard-negatives
are mined during training using our proposed sub-caching
methodology. For each query-positive pair, the negatives that
most violate the triplet constraint, ||q−p||22+m< ||q−n||22, are
chosen. Here q, p, n refer to the cached embeddings for the
query, positive and negative images. m is the margin.

Table 3 shows that training on the diverse MSLS improves
the overall performance. The performance boost is mainly
caused by improved capabilities to recognize places that have
undergone seasonal and temporal changes. All models are
especially challenged by the night to day changes. Figure 6
shows a detailed comparison of im2im models with varying
distance and number of image candidates.

4.3. Multi-View Place Recognition

We propose to reformulate MultiViewNet [16] to address
seq2seq, seq2im, and seq2im place recognition. To the best of
our knowledge, no previous work has addressed these two latter
cases. We propose two novel architectures based on NetVLAD
and show the results in Table 3.
seq2seq. We propose six variations of a MultiViewNet [16],
specifically, three pooling techniques for NetVLAD and three
for GeM. The motivation is to adapt embeddings that are
known to work well for single-view place recognition. The
first technique, NetVLAD/GeM-MAX, performs max pooling
across the embeddings of each image in the sequence. The
second variation, NetVLAD/GeM-AVG, does average pooling.
The last technique, NetVLAD/GeM-CAT, concatenates the
embeddings. Results are reported in Table 3.
seq2im. In the sequence-to-image case, we propose to make a
majority voting across the sequence, i.e. select the image in the
database that most images are nearest to in the query sequence.
Given a query sequence of N frames, we calculate the distance
from each frame to each database image. We then look at
the closest k distances for each of our N frames in our query
sequence. This gives a total of k×N closest database images.
We then select the most frequently occurring. The intuition
is that if all the frames in a sequence are close to a database



Model Training set Base Input Size Dim Su/Wi Wi/Su Da/Ni Ni/Da Ol/Ne Ne/Ol All (@1/5/10)
im

2i
m

Amos SPED CaffeNet 227x227 2543 0.17 0.09 0.20 0.09 0.17 0.14 0.06/0.11/0.14
Hybrid SPED CaffeNet 227x227 2543 0.13 0.11 0.14 0.11 0.18 0.17 0.08/0.13/0.15
NetVLAD Pitts250k VGG16 480x640 512 0.43 0.44 0.37 0.09 0.49 0.50 0.28/0.35/0.39
GeM SfM-120k VGG16 480x640 2048 0.51 0.48 0.37 0.20 0.55 0.56 0.30/0.40/0.44
NetVLAD MSLS VGG16 480x640 512 0.76 0.74 0.49 0.23 0.71 0.75 0.48/0.58/0.64

se
q2

se
q

NetVLAD + MAX Pitts250k VGG16 480x640 512 0.40 0.51 0.37 0.09 0.55 0.57 0.23/0.32/0.36
NetVLAD + AVG Pitts250k VGG16 480x640 512 0.41 0.39 0.37 0.09 0.54 0.54 0.20/0.31/0.34
NetVLAD + CAT Pitts250k VGG16 480x640 512 0.44 0.47 0.37 0.14 0.57 0.56 0.23/0.33/0.37
GeM + MAX SfM-120k VGG16 480x640 2048 0.53 0.54 0.43 0.26 0.67 0.57 0.29/0.43/0.48
GeM + AVG SfM-120k VGG16 480x640 2048 0.60 0.52 0.40 0.14 0.66 0.57 0.29/0.42/0.46
GeM + CAT SfM-120k VGG16 480x640 2048 0.55 0.46 0.46 0.26 0.65 0.53 0.28/0.42/0.46
NetVLAD + MAX MSLS VGG16 480x640 512 0.75 0.79 0.51 0.14 0.80 0.76 0.42/0.58/0.63
NetVLAD + AVG MSLS VGG16 480x640 512 0.75 0.78 0.51 0.06 0.78 0.73 0.37/0.56/0.60
NetVLAD + CAT MSLS VGG16 480x640 512 0.84 0.76 0.57 0.20 0.80 0.72 0.41/0.60/0.65

se
q2

im

NetVLAD + MIN Pitts250k VGG16 480x640 512 0.53 0.53 0.37 0.03 0.60 0.62 0.30/0.37/0.40
NetVLAD + MODE Pitts250k VGG16 480x640 512 0.53 0.51 0.46 0.06 0.61 0.59 0.28/0.37/0.41
GeM + MIN SfM-120k VGG16 480x640 2048 0.62 0.62 0.37 0.23 0.71 0.67 0.38/0.47/0.50
GeM + MODE SfM-120k VGG16 480x640 2048 0.59 0.52 0.46 0.26 0.67 0.66 0.32/0.45/0.51
NetVLAD + MIN MSLS VGG16 480x640 512 0.86 0.86 0.54 0.20 0.83 0.81 0.56/0.68/0.71
NetVLAD + MODE MSLS VGG16 480x640 512 0.53 0.51 0.46 0.06 0.61 0.59 0.28/0.37/0.41

im
2s

eq NetVLAD + MIN Pitts250k VGG16 480x640 512 0.20 0.30 0.29 0.14 0.33 0.28 0.12/0.20/0.26
GeM + MIN SfM-120k VGG16 480x640 2048 0.24 0.22 0.26 0.31 0.37 0.29 0.13/0.22/0.31
NetVLAD + MIN MSLS VGG16 480x640 512 0.45 0.39 0.31 0.23 0.48 0.37 0.23/0.34/0.48

Table 3: Evaluation of different im2im, seq2seq, seq2im and im2seq models on Mapillary SLS test set. We report the models
recall@5 on several challenging recognition cases as well as their overall recall@1/5/10. For a fair comparison, we compare models
with similar backbone architecture.

image, then we are more confident that this database image
is indeed close to the query sequence. In Table 3, we refer to
this majority voting as +MODE. We also test the selection of
the closest image in the database among all the images in the
query sequence, which we will refer to as +MIN in Table 3.
Again, we test these methods using both the VGG16 + GeM
and VGG + NetVLAD embeddings (See Table 3).

Figure 6: Recall of different methods on MSLS as a function
of number of nearest neighbors (left) and distance threshold
(right). ∗/† indicates pretrained/trained models, respectively.

im2seq. In the image-to-sequence case, we test the selection
of the sequence containing the image with the nearest query. In
practice, we calculate the distances from the query image to all
the frames in the database sequences, and select the sequence
that contains the nearest frame.

Table 3 shows that these simple pooling strategies do not im-
prove model performance much compared to single-view mod-
els. The reason is that MSLS sequences are captured at different
frame-rates and user velocities, requiring the model to learn a
time-independent relation between the frames. These complex

relations cannot be captured by simple pooling strategies. This
motivates the development and further research in multi-view
methods, which is accommodated by release of the MSLS.

4.4. Further Analysis

In this section, to understand better the strength of the
diversity of the dataset, we present qualitative and geographical
analyses of the recognition results.

Qualitative Model Comparison: In Figure 7, we qual-
itatively evaluate AmosNet, HybridNet, VGG16-GeM and
NetVLAD trained on Pittsburgh250k and SfM120K, and
NetVLAD trained on Mapillary SLS. Notice how the diversity
of the MSLS data makes NetVLAD more robust to viewpoint
and weather changes compared with models that trained on other
datasets that do not encapsulate as much diversity as our dataset.

Geographical Bias: State-of-the-art place recognition
networks are trained on images from developed countries.
Figure 8 shows the performance of several models on individual
cities from MSLS, confirming their geographical bias. Notice
that the GeM model has slightly less bias, the performance
drop on Asian cities being relatively low. This could be related
to the fact that this model is trained on Flickr images, which
are more diverse than other datasets. Figure 9 shows that this
geographical bias is reduced by training on MSLS for both
AmosNet and NetVLAD.

5. Conclusions and Future Work
We have presented Mapillary SLS, a large collection of im-

age sequences for training and evaluating place recognition algo-



Query AmosNet HybridNet GeM
NetVLAD
(Pitt250k)

NetVLAD
(MSLS)

Figure 7: Qualitative comparison of different pre-trained
networks as well as our NetVLAD model trained on Pitts-
burgh250k and Mapillary SLS. Training on MSLS improves
robustness towards weather changes and diverse vegetation
such as palm trees. Green: true positive; Red: false positive.

rithms. The data has been collected from Mapillary and contains
over 1.6 million frames from 30 different cities over six conti-
nents. The gathered sequences span a period of seven years and
the places experience large perceptual changes due to seasons,
construction, dynamic objects, cameras, weather and lighting.

MSLS contains the largest geographical and temporal cov-
erage of all publicly available datasets; and it is among the ones
with the widest range of appearance variations and the largest
number of images. All these features make our dataset a valuable
addition to the available data corpus for training place recogni-
tion algorithms. The many variation modes and the considerable
size of realistic urban data make it particularly appealing for
deep-learning approaches and autonomous car applications.

We have also run extensive benchmarks on our dataset with
previous state-of-the-art methods to illustrate the difficulty of
our dataset. We also introduce two new tasks: seq2im and
im2seq. We propose new techniques to solve these tasks using
models trained for im2im place recognition and to evaluate
several pre-trained models as well as models trained on MSLS.

Although, the focus of the present paper is place recognition,
Mapillary SLS is also useful for other computer vision
tasks such as pose regression [27, 54], image synthesis (e.g.,
night-to-day translation [3]), image-to-gps [53, 57]), change
detection, feature learning, scene classification using the OSM

Figure 8: Geographical bias in 4 place recognition models.
y-axis shows the top-5 recall. Cities are colored depending
on their location: Africa (orange), Asia (red), South America
(pink), North America (purple), Europe (turquoise).

(a) AmosNet∗ (b) AmosNet† (c) NetVLAD∗ (d) NetVLAD†

Figure 9: Bias reduction for both AmosNet and NetVLAD
when trained on MSLS and evaluated on the MSLS test set. ∗/†
indicates pretrained/trained models, respectively.

road tags and unsupervised depth learning [23, 29].
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[10] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham,
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local descriptors into a compact image representation. In
2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 3304–3311, June 2010. doi:
10.1109/CVPR.2010.5540039. 2

[27] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings
of the IEEE international conference on computer vision, pages
2938–2946, 2015. 8

[28] M. Leyva-Vallina, N. Strisciuglio, M. L. Antequera, R. Tylecek,
M. Blaich, and N. Petkov. TB-places: A data set for visual
place recognition in garden environments. IEEE Access, 7:
52277–52287, 2019. 2

[29] Z. Li and N. Snavely. Megadepth: Learning single-view depth
prediction from internet photos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages

https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM
http://arxiv.org/abs/1411.1509
http://arxiv.org/abs/1701.05105
http://arxiv.org/abs/1902.09516
http://arxiv.org/abs/1902.07381
http://arxiv.org/abs/1505.07428
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1007/978-3-540-88682-2_24


2041–2050, 2018. 8
[30] M. Lopez-Antequera, R. Gomez-Ojeda, N. Petkov, and

J. Gonzalez-Jimenez. Appearance-invariant place recognition by
discriminatively training a convolutional neural network. Pattern
Recognition Letters, 92:89–95, 2017. 2

[31] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox,
P. Corke, and M. J. Milford. Visual place recognition: A survey.
IEEE Transactions on Robotics, 32(1):1–19, 2016. 1, 2

[32] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1
Year, 1000km: The Oxford RobotCar Dataset. The Inter-
national Journal of Robotics Research (IJRR), 36(1):3–15,
2017. doi: 10.1177/0278364916679498. URL http:
//dx.doi.org/10.1177/0278364916679498. 2, 3

[33] M. J. Milford and G. F. Wyeth. SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter nights.
In 2012 IEEE International Conference on Robotics and
Automation, pages 1643–1649. IEEE, 2012. 2

[34] T. Naseer, W. Burgard, and C. Stachniss. Robust vi-
sual localization across seasons. IEEE Transactions on
Robotics, 34(2):289–302, April 2018. ISSN 1552-3098. doi:
10.1109/TRO.2017.2788045. 2, 3

[35] H. Noh, A. Araujo, J. Sim, and B. Han. Image re-
trieval with deep local features and attention-based
keypoints. CoRR, abs/1612.06321, 2016. URL
http://arxiv.org/abs/1612.06321. 3

[36] NRK. Nordlandsbanen: minute by minute, season by season,
2013. URL https://nrkbeta.no/2013/01/15/
nordlandsbanen-minute-by-minute-season-by-
season/. 2
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