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Abstract

Spatial Transformer layers allow neural networks, at
least in principle, to be invariant to large spatial trans-
formations in image data. The model has, however, seen
limited uptake as most practical implementations support
only transformations that are too restricted, e.g. affine or
homographic maps, and/or destructive maps, such as thin
plate splines. We investigate the use of flexible diffeo-
morphic image transformations within such networks and
demonstrate that significant performance gains can be at-
tained over currently-used models. The learned transfor-
mations are found to be both simple and intuitive, thereby
providing insights into individual problem domains. With
the proposed framework, a standard convolutional neural
network matches state-of-the-art results on face verification
with only two extra lines of simple TensorFlow code.

1. Introduction
Models that are invariant to spatial transformations of the

input are essential when designing accurate and robust im-
age classifiers; e.g., we want models that can separate ob-
jects’ shape and appearance from their position and pose.
Convolutional Neural Networks (CNNs) [33] achieve some
invariance and produce state-of-the-art results in, e.g., clas-
sification [26, 44, 52], localization [47, 55], and segmenta-
tion [36, 43]. This is partially achieved by the translation
invariance of the convolutional layers and partially by the
(local) spatial invariance in the max-pooling layers.

Current CNN architectures, however, typically employ
small pooling regions (e.g., 2 × 2 or 3 × 3 pixels), thereby
limiting their invariance to large transformations of the in-
put data. To counter this, Jaderberg et al. [27] introduced
the Spatial Transformer (ST) layer which explicitly allows
for spatial manipulation of data within the network. Via a
regression network, the ST-layer learns an input-dependent
transformation such that together with the subsequent layers
the overall network achieves optimal performance. Mod-
els with an ST-layer have either increased classification ac-
curacy [25, 42] or maintained the same performance level
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Figure 1: The spatial transformer layer improves perfor-
mance of deep neural networks for face verification. By
learning an affine transformation, the network can “zoom
in” on the subjects face; when learning a flexible transfor-
mation (proposed), the network here stretches an oval face
to become square. This significantly improves performance.

with a simpler network [11]. We argue that the potential
of the ST-layer has yet to be fully utilized. Particularly,
while in theory the ST-layer allows for any parametrized
family of differentiable transformations, only certain types
of maps – affine, homographies, or thin plate splines (TPS)
– appear in most practical implementations [25, 35, 42].
We note that affine maps and homographies are of lim-
ited expressiveness and that the former, together with TPS,
might also be destructive and are intrinsically prone to di-
vergent optimization. We propose, instead, to use an effi-
cient and highly-expressive family of diffeomorphisms (i.e.
differentiable invertible maps with a differentiable inverse)
and demonstrate that this significantly improves regression
and classification results on diverse tasks, while being more
robust during training. The examples in Fig. 1 show that
the affine model allows the network only to “zoom in” on
the face, while the proposed models (“Diffeomorphic” and
“Affine+Diffeomorphic”) further stretch the face to become
almost square. This intuitive “squarification” suffices to
make standard CNNs match state-of-the-art performance.
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Figure 2: The spatial transformation layer [27].

This paper contributes the first diffeomorphic image
transformations built into a deep neural network. This pro-
vides a simple layer that can be inserted into widely-used
established architectures using only two lines of Tensor-
Flow [1] code. Empirically, we find that this extra layer
is sufficient to allow off-the-shelf neural networks to match
state-of-the-art performance on several tasks. In face verifi-
cation tasks, the interpretability of the diffeomorphic layer
allows us to gain new insights into facial image analysis
and see that a simple “squarification” transformation can
significantly boost performance of a model. In the process
of developing the diffeomorphic layer we gain further in-
sights into traditional affine spatial transformers and show
that their lack of invertibility causes divergent optimization.

2. Related work
Invariance is often key to success of computer-vision

models. Traditionally, invariance to simple transformations
(translations, rotations, scalings, etc.) was obtained by ex-
tracting invariant features; e.g., SIFT features [39] are in-
variant to translations, rotations and scalings.

The reemergence of neural networks has shifted focus
to learned features that are approximately invariant to key
transformations. Convolutional layers learn filters that are
applied in a translation-invariant fashion, but the filter re-
sponse itself is not invariant. Max-pooling strategies alle-
viate this to some extent and provide invariance to small
translations. In practice, however, pooling is done only over
small regions (e.g., 3×3), so each pooling layer provides an
approximated spatial invariance of up to only a few pixels.
Generalizing the convolution operator allows for further in-
variances; e.g., Henriques et al. [23] show that invariance to
two-parameter transformations is achievable at small com-
putational cost. The spatial transformer (ST) layer [27] was
introduced to allow for invariances to significantly-larger
(parametrized) transformations. The ST-layer is the topic
of the present paper and is further explored in § 3.1.

A complementary technique for achieving approximated
invariance is Data Augmentation, where one artificially
augments the training data with new samples created by
transforming the original data via pre-specified transforma-

tions. This approach, however, requires knowing which
transformations the model should be invariant to. This gen-
erally depends on the application domain [7, 28, 32, 37, 46].
The classic Tangent Prop [45] locally linearizes the known
invariance, and forces the back-propagated gradient of a
neural net to respect it. The linearization, however, im-
plies that invariance is only infinitesimal. General lin-
ear invariances are also used for restricted Boltzmann ma-
chines [31, 49], but again the invariance is only infinitesi-
mal. Note also that Hauberg et al. [22] argue that the spec-
ification of transformations in data augmentation should be
viewed as a learning problem.

Pattern Theory [20] is transformational in the sense it
focuses on transformations acting on objects rather than
the objects themselves. Alternatively, all instantiations of
a transformation type to which invariance is sought may be
applied to each observation to produce orbits [19,34], which
can then be matched. While mathematically elegant, these
approaches tend to be computationally expensive.

In computer vision, diffeomorphisms are used primarily
in nonrigid registration and shape analysis (e.g. [5, 6, 8, 14,
21, 29, 38, 41, 56, 57, 62]). Since traditional approaches to
diffeomorphisms require dire computational costs, several
works tried to alleviate this, e.g. using control points [2,15]
or approximated/discretized diffeomorphisms [3, 58, 61].
Model complexity and computational concerns have, how-
ever, prevented the applicability of the ideas to large-scale
image analysis. Due to these difficulties, it is unsurpris-
ing that diffeomorphisms were never explicitly incorporated
within deep-learning architectures. This is unfortunate, es-
pecially as various authors have noted, in several beautiful
theoretical papers, the potential benefits from linking dif-
feomorphisms to deep learning [4, 40, 48]. Note that while
Yang et al. [60] use standard deep learning to predict diffeo-
morphisms (given diffeomorphism training-data), the latter
are not part of the network itself. In contrast, our work is the
first to explicitly incorporate diffeomorphisms (particularly,
the CPAB transformations [17], which are both efficient and
highly expressive) in deep-learning architectures.

3. Background

3.1. Spatial Transformer Layer

The Spatial Transformer (ST) [27] is a differentiable
layer which applies a parametrized spatial transformation
to a feature map during a single forward pass, where the
the parameter, θ, depends on the feature map. From the
user’s standpoint, using an ST-layer is transparent as the lat-
ter works architecturally similarly to a conv-layer and can
be inserted at any point of a CNN or a more complicated
network (e.g., recurrent neural networks [50]). The ST-layer
consists of three parts, illustrated in Fig. 2 and listed below.

1. The localization network takes as input a feature



Optimizing non-invertible ST-layers is prone to instability
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Figure 3: Left: Empirical inspection of the ST-layer, in the affine case, shows that transformations might become destructive
(i.e., singular or having a too-large condition number), so one cannot recover the untransformed image. The transformations
we propose to use are invertible, so our approach does not have this drawback. Right: Additionally, the affine and TPS
transformations seem to be more sensitive to the choice of learning rate in comparison with our proposed approach.

map U (i.e., an input RGB image) to which it applies
a regression network, floc, to produce a parameter, θ =
floc(U). This θ corresponds to some T θ ∈ T where T is
a given parametrized family of transformations. Note that
d , dim(θ) depends on T ; e.g. for affine transformations,
θ ∈ R6. floc may be of any regression network (e.g., CNN)
provided it ends with a fully-connected layer of d neurons.

2. The grid generator creates a grid G ⊂ [−1, 1] ×
[−1, 1] of evenly-spaced points of appropriate dimension.
Each point in G is transformed by the transformation, T θ.

3. The sampler computes the output feature map V by
interpolating, using U , the values of V at T θ(G); i.e., it
performs image warping. The fact that it is preferable to
formulate the latter via the inverse warp, (T θ)−1 [53], is
one reason why it is better to have an invertible T θ with an
easily-computable inverse. In the context of ST-layers, the
sampling kernel must be differentiable (as is the case, e.g.,
for the bilinear kernel, which is the most popular choice).

In theory, the large expressiveness of the ST-layer stems
from the fact that T can be chosen freely, with the con-
straint that the parametrization, θ 7→ T θ, must be differ-
entiable w.r.t. θ, so the loss can back-propagate from the
transformed sampled points, {T θ(Gi)}, to the localization
network floc. Jaderberg et al. [27] experiment with T being
modeled as affine, plane projective, or a 16-point TPS, with
the latter outperforming the others. While the affine trans-
formations have gained most of the attention, recent STNs
also consider homographies [35] and TPS maps [30, 35].

3.2. Spatial Transformations: Requirements

We note three requirements from the spatial transforma-
tions in order to train the localization network robustly:

1. Differentiability. As networks are trained by
gradient-based methods, it is essential that the parametrized
transformation, T θ : R2 → R2, x 7→ T θ(x), will be differ-
entiable w.r.t. both x and θ; e.g., this is the case for affine
transformations, where θ = [ θ1 θ2 θ3 θ4 θ5 θ6 ]

T ∈ R6 and

T θ : R2 → R2 , T θ(x) ,
[
θ1 θ2
θ4 θ5

]
x+

[
θ3
θ6

]
. (1)

Differentiability, w.r.t. x, also implies that drastic kinks
or corners in the transformed image are avoided.

2. Invertibility. During training, the stochastic gradient
will, at times, point in directions that do not improve the
performance. While this can help escaping local optima, it
is often important that a subsequent step can revert back.
If the ST-layer starts to predict nearly-singular maps, the
back-propagated gradient will contain almost no informa-
tion (see Fig. 3, left), making it hard to revert the optimiza-
tion. Ensuring invertibility in the transformation avoids this
failure mode. Both affine and TPS transformations may
fail to be invertible. In the affine case, f : Rn → Rn,
x 7→ Ax + b (with: A ∈ Rn×n; b ∈ Rn) is invertible
if and only if detA 6= 0. Similarly, TPS is invertible if
and only if the determinant of the TPS kernel is non-zero.
Empirically, we observe (Fig. 3, right) that invertible trans-
formation families are less sensitive to the choice of learn-
ing rate. Particularly, invertible families (blue; green) are
significantly more robust than those that do not ensure in-
vertibility (yellow; red). Moreover, the invertibility avoids
destructive folds in the transformed images.

3. Having a differentiable inverse. In order to take a
gradient step that reverts an unfortunate previous step, the
derivative of the inverse transformation should also exist.

Together, these three requirements coincide with the def-
inition of a diffeomorphism: a (C1) diffeomorphism is a
differentiable invertible map with a differentiable inverse.
Transferring these observations into a practical implementa-
tion, however, presents algorithmic and mathematical chal-
lenges as evaluations of general diffeomorphisms, let alone
their derivatives, tend to be computationally demanding.
Note that due to the possible lack of invertibility, neither
affine nor TPS maps are guaranteed to be diffeomorphisms.

3.3. Diffeomorphisms

We seek a family of diffeomorphisms, parameterized by
θ = [ θ1 ... θd ]

T ∈ Rd, that is highly expressive, easy to
implement, and computationally efficient. We first discuss
a family that meets only the last two requirements.

Affine diffeomorphisms. Let x̃ , [ xT 1 ]
T ∈ R3 de-



Figure 4: An example of a CPAB transformation. Left:
A [2,2]-tessellation of the domain is overlaid on an image
of face [10]. The black arrows defines a velocity field that
is continuous piecewise-affine w.r.t. the tessellation. Right:
Integrating the velocity field generates paths (blue) that de-
fine a diffeomorphic image deformation.

note the homogeneous-coordinate representation of x ∈
R2. An affine map x 7→ T θ(x) may be written as

R3 3
[
Tθ(x)

1

]
=
[
θ1 θ2 θ3
θ4 θ5 θ6
0 0 1

]
x̃ . (2)

This map is invertible if and only if the matrix above is
invertible. In which case, its inverse map is also affine,
hence differentiable. Thus, invertible affine maps are dif-
feomorphisms. A way to get invertibility is as follows. Let
vθ : R2 → R2 be an affine velocity field given by

vθ : x 7→ Ax̃ where A ,
[
θ1 θ2 θ3
θ4 θ5 θ6

]
∈ R2×3 . (3)

Let expm : R3×3 → R3×3 denote the matrix exponential.
If we redefine T θ : R2 → R2 via[

Tθ(x)
1

]
= expm(Ã)x̃ , Ã ,

[
θ1 θ2 θ3
θ4 θ5 θ6
0 0 0

]
∈ R3×3 , (4)

then (since the last row of expm(Ã) is [ 0 0 1 ] and
det expm(Ã) > 0) T θ is an affine diffeomorphism. More-
over, it can be shown that this transformation is the solution,
φ : R2 × R→ R2, to the integral equation

φθ(x; 1) = x+

∫ 1

0

vθ(φθ(x; τ)) dτ. (5)

Thus, affine velocity fields yield affine diffeomorphisms.
More flexible diffeomorphisms. Equation 5 gives the

interpretation that the velocity field is an infinitesimal trans-
formation, applied repeatedly through integration. This
suggests that flexible diffeomorphisms can be designed by
considering richer velocity fields. A key advantage to defin-
ing diffeomorphisms via velocity fields is that while a dif-
feomorphism family is always a nonlinear space, its corre-
sponding velocity-field family is usually a linear space [57].
Thus, to have a highly-expressive diffeomorphism family,
we seek a highly-expressive linear space of velocity fields

V , which can then be integrated according to Eq. 5. Once
we move beyond the affine case, integral equations usually
lack analytic solutions, so one often resorts to numerical
methods with a trade-off between computation time and ac-
curacy. A natural question is how to pick V . In general,
there is a also trade-off between the expressiveness of V on
the one hand, and keeping both d and the computational cost
(e.g., of solving Eq. 5) low on the other hand.

4. Diffeomorphic Transformer Layers

4.1. CPA-Based Transformations

In our context, as we propose incorporating diffeomor-
phisms in a deep-learning architecture (via an ST-layer), the
aforementioned computation time is even more important
than in traditional computer-vision applications of diffeo-
morphisms. This is because during training, evaluations of
T θ(x), as well as the gradient ∇θT θ(x), are computed at
multiple pixel locations x for multiple θ’s. Thus, explicit
incorporation of highly-expressive diffeomorphism families
into deep-learning architectures used to be infeasible.

Recently, however, Freifeld et al. proposed the CPAB
transformations [17, 18], which offer a happy medium be-
tween expressiveness and efficiency. This makes CPAB
transformations a natural choice in a deep-learning context.

The name of the CPAB (CPA-Based) transformations
stems from the fact that they are based on the integration
of Continuous Piecewise-Affine (CPA) velocity fields. The
term “piecewise” is w.r.t. some tessellation of the image do-
main into cells. For a nominal tessellation, the correspond-
ing space of CPAB transformation is given by

T , {T θ : x 7→ φθ(x, 1) s.t. φθ(x, t) solves Eq. 5} (6)

where vθ is CPA w.r.t. the tessellation; see Fig. 4. CPA ve-
locity fields support an integration method that is both faster
and more accurate than typical integration methods [17].

The fineness of the tessellation controls the trade-off be-
tween expressiveness on the one hand and computational
complexity and dimensionality on the other hand. In our
context, the following is important to note.

Flexibility in expressiveness. If more expressive trans-
formations are needed, a finer tessellation can be chosen at
the cost of computation speed and a higher-dimensional d.

Low-dimensional representation. Finer tessellations
imply a higher d = dim(θ). However, one can get fairly-
expressive transformations even with a relatively-low d;
e.g., in our experiments d = 58. In [12] we investigate
the choice of the tessellation size, but keep it fixed in the
remainder of the paper.

Initialization. Since θ = 0 gives the identity map we
initialize the CPAB layer by setting all the weights in the
final layer of the localization net to zero.



Dataset Img. dim # of classes Training samples Test samples Base architecture # of network parameters
Distorted MNIST (42,42,1) 10 50000 10000 [27] 400K
Fashion MNIST (28,28,1) 10 50000 10000 [27] 400K
CIFAR10 (32,32,3) 10 50000 10000 [54] 1M
CIFAR100 (32,32,3) 100 50000 10000 [54] 1M
LFW (restricted) (250,250,3) 2 5600 400 [51] 200K
CelebA (218,178,3) 40 192469 10130 [63] 138M

Table 1: The different datasets used for comparing the models.

4.2. The Proposed CPAB and Affine+CPAB Layers

In this paper we propose two novel network layers:
CPAB layer: Our main proposal is replacing the affine

transformations with the diffeomorphic CPAB transforma-
tions. This raises some technical challenges in implement-
ing CPAB transformations effectively in a deep-learning
framework; see § 4.2.1 for more details.

Affine+CPAB layer: An oft-used modeling paradigm is
to first use a simple model (e.g., affine) to do a crude es-
timation and then use a more complicated model for the
fine estimation. We propose a similar approach, with the
ST-Affine layer being the simpler model and our proposed
CPAB layer being the more complicated one. Thus we pro-
pose an ST-Affine+CPAB layer with two localization nets
(one for each transformation) in serial: the first uses affine
transformations to do a rough alignment and then the sec-
ond uses CPAB transformations for refinement.

4.2.1 Implementation

We implemented the CPAB transformations and gradient in
CUDA within TensorFlow’s C++ API, and the rest of the
code within TensorFlow’s python API. Using our code1 re-
quires only two lines in TensorFlow: one for setting the tes-
sellation and one for incorporating the transformations into
TensorFlow’s network graph.

CPAB transformation evaluations (i.e., evaluating
x 7→ T θ(x)) do not lend themselves to efficient pure-
TensorFlow implementation; this is due to two main reasons
(mentioned briefly here but see [12] for more details). The
first is that CPAB evaluations require repeated cell indexing.
In the computational-graph paradigm, employed by Tensor-
Flow, this is translated to numerous redundant evaluations.
The second is graph construction. The evaluations also re-
quire iterative application of the transformation. The result-
ing computational graph turns out to be inefficient, possibly
since currently TensorFlow is not optimized for such cases.

Having implemented CPAB evaluations in both CUDA
and pure TensorFlow, we empirically found that the latter
is 11 times slower than the former for forward passes and 5
times slower for backward passes.

1Our code is available at: github.com/SkafteNicki/ddtn

The CPAB gradient, ∂T θ(x)/∂θ, whose mathematical
details can be found in [16], does not have a closed-form ex-
pression. Rather, it is given only via the solution of a system
of coupled integral equations [18]. As such, TensorFlow’s
auto-differentiation is inapplicable for computing it.

Finally, the CUDA implementation from [17, 18] lacked
TensorFlow interface (as it was not designed for DL archi-
tectures) and was also slower than our new implementation.
First, here we derived closed-form expressions for the asso-
ciated matrix exponentials. Second, we simplified the CPA
integration algorithm. Third, we added two additional par-
allelism levels; while in [17, 18] parallelization was done
only over different pixels, here we also parallelize over dif-
ferent images as well as the d components of the CPAB gra-
dient. Without these speedups – explained in more detail
in [12] – CPAB layers would have been impractical.

5. Experimental Results and Discussion
We evaluated the accuracy of the proposed transformer

models and compared performance with both other trans-
former models and a standard CNN. The evaluation was
done on several datasets, in both small and large scale.

Datasets: We used 6 different datasets, listed in Table 1.
On all 6 datasets, we trained 7 CNNs: 1) without an ST-
layer; 2) with an ST-Affine layer; 3) with an ST-AffineDiff
layer; 4) with an ST-Homography layer; 5) with an ST-
TPS (16 point) layer; 6) with an ST-CPAB layer; 7) with
an ST-Affine+CPAB layer. The base architectures, chosen
based on recent work on the datasets [27, 51, 54, 63], rep-
resent common and widely-used archetypal architectures,
rather than highly-customized state-of-the art work for spe-
cific tasks. For all transformer models, we put the ST-layer
right after the input layer, just before the feature extraction
layers. For a fair and consistent comparison, the number of
parameters is kept the same for all networks operating on
a given dataset. Thus networks with ST-layers have fewer
parameters in their feature extraction part because some pa-
rameters are used in the localization network.

5.1. Distorted MNIST

We started with a control experiment to verify and un-
derstand the proposed layers. We trained the 7 networks
to classify MNIST digits that had been distorted in two

github.com/SkafteNicki/ddtn


Model MNIST Distortion Training
time [s]RTS CPAB

FCN 0.945 0.918 280
CNN 0.974 0.952 360
ST-Affine FCN 0.986 0.964 400
ST-Affine CNN 0.992 0.974 420
ST-CPAB FCN 0.980 0.980 11587
ST-CPAB CNN 0.982 0.989 12067
ST-Affine+CPAB CNN 0.996 0.993 13058

Table 2: Classification accuracy on the two distorted
MNIST datasets. All models have the same training set-
tings: batch size 100; learning rate 0.0001; Adam opti-
mizer; no weight decay; no dropout; 100 epochs. Results
are averages of 5 runs with random initializations.

different ways: random rotation+scale+translation (RTS);
random CPAB transformation+translation (CPAB). This is
akin to an experiment from [27], except here we also con-
sider CPAB transformations. Thus, we have designed the
RTS dataset to match the ST-Affine layer and the CPAB
dataset to match the ST-CPAB layer. Additionally, we also
tested the effect of modeling the localization network as
either a fully-connected network (FCN) or a CNN. Fig-
ure 5 shows 3 samples from each of the distorted datasets,
after being transformed by the networks. Table 2 shows
classification accuracy attained by the models. The best-
performing model for both datasets is the CNN that has both
an affine and a CPAB layer. This is supported by the figure,
which shows that samples for this model are fully centered
and zoomed in, making them easier to classify. The second-
best model in the RTS case is the ST-Affine CNN and for the
CPAB dataset it is the ST-CPAB CNN; this is unsurprising
as we have tailored the datasets to fit the different transfor-
mations. This result also suggests there is no single trans-
former model that will be best for all datasets. The transfor-
mations learned by the ST-Affine CNN and ST-CPAB CNN
have a similar effect on the images, since they either zoom
in on the digits or expand them. The fact that the trans-
former models outperformed the no-transformer suggests it
is usually beneficial to allocate some parameters to the lo-
calization network, thus getting “optimized” samples before
the classification network, as opposed to using a slightly
larger network with no ST layers.

We additionally find that networks whose localization
net uses conv-layers (as opposed to FC-layers) perform con-
sistently better, in agreement with similar findings in [27].
In other words, the localization nets utilize spatial informa-
tion in the images to predict better transformations.

A current disadvantage of the proposed layers is the
longer computation time during training. Although we
achieve low computation time per transformation in com-
parison with other (unrelated-to-deep-learning) implemen-

Model RTS MNIST dataset CPAB MNIST dataset

Original

ST-
Affine

ST-
CPAB

ST-
Affine+
CPAB

Figure 5: Examples of samples from the generated dis-
torted MNIST datasets, using the different models, right be-
fore they are fed into the feature-extraction layer.

tations of diffeomorphisms (including [17, 18]), it is still
higher than for an affine spatial transformer. This is due to
the added complexity of the transformation. That said, once
the training stage is over, the prediction of new samples is
only 5% slower than competing models.

5.2. MNIST, Fashion MNIST and CIFAR

The second experiment set was performed on the original
MNIST dataset, the Fashion MNIST [59] dataset, and the
CIFAR10 and CIFAR100 datasets. Table 3 summarizes the
results, and a deformed sample from each dataset is shown
in Fig. 7. For the MNIST dataset we observe an improve-
ment using transformer layers, which can be explained by
the zooming/expanding effect we observed earlier.

For the Fashion MNIST dataset, however, we see a small
drop in accuracy. By visual inspection, the objects are al-
ready in focus, and it is therefore unnecessary to transform
the samples; i.e., this is not the right choice of model for
this dataset, since we are “wasting” parameters in the local-
ization network on predicting the identity transformation.
We experimented with increasing the number of parameters
in the classification network of the ST-CPAB model to the
same number as the no-transformer model, and we find that
the performance is the same as that of the no-transformer
network. In other words, the ST-layers did not hurt the per-
formance. Figure 7 also shows that the transformation mod-
els can introduce interpolation artifacts. This effect, which
might remove key features (e.g., see the Nike logo), is par-
ticularly present in the ST-Affine+CPAB model, as the im-
age was interpolated twice. This suggests that images must
have a certain minimal resolution when using ST-layers.

In both the CIFAR experiments, we observe a small per-
formance gain due to the ST-layers. In these datasets, some
objects are in focus while some are not. The ST-layers ap-
ply transformations that zoom in on the objects not in focus.



Model Dataset
MNIST Fashion MNIST

No transformer 0.991 0.922
ST-Affine 0.993 0.919
ST-AffineDiff 0.994 0.920
ST-Homography 0.993 0.919
ST-TPS 0.996 0.918
ST-CPAB 0.994 0.917
ST-Affine+CPAB 0.996 0.913

CIFAR10 CIFAR100
No transformer 0.870 0.642
ST-Affine 0.891 0.653
ST-AffineDiff 0.892 0.654
ST-Homography 0.891 0.653
ST-TPS 0.893 0.656
ST-CPAB 0.895 0.659
ST-Affine+CPAB 0.889 0.652

LFW CelebA
No transformer 0.788 0.712
ST-Affine 0.840 0.734
ST-AffineDiff 0.842 0.740
ST-Homography 0.843 0.742
ST-TPS 0.851 0.751
ST-CPAB 0.878 0.756
ST-Affine+CPAB 0.893 0.772

Table 3: Classification performance of the CNN mod-
els trained, with or without transformations layers, on the
datasets from Table 1. All models were trained using the
same settings: (batch size 100; learning rate 0.0001; Adam
optimizer; no weight decay; no dropout). For different
datasets we used different numbers of epochs, but on each
dataset, the number of epochs was the same for all models.

Both the CPAB and the affine ST-layers have learned similar
transformations. Again we observe the interpolation issue:
it is not beneficial to use the Affine+CPAB model, since the
image gets over-smoothed.

5.3. Restricted LFW and CelebA

The results of the previous experiments suggest that in
a more challenging dataset, which also has higher resolu-
tion, we are likely to see a more substantial gain from us-
ing advanced transformations. The next experiment set was
therefore performed on two facial datasets, each with dif-
ferent tasks. For the relatively-small Labeled-Face-in-the-
Wild (LFW) dataset [24], we trained a Siamese network [9]
for face verification (binary classification task). We here
worked in the “restricted” setting of the LFW dataset, where
our findings were based on the mean accuracy in the “View

2” ten splits (cf . [24] for details). Next, we worked with
the large CelebA dataset where we predicted 40 binary at-
tributes (big nose, male, smiling, wearing hat, etc.) based on
facial images. Table 3 shows the results. We observe a clear
difference between the different models. The results can
be explained by looking at some deformed examples, see
Figs. 1 and 7: the ST-layers zoom in on the important part
of the face. The CPAB model does an additional “squarifi-
cation” of the face removing unimportant information in the
corners of the image. The combined Affine+CPAB model
inherits the effect of both layers, first an initial zooming of
the affine layer and then a squarification of the face, such
that only important facial features are preserved. The high
resolution of the images prevents over-smoothing.

Figures 6a and 6b show training and test accuracy for the
LFW experiments. Inspecting the curves, the model with
the highest training accuracy achieves the lowest test ac-
curacy and vice versa. The transformer models take more
epochs to train, but eventually outperform the others.

By inspection of the deformed images, the learned trans-
formations are similar for all input samples. This can be
explained by the limited size of the localization network (2
conv-layers followed by 1 FC-layer), which restricts the di-
versity of the transformations that the localization network
can predict. We have investigated this behaviour for the
LFW dataset, using Principal Component Analysis of the
predicted θ values on the test set. In Fig. 6c we have plot-
ted variations of the two leading principal components. We
see that these mainly contribute a vertical and a horizontal
translation of the faces. Thus, the features that the local-
ization network is extracting from the images are used to
determine the center of the face in the image, which the
transformation then zooms in on.

5.4. Unrestricted LFW

In all the experiments until now, in order to get a
clear picture of the different performances obtained by
the different models, we have intentionally avoided using
commonly-used deep-learning tricks (e.g.: data augmenta-
tion; dropout). In our last experiment, however, we took ad-
vantage of such tricks to train a deeper network on the LFW
dataset in the unrestricted setting. In this setting we know
the identity of each image, thus we could form new pairs.
We formed 50K positive pairs and 50K negative pairs, and
by using data augmentation of each sample (random rotate,
translate, flip left-right) we generated a total of 400K train-
ing samples. We compared our results to the state-of-the-art
in the “unrestricted-label free outside data” category, which
is the closest to our setting. We match state-of-the-art re-
sults from Ding et al. [13], who use a manually-designed
facial image descriptor, on which they train two different
classifiers, combined with a linear SVM. In other words, our
proposed end-to-end learning model obtains similar perfor-



Figure 6: Training (A) and test (B) accuracy for the LFW experiments. While the transformer nets are slower to converge
than the no-transformer net, they eventually reach better performance. (C) PCA of predicted θ values from the localization
network. By varying PC 1 and 2, we observe that these capture mainly horizontal and vertical translation of the transforma-
tions. This corresponds to the small variations in the facial center of the people in the LFW dataset.

Test acc. µ̂± SE
CNN (no transformer) 0.8930± 0.0028
ST-Affine 0.9129± 0.0032
ST-AffineDiff 0.9145± 0.0029
ST-Homography 0.9139± 0.0031
ST-TPS 0.9218± 0.0032
ST-CPAB 0.9368± 0.0035
ST-Affine+CPAB 0.9543± 0.0046
Ding et al. [13] 0.9558± 0.0034
Zhu et al. [65] 0.9525± 0.0036

Table 4: Results in the unrestricted LFW setting.

mance to their customized feature-engineered model. We
match another customized method, from Zhu et al. [64],
that uses a 3D pose and expression model trained on out-
side data to transform the input images. We achieve slightly
better performance using a simple learned 2D transforma-
tion as part of a simple deep-learning pipeline.

6. Conclusion
We have shown that highly-expressive diffeomorphisms

are both useful and practical in deep-learning pipelines;
particularly, we have shown that extending the traditional
ST-layers [27] to support diffeomorphic CPAB transfor-
mations [17, 18] leads to performance gains on estab-
lished benchmarks and matches state-of-the-art on the (un-
restricted) LFW dataset. Notably, our generic 2D transfor-
mations outperform transformations driven by nontrivial 3D
face models on the LFW dataset. The learned transforma-
tions are interpretable and suggest that in facial image anal-
ysis, a simple image “squarification” can improve perfor-
mance. We also find that diffeomorphism have good op-
timization properties, e.g. diffeomomorphic affine transfor-
mations lead to more robust optimization and better empir-
ical performance than more general affine transformations.
As using diffeomorphic affine transformations is easy, there
is little reason to consider non-diffeomorphic ones. Our

Affine+CPAB

Fashion
MNIST

CIFAR

LFW

CelebA

Original Affine CPAB

Figure 7: Examples of learned transformations for the dif-
ferent models on the different datasets. For more trans-
formed samples, see [12].

public code1 is easy to use within standard deep-learning
software: only two lines of additional code are needed to
extend an existing model. The proposed models can be ex-
tended in several way. First, while we have focused on 2D,
CPAB transformations are also applicable in, e.g., 1D and
3D. Second, the ST-layers may be inserted in different loca-
tions in the network, not just after the input. Finally, it may
be fruitful to consider multiple ST-layers acting in parallel
to allow for multiple prototype transformations.
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