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Abstract
Stability guarantees are crucial when ensuring that a fully autonomous robot does not take undesirable or potentially
harmful actions. We recently proposed the Neural Contractive Dynamical Systems (NCDS), which is a neural network
architecture that guarantees contractive stability. With this, learning-from-demonstrations approaches can trivially provide
stability guarantees. However, our early work left several unanswered questions, which we here address. Beyond
providing an in-depth explanation of NCDS, this paper extends the framework with more careful regularization, a
conditional variant of the framework for handling multiple tasks, and an uncertainty-driven approach to latent obstacle
avoidance. Experiments verify that the developed system has the flexibility of ordinary neural networks while providing
the stability guarantees needed for autonomous robotics.
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1 Introduction
Autonomous robotic systems require stability guarantees to
ensure safe and reliable operation, especially in dynamic
and unpredictable environments. Manually designed robot
movements can achieve such stability guarantees, but even
skilled engineers struggle to hand-code highly dynamic
motions (Billard et al. 2016). In contrast, learning robot
skills from human demonstrations is an efficient and intuitive
approach for encoding highly dynamic motions into a robot’s
repertoire (Schaal et al. 2003). Unfortunately, learning-based
approaches often struggle to ensure stability as they rely on
the machine learning model to extrapolate in a controlled
manner. In particular, controlling the extrapolation behavior
of neural networks has proven challenging (Xu et al. 2021),
which hampers stability guarantees.

Many tasks require the robot to dynamically follow desired
trajectories, e.g. in flexible manufacturing, human-robot inter-
action, or entertainment settings. In these cases, asymptotic
stability, which guarantees stability only with respect to a
fixed point (Rana et al. 2020a; Khansari-Zadeh and Billard
2011; Zhang et al. 2022), is insufficient, demanding a more
general stability concept. Contraction theory (Lohmiller
and Slotine 1998; Bullo 2024) is particularly well-suited, as
it ensures that all path integrals, regardless of their initial
state, incrementally converge over time. Unfortunately,
the mathematical requirements of a contractive system are
difficult to ensure in popular neural network architectures.

To address this problem, our previous work introduced
Neural Contractive Dynamical Systems (NCDS, Beik-
Mohammadi et al. (2024)), a neural network architecture
designed to ensure contractive behavior across all parameter
values. This model enables robots to maintain stability even
when subjected to external perturbations. The original NCDS
(“vanilla NCDS”) framework provides a solid foundation

for learning complex contractive dynamical systems. Still,
there remains potential for further refinement, particularly
in formulating the Jacobian of the learned system dynamics,
which is crucial for stability and generalization capabilities.
Vanilla NCDS employs a symmetric Jacobian with a
constant regularization term to enforce contraction (Lohmiller
and Slotine 1998; Jouffroy and I. Fossen 2010). While
effective, this approach left room for exploring how different
regularization methods and Jacobian formulations could
enhance the model’s performance both within and beyond
the data support region.

The vanilla NCDS framework learns high-dimensional
dynamics via a low-dimensional contractive latent space.
However, it performs all obstacle avoidance computations in
the ambient (high-dimensional) space, which may be compu-
tationally intensive. To the best of our knowledge, no existing
method for learning dynamical systems can simultaneously
learn contractive stable dynamics while also performing
obstacle avoidance in the latent space. To achieve this, we
extend the work of Beik-Mohammadi et al. (2023), and
leverage a Riemannian pullback metric, derived from a VAE
injective decoder, to lift the obstacle avoidance problem to
the latent space. This ensures the avoidance of unsafe regions
outside of data support. On the multi-task front, the vanilla
NCDS framework, like most methods that learn contractive
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Figure 1. Robot motion generated for a grasping skill using a
Conditional Neural Contractive Dynamical System (CNCDS). The
robot motion is conditioned on an input image of the object placed
on a desk. CNCDS also learns a Riemannian manifold from
demonstrations, representing a safety region to navigate through.

dynamical systems (Tsukamoto and Chung 2021a; Dawson
et al. 2023; Jaffe et al. 2024), was designed to learn a single
skill. Although this may suffice for certain tasks, a more
general approach would involve enabling the learning of
multiple skills within the same contractive dynamical system.
This reduces not only the use of computational resources but
also the need to train separate models for each skill.

In this paper, we introduce several advancements to the
vanilla NCDS aimed at improving the model’s flexibility
and robustness. Our first contribution focuses on the
regularization of the Jacobian of the learned system dynamics.
We investigate various unexplored strategies, including state-
independent and state-dependent regularization vectors, as
well as eigenvalue-based approach. These methods aim to
fine-tune the contraction properties of the system, leading to
more robust generalization and faster convergence within the
data region. Our second contribution explores the potential
benefits of introducing asymmetry into the system Jacobian
matrix by incorporating both symmetric and skew-symmetric
components. This asymmetry aims at increasing the model’s
flexibility, allowing it to capture more complex dynamical
behaviors (Jaffe et al. 2024). This investigation builds on the
understanding that, while symmetry in the Jacobian provides
certain stability benefits, asymmetry could offer more nuanced
control over the system’s dynamics, particularly relevant in
complex dynamic skills. Our third contribution, “conditional
NCDS” (CNCDS), extends the model to handle multiple
motion skills by conditioning on task-related variables such
as target states. This conditional framework allows a single
NCDS module to adapt to varying task conditions, broadening
its applicability in more complex, multimodal robotic tasks.
Finally, our fourth contribution extends NCDS with latent
obstacle avoidance capabilities. Our approach, inspired by
modulation matrix techniques, allows the system to navigate
around dynamic obstacles while maintaining contractive
stability (Huber et al. 2022, 2019).

We frame obstacle avoidance from a Riemannian
perspective and define safety regions in the latent space
through Riemannian pullback metrics (Beik-Mohammadi
et al. 2023). This designates both obstacles and out-of-data-
support regions as unsafe.

2 Learning contractive vector fields
In this section, we revisit the neural contractive dynamical
system (NCDS) method introduced by Beik-Mohammadi
et al. (2024). Later, we explain how NCDS can be improved
through the introduction of a new data-driven regularization
technique and modifications to the symmetry of its Jacobian
formulation. Our main goal is to design a flexible neural
architecture that is guaranteed to always output a contractive
vector field. First, we introduce contraction theory as it is
prerequisite to our design.

2.1 Background: contractive dynamical
systems

Assume an autonomous dynamical system ẋt = f(xt),
where xt ∈ RD is the state variable, f : RD → RD is a C1

function, and ẋt = dx/dt denotes temporal differentiation.
As depicted in Fig. 3, contraction stability guarantees that
all solution trajectories of a nonlinear system f incrementally
converge regardless of initial conditions x0, ẋ0, and
temporary perturbations (Lohmiller and Slotine 1998). The
system stability can, thus, be analyzed differentially, i.e. we
can ask if two nearby trajectories converge to one another.
Specifically, contraction theory defines a measure of distance
between neighboring trajectories, known as the contraction
metric, under which the distance decreases exponentially over
time (Jouffroy and I. Fossen 2010; Tsukamoto et al. 2021).

Formally, an autonomous dynamical system yields the
differential relation δẋ = J(x)δx, where J(x) = ∂f/∂x is
the system Jacobian and δx is a virtual displacement (i.e.,
an infinitesimal spatial displacement between the nearby
trajectories at a fixed time). Note that we have dropped the
time index t to limit notational clutter. The rate of change of
the corresponding infinitesimal squared distance δxTδx is

d

dt
(δxTδx) = 2δxTδẋ = 2δxTJ(x)δx. (1)

It follows that if the symmetric part of the Jacobian J(x)
is negative definite, then the infinitesimal squared distance
δxTδx between neighboring trajectories decreases over time.
This is formalized as follows.

Definition 1. Contraction stability (Lohmiller and Slotine
1998). An autonomous dynamical system ẋ = f(x) exhibits
a contractive behavior if its Jacobian J(x) = ∂f/∂x is
uniformly negative definite, or equivalently if its symmetric
part is negative definite. This means that there exists
a constant τ > 0 such that δxTδx converges to zero
exponentially at rate 2τ , i.e., ∥δx∥ ≤ e−τt∥δx0∥. This can
be summarized as,

∃ τ > 0 s.t. ∀x,
1

2

(
J(x) + J(x)T

)
≺ −τI ≺ 0. (2)

The above analysis can be generalized to account for a more
general notion of distance of the form δxTM(x)δx, where
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Figure 2. The effect of eigenvalue differences and asymmetry of the Jacobian on the contraction behavior of the vector field. Left : In
a contractive dynamical system with a symmetric Jacobian, when the eigenvalues are equal, the system contracts uniformly in all
directions. Middle: In a contractive dynamical system with a symmetric Jacobian, when the eigenvalues are different, the system
contracts more rapidly in the direction associated with the larger eigenvalue. Right : An example of a contractive dynamical system
with an asymmetric Jacobian.

M(x) is a positive-definite matrix known as the Riemannian
contraction metric (Tsukamoto et al. 2021; Dawson et al.
2023). In our work, we learn a dynamical system f so that
it is inherently contractive since its Jacobian J(x) fulfills
the condition given in equation 2. Consequently, it is not
necessary to separately learn a contraction metric as an
identity matrix suffices.

2.2 Neural contractive dynamical systems
From Definition 1, we seek a flexible neural network
architecture, such that the symmetric part of its Jacobian
is negative definite. We consider the dynamical system
ẋ = f(x), where x ∈ RD denotes the system’s state
and f : RD → RD is a neural network. Note that it is not
trivial to impose a negative definiteness constraint on a
network’s Jacobian without compromising its expressiveness.
To overcome this challenge, we first design a neural network
Ĵf representing directly the Jacobian of our final network.
This produces matrix-valued negative definite outputs. The
final neural network, parametrizing fθ, will then be formed
by integrating the Jacobian network.

Specifically, we define the Jacobian as,

Ĵf (x) = −(Jθ(x)
TJθ(x) + ϵ ID), (3)

where Jθ : RD → RD×D is a neural network parameterized
by θ, ϵ ∈ R+ is a small positive constant, and ID is an identity
matrix of size D. Intuitively, Jθ can be interpreted as the
(approximate) square root of Ĵf . Clearly, Ĵf is negative
definite as all eigenvalues are bounded from above by −ϵ.

Next, we take inspiration from Lorraine and Hossain (2019)
and integrate Ĵf to produce a function f , which is implicitly
parametrized by θ, and has Jacobian Ĵf . The fundamental
theorem of calculus for line integrals tells us that we can
construct such a function by a line integral,

ẋ = f(x) = ẋ0 +

∫ 1

0

Ĵf (c (x, t,x0)) ċ(x, t,x0)dt, (4)

with c(x, t,x0) = (1− t)x0 + tx,

ċ(x, t,x0) = x− x0,

where x0 and ẋ0 = f(x0) represent the initial conditions
of the state variable and its first-order time derivative,

Figure 3. The learned
vector field (grey) and
demonstrations (black).
Yellow and green
trajectories show path
integrals starting from
demonstration starting
points and random
points, respectively.

respectively. The input point x0 can be chosen arbitrarily
(e.g. as the mean of the training data or it can be learned),
while the corresponding function value ẋ0 has to be estimated
along with the parameters θ. Therefore, given a set of
demonstrations denoted as D = {xi, ẋi}, our objective is
to learn a set of parameters θ along with the initial conditions
x0 and ẋ0, such that the integration in equation 4 enables
accurate reconstruction of the velocities ẋi given the state xi.
This is achieved through the velocity reconstruction loss,

Lvel =
1

N

N∑
i=1

∥∥∥ẋi − ˆ̇xi

∥∥∥2 , (5)

where ẋi denotes the demonstrated velocity, ˆ̇xi is the
predicted velocity, andN represents the number of data points.
This process is shown in block B of the architecture in Fig. 10.

Note that the integral in equation 4 resembles the neural
ordinary differential equations (Chen et al. 2018b), with
the subtle difference that it is a second-order equation as
the outcome pertains to the velocity at state x. We can,
thus, view this system as a second-order neural ordinary
equation (Norcliffe et al. 2021) and solve it using off-the-
shelf numerical integrators. The resulting function fθ will
have a negative definite Jacobian for any choice of θ and is
consequently contractive by construction. In other words, we
can control the extrapolation behavior of the neural network
that parameterizes our dynamical system f via the negative-
definiteness of Ĵf (x).
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(a) Constant regularization (b) State-independent regularization (c) State-dependent regularization (d) eigenvalue regularization

Figure 4. Comparison of 2D vector fields learned by using the following regularization approaches: (a): constant regularization, (b):
state-independent regularization vector using basic optimization, (c): state-dependent regularization vector utilizing neural network,
and (d): eigenvalue regularization.

We call this the neural contractive dynamical system
(NCDS), first introduced in our previous work (Beik-
Mohammadi et al. 2024). This approach offers two key
benefits: (1) it allows the use of any smooth neural network Jθ

as the base model, and (2) training can be performed with ordi-
nary unconstrained optimization, unlike previous approaches.

Figure 3 shows an example vector field learned by NCDS,
which is clearly highly flexible while still providing global
contractive stability guarantees.

With the introduction of NCDS, we propose two ways to
improve it by focusing on the formulation of the Jacobian
Ĵf (x), as it is the key element that influences the behavior
of the system. The formulation of the Jacobian in equation 3
is characterized by two main components: the symmetric
matrix Jθ(x)

TJθ(x), and the regularization term ϵ ID. Each
of these components is crucial in determining the behavior
of the model on the data support, and more importantly, its
ability to generalize outside of it.

Although NCDS (Beik-Mohammadi et al. 2024) demon-
strated significant potential in learning complex contractive
dynamical systems, there remains an opportunity to further
explore the individual impact of each component. In the
following two sections, we will explore the effects of
these elements and propose improvements to enhance their
performance. From this point forward, we will refer to the
NCDS formulated with equations 3 and 4 as vanilla NCDS.

2.2.1 Regularization: The primary objective of the
regularization term ϵ is to ensure that the Jacobian matrix
Ĵf associated with NCDS is not semi-definite, thus breaking
the contraction guarantees. Notice that the eigenvalues of
the symmetric part of the Jacobian indicate how the system
contracts or expands along different eigenvectors. Moreover,
the contraction rate of a system is determined by its eigenvalue
closest to zero (i.e., the largest eigenvalue as all eigenvalues

are negative), representing the minimum rate of convergence
that the system exhibits along any direction. In vanilla
NCDS, the regularization method, here referred to as constant
regularization, adds a small constant to the diagonal terms of
the Jacobian JT

θ Jθ. Therefore, the final learned eigenvalues
are influenced by both the neural network parameters and the
applied regularization. Moreover, it indirectly determines the
system’s contraction rate by providing an upper bound on the
eigenvalues. Note that when these eigenvalues are identical,
the system can only represent a fixed point in space rather than
a trajectory (Fig. 2–left). Even under the former condition, the
system remains contractive. Interestingly, by increasing the
disparity between the eigenvalues, the system converge more
rapidly along certain axes (Fig. 2–middle).

Formally, let Ĵf denote the Jacobian matrix with
eigenvalues λ1, λ2, . . . , λD. We can obtain different
contractive behaviors as a function of λi, as follows: (1) When
λ1 = λ2 = . . . = λD, the system contracts uniformly in all
directions (see Fig. 2–left); (2) When λi > λj , the system
exhibits faster contraction along the direction associated
with the larger eigenvalue λi, and slower contraction in the
direction corresponding to the smaller eigenvalue λj . As
illustrated in Fig. 2–middle, this difference in contraction
rates leads to the characteristic curved trajectories of the
path integrals, as the system contracts more rapidly along
the eigenvector of λi and more gradually along that of λj .

Given this analysis, we propose to better control the
system’s contraction through regularization by considering
the following three approaches: (1) state-independent
regularization vector, (2) state-dependent regularization
vector, and (3) eigenvalue regularization. We also propose a
metric to assess the system’s contraction properties relative
to the demonstration region in all scenarios. This metric
quantifies the duration, in time steps, that each path integral
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Figure 5. Comparison of 2D vector fields learned with different Jacobian formulations. Left: Vector field obtained using the symmetric
Jacobian formulation. Middle: Vector field obtained using the asymmetric Jacobian formulation. The learned vector field (grey) and
demonstrations (black). Yellow and green trajectories show path integrals starting from demonstration starting points and random
points, respectively. Right: Vector field with asymmetric Jacobian learned using NCDS with symmetric Jacobian.

remained within this region. A higher count of time steps
inside the region indicates that the trajectories converge faster,
thus suggesting a stronger contraction. We now proceed to
explain these different regularization approaches for NCDS.

Regularization vector: Here we treat ϵ ∈ RD as a vector
rather than a constant. Consequently, the Jacobian is
reformulated as follows,

Ĵf (x) = −(Jθ(x)
TJθ(x) + diag(ϵ)). (6)

We propose two distinct methods to learn the vector ϵ.
State-independent: In this method, ϵ is assumed to be

independent of the system’s state x. The vector ϵ is learned
by minimizing the following loss function,

Lϵ = −β
D∑
n=2

|ϵ1 − ϵn|2 , (7)

where β is a weight, and ϵ1, . . . , ϵD are elements of the
regularization vector ϵ. Thus, the overall loss is defined as
Ltotal = Lvel + Lϵ. Figure 4–b shows a contractive dynamical
system employing this method. The path integrals suggest
that the system exhibits higher contraction when compared to
the naive constant regularization shown in Fig. 4–a. This is
quantitatively supported by the contraction measure statistics
reported in Fig. 7, showing that the trajectories converge
approximately 276% faster towards the data support.

State-dependent: In this approach, the regularization
vector ϵ = g(x) is computed as a function of the state x using
a neural network gδ(x) : RD → RD with parameters δ. The
parameters δ are learned via back propagation, which aims
at minimizing the loss introduced in equation 7. Figure 4–
c shows a contractive dynamical system using this state-
dependent method, exhibiting faster trajectory convergence
compared to the naive constant regularization (Fig. 4–a).
Figure 7 shows that trajectories converge approximately 100%
faster towards the data support. However, we noticed that the
neural networks gδ might produce very small regularization
vectors, potentially generating spurious attractors.

Eigenvalue regularization: Consider the Jacobian matrix
Ĵf associated with the dynamical system f , whose eigenvalue
decomposition is given by Ĵf = V ΛV −1, where V is the
matrix of eigenvectors of Ĵf , and Λ is the diagonal matrix
of eigenvalues, Λ = diag(λ1, λ2, . . . , λD). To incorporate

regularization directly on the eigenvalues, we can use the
same loss as in equation 7, with the difference that we
manipulate the eigenvalues directly. For example, a simple
loss encouraging the deviation of eigenvalues from a chosen
eigenvalue λi is,

Lϵ = −β
D∑
n=1

|λi − λn|2 , (8)

where β is a weight, and the final loss includes both the
velocity reconstruction loss and the regularization loss. Note
that the main limitation of this approach is its computational
cost due to the need to backpropagate through the eigenvalue
decomposition. Figure 4–d illustrates the impact of this
method on the system’s contraction, showing relatively
modest gains on the convergence of trajectories compared to
the naive constant regularization approach depicted in Fig. 4–
a. This is evident from the contraction measure statistics
reported in Fig. 7, showing that trajectories converge only
13% faster towards the data support.

In conclusion, as regularization techniques become more
complex, predicting their impact on the system’s ability to
generalize beyond the training data becomes increasingly
challenging. The results in Fig. 4 suggest that the vector-
value state-independent method provides a better contractive
behavior toward the demonstration region and generalization
outside of the data support. Also, the computational cost of
this approach is lower than the alternatives as it does not rely
on a neural network or an eigen-decomposition operation.

Next, we turn our attention to the other key component
of equation 3, namely the symmetric matrix Jθ(x)

TJθ(x).
Our objective is to explore the effects of modifying the
Jacobian from its symmetric form to an asymmetric one,
with a particular focus on understanding how the introduction
of a skew-symmetric component impacts the generalization
behavior of the contractive dynamical system.

2.2.2 Asymmetry of the Jacobian : Vanilla NCDS builds
on a symmetric Jacobian, as formulated in equation 3.
However, it is important to note that for a dynamical
system to be contractive, its Jacobian does not need to be
symmetric (Jaffe et al. 2024). As Jaffe et al. (2024) discuss, a
simple form of a contractive vector field with an asymmetric
Jacobian can be expressed as the following linear system:
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Figure 6. Comparison between asymmetric and symmetric Jacobians in learning contractive dynamical systems. Left: Generalization
behavior of a system with a symmetric Jacobian, visualized using path integrals originating from a 10× 10 equidistant grid. The
yellow region represents the demonstration area, with black curves denoting the demonstrations. Black dots indicate the initial points
of the path integrals, while blue curves illustrate the resulting trajectories. Middle: Generalization behavior of a system with an
asymmetric Jacobian. Pink curves represent the path integrals. Right: Comparison of the number of frames each path integral spent
within the demonstration region. A higher number indicates a path integral more likely converged to the demonstrations, therefore,
better contractive behavior.
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Figure 7. The distribution of the duration, in time steps, that
each path integral remained within the demonstration region
across four different regularization methods: Constant, State
Independent, State Dependent, and Eigenvalue Regularization.
A higher count of time steps inside the region indicates that
trajectories likely converge faster and exhibit stronger contraction
properties. Individual data points are represented by black dots.

ẋ = Ax with A =

(
−1 4
0 −1

)
. The vector field produced

by this system is shown in Fig. 2–right.
Therefore, we can enhance the NCDS flexibility by

reformulating the system’s Jacobian to incorporate both a
symmetric and a skew-symmetric component. This can be
achieved by parameterizing the Jacobian using two separate
neural networks: one generating the symmetric Jacobian,
denoted as Jθ, and the other generating the skew-symmetric
Jacobian, denoted as Jϕ. The combined Jacobian is then

Ĵθ,ϕ(x) = Ĵθ(x) + Ĵϕ(x), (9)

where the skew-symmetric matrix Ĵϕ(x) is given by,

Ĵϕ(x) =

 0 −Jϕ,0(x) Jϕ,1(x)
Jϕ,0(x) 0 −Jϕ,2(x)
−Jϕ,1(x) Jϕ,2(x) 0

 . (10)

Here, Jϕ(x) is parameterized by a neural network
that outputs the three independent components
[Jϕ,0(x),Jϕ,1(x),Jϕ,2(x)] of the skew-symmetric matrix.
While this reformulation can enhance the expressiveness
and flexibility of NCDS, it is essential to assess its impact
on the generalization behavior of the learned vector field.
Specifically, Fig. 5–middle illustrates the behavior of a
learned contractive dynamical system with an asymmetric
Jacobian, Ĵθ,ϕ(x), as described in equation 9. This is
compared to the learned contractive vector field shown
in Fig. 5–left, which has only a symmetric Jacobian, as
described in equation 3. In these plots, the arrows indicate
path integrals that originate from one of the initial points
in the demonstrations. For the system with an asymmetric
Jacobian (Fig. 5–middle), the path integral diverges from
the data support, effectively taking a shortcut. In contrast,
the path integral for the system with a symmetric Jacobian
(Fig. 5–left) closely follows the data trend and remains
within the data region. The red rectangles emphasize an
area far from the data, requiring network generalization. In
the asymmetric Jacobian case (Fig. 5–middle), the system
initially diverges the path integrals before redirecting them
back to the target. Conversely, the system with the symmetric
Jacobian (Fig. 5–left) guides the path integrals directly
towards the data region without diverging first.

To further analyze the contraction and generalization
behavior of NCDS under both conditions, we computed
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(a) Reproduce angle trajectory (b) Reproduce line trajectory (c) Reach point A (d) Reach point B

Figure 8. CNCDS on 2D trajectories from the LASA handwriting dataset. Plots (a) and (b) show CNCDS conditioned on the trajectory
shape. Plots (c) and (d) display conditioning on the trajectory target, where the conditional value is chosen to be 0 and 1, respectively.

multiple path integrals starting from an equidistant grid
around the demonstration trajectories. As shown in Fig. 6–left
and 6–middle, the yellow region defines the area where the
demonstrations, depicted as black curves, reside. Figures 6–
left and 6–middle display all the path integrals generated by
NCDS with symmetric and asymmetric Jacobians, respec-
tively. Figure 6–right shows the number of time steps spent
inside the demonstration region. As illustrated, the path
integrals with symmetric Jacobians spend more time within
this region, i.e. the trajectories reached the data support faster,
suggesting a more effective contractive behavior. It should be
noted that both results in Fig. 5 and Fig. 6 are obtained using
the state-independent regularization vector, with the only dis-
tinction being the symmetry properties of the Jacobian matrix.

We argue that the superior performance of NCDS with a
symmetric Jacobian is due to its ability to locally approximate
the behavior of dynamical systems that have a non-symmetric
Jacobian. This is shown in Fig. 5–right, where NCDS with a
symmetric Jacobian successfully learns the dynamics of an
asymmetric system, shown in Fig. 2–right.

In conclusion, although a model with an asymmetric
Jacobian could theoretically learn a broader range of
contractive dynamical systems, our preliminary results
presented in Fig. 5 and Fig. 6 did not show any significant
improvement in reconstruction accuracy or generalization
performance. Moreover, empirical investigations presented
in the results sections, including both the LASA dataset
(Sec. 4.1) and the robotic and human motion results (Sec. 4.3),
have not identified any dynamical systems where the
symmetric Jacobian approach failed to effectively capture
and learn the underlying dynamics.

Having completed our discussion on improving the Jaco-
bian formulation in equation 3, we now shift focus to
investigating the ability of a single NCDS module to learn and
represent multiple contractive vector fields, each correspond-
ing to a conditional value such as trajectory targets or shapes.

2.3 Conditional NCDS
Although NCDS has the ability to generate contractive
vector fields for executing complex skills, it lacks the
ability to handle multiple motion skills, which may be
achieved by conditioning on task-related variables such
as target states. In this context, other methods that
leverage contraction stability often depend heavily on rigid
optimization processes, which limits their adaptability when

confronted with varying conditional values. These methods
typically require either finding a new contraction metric
each time the condition changes—likely by considering
new constraints for optimization (Tsukamoto and Chung
2021b)—or, in other cases, generating a contraction metric
for every condition when using Neural Contraction Metrics
(NCMs) (Tsukamoto and Chung 2021a). Although Jaffe et al.
(2024) introduced a contraction method that dynamically
adapts to a varying target, due to the extended linearization
used to parametrize the vector field, it does not consider
other types of conditioning task variables, e.g., variations in
trajectory shape or switching between multiple target points.
Here, we present the concept of conditional NCDS (CNCDS),
which extends the vanilla NCDS with the ability of learning
multimodal tasks, which depend on context variables such as
variable targets, using a single NCDS module.

The conditional variable can account for changes in the
task conditions and further expand the NCDS architecture
to integrate perception systems such as a vision perception
backbone. To do so, first we introduce a new condition
variable ϖ in the formulation. This variable is concatenated
to the state vector x so that CNCDS retrieves a velocity vector
ẋ as a function of the state and the task condition. Therefore,
we can reformulate equation 3 as,

Ĵf ([x,ϖ]) = −(Jθ([x,ϖ])TJθ([x,ϖ])+diag(ϵ)). (11)

Figure 8 illustrates the vector field generated by a CNCDS
trained under two distinct conditional settings: In the first,
referred to as shape conditioning, the conditional values are
0.0 for angle motion and 1.0 for line motion. In the second set-
ting, referred to as target conditioning, the condition variable
ϖ = [x∗, y∗] represents the 2D coordinates of the target.

Figure 8–a and Fig. 8–b display the vector fields resulting
from conditioning on the trajectory shape. Figure 8–a shows
the vector field when the conditional vector ϖ leads the
NCDS model to reconstruct motion characterized by the
angle motion, whereas panel Fig. 8–b displays the vector
field for the line motion. Furthermore, Fig. 8–c and Fig. 8–d
show the vector fields conditioned on the trajectory target.
The reported proof-of-concept experiments confirm that
conditional variables can be effectively incorporated into our
model, allowing a single trained CNCDS to generate motions
of different shapes based on varying conditioning inputs. In
Sec. 4.4, we show how a vision backbone can be used to
design CNCDS for image-based applications. This process
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is visualized in the block C of the architecture in Fig. 10. In
the next section, we will focus on how to equip NCDS with
obstacle avoidance capabilities using modulation matrices.

2.4 Obstacle avoidance via matrix modulation

In this section, we review the matrix modulation technique
employed by vanilla NCDS (Beik-Mohammadi et al. 2024)
for obstacle avoidance. Subsequently, in Sec. 3.4, we will
explore how this method can be extended using Riemannian
manifold learning to navigate obstacles and avoid unsafe
regions. In a dynamic environment with obstacles, a learned
contractive dynamical system should effectively adapt to and
avoid unseen obstacles, without interfering with the global
contracting behavior of the system. Vanilla NCDS is equipped
with a contraction-preserving obstacle avoidance technique
that builds on the dynamic modulation matrix G introduced
by Huber et al. (2022). This approach locally reshapes the
learned vector field in the proximity of obstacles, while
preserving contraction properties.

Specifically, Huber et al. (2022) show how to construct
a modulation matrix G from the obstacle’s location and
geometry, such that the vector field ẋ = G(x)fθ(x) is both
contractive and steers around the obstacle. Formally, given
the modulation matrix G, we can reshape the vector field

ˆ̇x = G(x)fθ(x), (12)

G(x) = E(x)D(x)E(x)−1, (13)

where E(x) and D(x) are the basis and diagonal eigenvalue
matrices computed as,

E(x) = [n(x) e1(x) . . . ed−1(x)], (14)
D(x) = diag(λn(x)λτ (x), . . . , λτ (x)), (15)

where n(x) = x−xr

∥x−xr∥ is a reference direction computed w.r.t.
a reference point xr on the obstacle, and the tangent vectors
ei form an orthonormal basis to the gradient of the distance
function Γ(x) (see (Huber et al. 2022) for its full derivation).
Moreover, the components of the matrix D are defined as

λn(x) = 1−
(

1
Γ(x)

) 1
ρ

, λτ (x) = 1 +
(

1
Γ(x)

) 1
ρ

, where ρ ∈
R+ is a reactivity factor. Note that the matrix D modulates
the dynamics along the directions of the basis defined by the
set of vectors n(x) and e(x). As stated by Huber et al. (2022),
the function Γ(·) monotonically increases w.r.t the distance
from the obstacle’s reference point xr, and it is, at least, a
C1 function. Importantly, the modulated dynamical system
ˆ̇x = G(x)fθ(x) still guarantees contractive stability, which
can be proved by following the same proof provided by Huber
et al. (2019). Figure 9 shows the application of a modulation
matrix to navigate around an obstacle in a toy example.
The obstacle, depicted as a red circle, completely obstructs
the demonstrations. Notably, vanilla NCDS successfully
generated safe trajectories by effectively avoiding the obstacle
and ultimately reaching the target.

Having introduced all the components of NCDS, we are
now prepared to explore how these concepts can be extended
by using a latent variable model to learn vector fields within
a low-dimensional latent space.

Figure 9. The obstacle locally reshapes the learned vector field
using the modulation matrix. The gray contours represent the
learned vector field, black trajectories depict the demonstrations,
and orange/green trajectories are path integrals starting from
both initial points of the demonstrations and plot corners.
Magenta and red circles indicate the initial points of the path
integrals and the obstacle, correspondingly.

3 Learning latent contractive dynamics
Learning highly nonlinear contractive dynamical systems
in high-dimensional spaces is difficult. These systems may
exhibit complex trajectories with intricate interdependencies
among the system variables, making it challenging to
capture the underlying dynamics while ensuring a contractive
behavior. In the proof-of-concept examples previously
discussed, we showed that NCDS works very well for
low-dimensional problems, but when only limited data is
available, the approach becomes brittle in higher dimensions.
A common approach in such cases is to first reduce the
data dimensionality, and work as before in the resulting low-
dimensional latent space (Chen et al. 2018a; Hung et al. 2022;
Beik-Mohammadi et al. 2021). The main challenge is that
even if the latent dynamics are contractive, the associated
high-dimensional dynamics need not be. This we solve next.
To begin with, we review the necessary background concepts.

3.1 Background: deep generative models and
Riemannian manifolds

To obtain a low-dimensional representation of the demonstra-
tion data, the vanilla NCDS leverages Variational Autoen-
coders (VAEs) to encode high-dimensional vector fields into
a low-dimensional latent space. Therefore, we will review the
background on VAEs. However, while most functionalities
of NCDS can be effectively transferred to the latent space,
obstacle avoidance remains an exception. Therefore, this
specific task still needs to be performed in the original high-
dimensional space, where the computational complexity can
negatively impact the system performance. To overcome this,
Sec. 3.4 introduces an approach that equips NCDS with an
alternative modulation formulation, enabling the transfer of
this computationally-intensive obstacle avoidance process to
the latent space, thus improving overall efficiency. We will
later demonstrate that this is achieved by leveraging VAEs and
their ability to learn Riemannian manifolds, which represent
the underlying geometrical structure of the data in the latent
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Figure 10. Architecture overview: a single iteration of NCDS simultaneously generating position and orientation dynamics. (A) VAE
(pink box): The encoder processes the concatenated position-orientation data pt, yielding a resulting vector that is subsequently
divided into two components: the latent code z (yellow squares) and the surplus (gray squares). The Unpad function in equation 29
removes the unused segment. The unpadded latent code z is fed to the contraction module and simultaneously padded with zeros
(white squares) before being passed to the injective decoder. (B) Contraction (blue box): The Jacobian network output, given the
latent codes, is reshaped into a square matrix and transformed into a negative definite matrix using equation 2. The numerical integral
solver then computes the latent velocity ż. Later, using equation 30, ż is mapped to the input-space velocity via the decoder’s Jacobian
Jµξ. (C) Vision backbone (green box): The vision backbone enhances the model by allowing it to adapt to different task conditions
through visual perception. This component processes visual inputs, which are then concatenated with the state vector x, enabling
the CNCDS to generate task-specific dynamics. (D) Riemannian modulation (yellow box): Uses learned Riemannian manifolds
in the VAE’s latent space to implicitly represent obstacles, dynamically reshaping the vector field via a modulation matrix GM(x).

space through pullback metrics. Therefore, we also introduce
the necessary background on Riemannian manifolds.

Variational auto-encoders (VAEs): VAEs are generative
models (Kingma and Welling 2014) that learn and reconstruct
data by encapsulating their density into a lower-dimensional
latent space Z . Specifically, VAEs approximate the training
data density p(x) in an ambient space X through a low-
dimensional latent variable z. For simplicity, we consider
the generative process of a Gaussian VAE defined as,

p(z) = N (z|0, Id) , z ∈ Z; (16)

pϱ(x|z) = N
(
z|µϱ(z), IDσ2

ϱ(z)
)
, x ∈ X . (17)

where µϱ : Z → X and σϱ : Z → RD+ are deep neural
networks with parameters ϱ estimating the mean and the
variance of the posterior distribution pϱ(x|z), and ID and
Id are identity matrices of size D and d, respectively. Since
the exact inference of the generative process is in general
intractable, a variational approximation of the evidence
(marginal likelihood) can be used,

LELBO = Eqξ(z|x) [log(pϱ(x|z))]
−KL (qξ(z|x)||p(z)) ,

(18)

where qξ(z|x) = N (x|µξ(x), Idσ2
ξ(x)) approximates the

posterior distribution p(z|x) by two deep neural networks
µξ(x) : X → Z and σξ(x)) : X → Rd+. The posterior
distribution pξ(z|x) is called inference or encoder
distribution, while the generative distribution pϱ(x|z) is
known as the generator or decoder. Later, we employ a
VAE to capture a low-dimensional latent representation of
the training data, which not only allows us to learn complex
high-dimensional skills in a low-dimensional space but also
enables the learning of Riemannian manifolds.

Injective flows: A limitation of VAEs is that their marginal
likelihood is intractable and we have to rely on a bound. When
dim(X ) = dim(Z), we can apply the change-of-variables
theorem to evaluate the marginal likelihood exactly, giving

rise to normalizing flows (Tabak and Turner 2013). This
requires the decoder to be diffeomorphic, i.e. a smooth
invertible function with a smooth inverse. In order to extend
this to the case where dim(X ) > dim(Z), Brehmer and
Cranmer (2020) proposed an injective flow, which implements
a zero-padding operation (see Sec. 3.2 and equation 28)
on the latent variables alongside a diffeomorphic decoder,
such that the resulting function is injective. Later, using the
diffeomorphic properties of these models, we decode the
learned contractive vector field from the latent space via the
decoder of the injective flows.

Riemannian manifolds: In differential geometry, Rieman-
nian manifolds are referred to as curved d-dimensional
continuous and differentiable surfaces characterized by a
Riemannian metric (Lee 2018). This metric is characterized
by a family of smoothly varying positive-definite inner
products acting on the tangent spaces of the manifold, which
locally resembles the Euclidean space Rd. In this paper, we
use the mapping function Ω to represent a manifold M
immersed in the ambient space X defined as,

M = Ω(Z) with Ω : Z → X , (19)

where Z and X are open subsets of Euclidean spaces with
dimZ < dimX .

An important operation on Riemannian manifolds is the
computation of the length of a smooth curve ζ : [0, 1] → Z ,

Lζ =
∫ 1

0

∥∂tΩ(ζ(t))∥dt. (20)

This length can be reformulated using the chain rule as,

Lζ =
∫ 1

0

√
ζ̇(t)TM(ζ(t))ζ̇(t)dt, (21)

where M and ζ̇t = ∂tζ are the Riemannian metric and curve
derivative, respectively. Note that the Riemannian metric
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corresponds to,

M(z) = JΩ(z)
TJΩ(z). (22)

Here, JΩ(z) is the Jacobian of the mapping function Ω. This
metric can be used to measure local distances in Z . The
shortest path on the manifold, also known as the geodesic,
can be computed given the curve length in equation 21.

Learning Riemannian manifolds with VAEs: We here
explain the link between VAEs with an injective decoder and
Riemannian geometry. It should be mentioned that learning
Riemannian manifolds is independent of the injectivity of
the decoder. However, the injection is crucial in transferring
stability guarantees from the latent space to the ambient space.
To begin, we define the VAE generative process of equation 17
as a stochastic function,

fϱ(z) = µϱ(z) + diag(ε)σϱ(z), ε ∼ N (0, ID), (23)

where µϱ(z) and σϱ(z) are decoder mean and variance neural
networks, respectively. Also, diag(·) is a diagonal matrix,
and ID is a D ×D identity matrix. The above formulation
is referred to as the reparameterization trick (Kingma and
Welling 2014), which can be interpreted as samples generated
out of a random projection of a manifold jointly spanned by
µϱ and σϱ (Eklund and Hauberg 2019).

Riemannian manifolds may arise from mapping functions
between two spaces as in equation 19. As a result, equation 23
may be seen as a stochastic version of the mapping
function of equation 19, which in turn defines a Riemannian
manifold (Hauberg 2019). We can now write the stochastic
form of the Riemannian metric of equation 22. To do
so, we first recast the stochastic function equation 23 as
follows (Eklund and Hauberg 2019),

fϕ(z) =
(
ID, diag(ε)

)(µϱ(z)
σϱ(z)

)
= P s(z), (24)

where P is a random matrix, and s(z) is the concatenation
of µϱ(z) and σϱ(z). Therefore, the VAE can be seen as a
random projection of a deterministic manifold spanned by s.
Given that this stochastic mapping function is defined by a
combination of mean µϱ(z) and variance σϱ(z), the metric
is likewise based on a mixture of both as follows,

M(z) = Jµϱ(z)
TJµϱ(z) + Jσϱ(z)

TJσϱ(z), (25)

where Jµϱ(z), Jσϱ(z), Jµϱ(z)
T, and Jσϱ(z)

T are
respectively the Jacobian of µϱ(z) and σϱ(z) and their
corresponding transpose evaluated at z ∈ Z , with Z being the
VAE low-dimensional latent space. With access to this metric,
we can reshape it to adjust the curvature of the manifold
in specific regions. This reshaping allows us to locally
increase the curvature—and therefore the metric volume—on
parts of the manifold where obstacles are located. We later
discuss how this adjusted curvature can be transformed into
a metric that aids in obstacle avoidance within the latent
space. In this study, we employ a reshaped ambient metric to
integrate obstacle information (Beik-Mohammadi et al. 2023).
Specifically, assuming that an obstacle is modeled using a
Gaussian-like function, we define the ambient metric as:

MX (x)=

(
1+w exp

(
−∥x−o∥2

2r2

))
I3, x ∈ R3, (26)

where w > 0 scales the obstacle cost, and o ∈ R3, r > 0
represent the obstacle’s position and radius, respectively. The
orientation metric is assumed to be identity. Note that we
use a Gaussian-like function to represent the obstacle here;
however, more complex representations, such as point cloud-
based meshes, can also be utilized. Then, the corresponding
Riemannian metric in the latent space is then given by,

M(z) = Jµϱ(z)
TMXJµϱ(z) + Jσϱ(z)

TMXJσϱ(z).
(27)

Note that changing the obstacle positions does not require
re-training the VAE, as this only changes the ambient metric
MX (x).

3.2 Latent NCDS
As briefly discussed above, we want to reduce the data
dimensionality with a VAE, but we further require that
any latent contractive dynamical system remains contractive
after it has been decoded into the data space. To do so, we
leverage the fact that contraction is invariant under coordinate
changes (Manchester and Slotine 2017; Kozachkov et al.
2023). This means that the transformation between the
latent and data spaces may be generally achieved through
a diffeomorphic mapping.

Theorem 1. Contraction invariance under diffeomorphisms
(Manchester and Slotine 2017). Given a contractive
dynamical system ẋ = f(x) and a diffeomorphism ψ applied
on the state x ∈ RD, the transformed system preserves
contraction under the change of coordinates y = ψ(x).
Equivalently, contraction is also guaranteed under a
differential coordinate change δy = ∂ψ

∂x δx.

Following Theorem 1, we learn a VAE with an injective
decoder µ : Z → X . Letting M = µ(Z) denote the image of
µ, then µ is a diffeomorphism between Z and M, such that
Theorem 1 applies. Geometrically, µ spans a d-dimensional
submanifold of X on which the dynamical system operates.

Here we leverage the zero-padding architecture from
Brehmer and Cranmer (2020) for the decoder. Formally,
an injective flow µ : Z → X learns an injective mapping
between a low-dimensional latent space Z and a higher-
dimensional data space X . Injectivity of the flow ensures that
there are no singular points or self-intersections in the flow,
which may compromise the stability of the system dynamics
in the data space. The injective decoder µ is composed of a
zero-padding operation on the latent variables followed by a
series of K invertible transformations ιk. This means that,

µ = ιK ◦ · · · ◦ ι1 ◦ Pad, (28)

where Pad(z) = [z1 · · · zd 0 · · · 0]T represents a D-
dimensional vector z with additional D − d zeros. We
emphasize that this decoder is an injective mapping between
Z and µ(Z) ⊂ X , such that a decoded contractive dynamical
system remains contractive.

Specifically, we propose to learn a latent data representation
using a VAE, where the decoder mean µξ follows the
architecture in equation 28. Empirically, we have found that
training stabilizes when the variational encoder takes the
form qξ(z|x) = N (z | µ∼1

ξ (x), Idσ2
ξ(x)), where µ∼1

ξ is the
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approximate inverse of µξ given by,

µ∼1
ξ = Unpad ◦ ι−1

1 ◦ · · · ◦ ι−1
K , (29)

where Unpad : RD → Rd removes the lastD−d dimensions
of its input as an approximation to the inverse of the zero-
padding operation. We emphasize that an exact inverse is not
required to evaluate a lower bound of the model evidence. This
process is visualized in block A of the architecture in Fig. 10.

It is important to note that the state x solely encodes the
positional information of the system, disregarding the velocity
ẋ. In order to decode the latent velocity ż into the data space
velocity ẋ, we exploit the Jacobian matrix associated with
the decoder mean function µξ, computed as Jµξ

(z) = ∂µξ/∂z.
This enables the decoding process formulated as below,

ẋ = Jµξ
(z)ż. (30)

The above tools let us learn a contractive dynamical system
on the latent space Z , where the contraction is guaranteed
by employing the NCDS architecture (Sec. 2.2). Then, the
latent velocities* ż given by such a contractive dynamical
system can be mapped to the data space X using equation 30.
Assuming the initial robot configuration x0 is in M (i.e.,
x0 = f(z0)), the subsequent motion follows a contractive
system along the manifold. If the initial configuration x0 is
not in M, the encoder is used to approximate a projection
onto M, producing z0 = µ∼1(x0). Note that the movement
from x0 to f(z0) need not be contractive, but this is a finite-
time motion, after which the system is contractive.

3.3 Learning position and orientation dynamics
So far, we have focused on Euclidean robot states, but in
practice, the end-effector motion also involves rotations,
which do not have an Euclidean structure. We first review the
group structure of rotation matrices and then extend NCDS to
handle non-Euclidean data using Theorem 1.

3.3.1 Orientation parameterization. Three-dimensional
spatial orientations can be represented in several ways,
including Euler angles, unit quaternions, and rotation
matrices (Shuster 1993). We focus on the latter approaches.

Rotation matrices SO(3): The set of rotation matrices
forms a Lie group, known as the special orthogonal group
SO(3) =

{
R ∈ R3×3

∣∣RTR = I,det(R) = 1
}

. Every Lie
group is associated with its Lie algebra, which represents the
tangent space at its origin (see Fig. 11–left). This Euclidean
tangent space allows us to operate with elements of the
group via their projections on the Lie algebra (Solà et al.
2018). In the context of SO(3), its Lie algebra so(3) is
the set of all 3× 3 skew-symmetric matrices [r]×. This
skew-symmetric matrix exhibits three degrees of freedom,
which can be reparameterized as a 3-dimensional vector
r = [rx, ry, rz] ∈ R3.

We can map back and forth between the Lie group SO(3)
and its associated Lie algebra so(3) using the logarithmic
and exponential maps, denoted Log : SO(3) → so(3) and
Exp : so(3) → SO(3), which are defined as follows,

Exp([r]×) = I+
sin(ζ)

ζ
[r]× +

1− cos(ζ)

ζ2
[r]2×,

Log(R) = ζ
R−RT

2 sin(ζ)
,

First  cover

Figure 11. Left : Aspects of the Lie group SO(3). Right : An
illustration of the function b(x) in two dimensions.

where ζ = arccos
(

Tr(R)−1
2

)
. Moreover, R represents the

rotation matrix, and [r]× denotes the skew-symmetric matrix
associated with the coefficient vector r. Due to wrapping
(i.e., 360◦ rotation corresponds to 0◦), the exponential
map is surjective. This implies that the inverse, i.e. Log,
is multivalued, which complicates matters. However, for
vectors r ∈ so(3), both Exp and Log are diffeomorphic if
∥r∥ < π (Falorsi et al. 2019; Urain et al. 2022). This π-
ball Bπ is known as the first cover of the Lie algebra and
corresponds to the part where no wrapping occurs.

Quaternions S3: Quaternions offer an alternative represen-
tation of rotations in 3D space and can also be endowed with
a Lie group structure, leading to the unit quaternion group
S3 =

{
q ∈ S3 ⊂ R4

∣∣ ∥q∥ = 1
}

. Like rotation matrices, the
unit quaternion group S3 is associated with a Lie algebra
su(2), which represents the tangent space at its origin and
corresponds to the set of pure imaginary quaternions, which
can be represented as 3D vectors.

A quaternion q ∈ S3 is typically expressed as q = q0 +
qxi+ qyj + qzk, where q0 is the scalar part and (qx, qy, qz)
represents the vector part. The exponential and logarithmic
maps, denoted as Exp : su(2) → S3 and Log : S3 → su(2),
provide a way to transition between the Lie group and its
algebra. These maps are defined as follows,

Exp(v) = cos

(
∥v∥
2

)
+ sin

(
∥v∥
2

)
v

∥v∥
,

Log(q) = 2 arccos(q0)
(qx, qy, qz)√
q2x + q2y + q2z

,

where v ∈ R3 is a vector representing an element in the Lie
algebra su(2), and q is a unit quaternion in S3.

Similar to rotation matrices, the exponential map for
quaternions is surjective. Quaternions, which reside on the
hypersphere S3, have special properties when restricted to
a half-sphere. In this domain, the exponential and logarithmic
maps are diffeomorphic, ensuring a one-to-one correspon-
dence between the quaternion group and its Lie algebra.

3.3.2 NCDS on Lie groups. Consider the situation where
the system state represents its orientation, i.e. x ∈ SO(3)
or alternatively x ∈ S3, whose first-order dynamics we seek
to model with a latent NCDS. From a generative point of

∗For training, the latent velocities are simply estimated by a numerical
differentiation w.r.t the latent state z.
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(a) Convex obstacle without
tangential vector field

(b) Concave obstacle without
tangential vector field

(c) Concave obstacle with left
tangential vector field

(d) Concave obstacle with right
tangential vector field

Figure 12. Modulated contractive dynamical systems using a pullback metric derived from the decoder’s Jacobian.

view, we first construct a decoder µ : Z → so(3) (or µ : Z →
su(2) for quaternions) with outputs in the corresponding Lie
algebra. We can then apply the exponential map to generate
either a rotation matrix R ∈ SO(3) or a quaternion q ∈ S3,
such that the complete decoder becomes Exp ◦µ in both cases.
Unfortunately, even if µ is injective, we cannot ensure that
Exp ◦µ is also injective (since Exp is surjective in both cases),
which then breaks the stability guarantees of NCDS.

Here we leverage the result that Exp is a diffeomorphism
as long as we restrict ourselves to the first cover of so(3) or
su(2), depending on whether we are using rotation matrices or
quaternions. Specifically, if we choose a decoder architecture
such that µ : Z → Bπ is injective and has outputs on the
first cover, then Exp ◦µ is injective, and stability is ensured
for both SO(3) and S3. To ensure that a decoder neural
network has outputs over the π-balls, we introduce a simple
layer. Let µ : Rd → RD be an injective neural network, where
injectivity is only considered over the image of f . If we add
a TanH-layer, then the output of the resulting network is
the [−1, 1]D box, i.e. tanh(h(z)) : Rd → [−1, 1]D. We can
further introduce the function,

b(x) =

{
∥x∥∞
∥x∥2

x x ̸= 0

x x = 0
,

which smoothly (and invertibly) deforms the [−1, 1]D box
into the unit ball (see Fig. 11–right). Then, the function,

h(z) = πb(tanh(µ(z))),

is injective and has the signature h : Rd → Bπ(D).
During training, the observed rotation matrices can be

mapped directly into the first cover of so(3) using the logarith-
mic map, while quaternions can be mapped into the first cover
of su(2). When the system state consists of both orientations
and positions, we simply decode to higher-dimensional
variables and apply exponential and logarithmic maps on
the appropriate dimensions for both rotation matrices SO(3)
and quaternions S3. Figure 10 illustrates the architecture
using rotation matrices for convenience, but this is simply a
design choice, as the orientation data in the preprocessing and
postprocessing stages on the far left and far right of the archi-
tecture plot can easily be adapted to represent quaternions.

The steps for training the VAE and Jacobian network are
outlined in Algorithm 1. Furthermore, the steps for employing
NCDS to control a robot are detailed in Algorithm 2. As the
algorithms show, the training of the latent NCDS is not fully

Algorithm 1: Task-Space Training Using SO(3)

Input: Data: τn = {xn,t,Rn,t}Nn=1 , t ∈ [1, Tn]
Output: Learned contractive dynamics parameters θ.

1 foreach trajectory n do
2 foreach time step t do
3 rn,t = Log(Rn,t) ▷ Extract skew-sym coeffs
4 pn,t = [xn,t, rn,t] ▷ Form new state vector
5 end
6 end
7 ξ∗ = argminξ LELBO(pn,t) ▷ Train the VAE
8 foreach trajectory n do
9 foreach time step t do

10 zn,t = µξ∗(pn,t) ▷ Encode poses
11 żn,t =

zn,t+1−zn,t

∆t ▷ Compute latent velocities
12 end
13 end
14 θ∗ = argminθ LJac(pn,t) ▷ Train Jacobian network

Algorithm 2: Robot Control Scheme
Input: Data: [xt,Rt] ▷ Current state of the robot
Output: ẋt ▷ Velocity of the end-effector

1 foreach time step t do
2 rt = Log(Rt) ▷ Extract skew-sym coeffs
3 pt = [xt, rt] ▷ Form new state vector
4 zt = µξ(pt) ▷ Compute the latent state
5 ˆ̇zt = f(zt) ▷ Compute the latent velocity
6 Jµξ

(zt) =
∂µξ

∂zt
▷ Compute the Jacobian of the

decoder
7 ẋt = Jµξ

(zt)ˆ̇zt ▷ Compute input space velocity
8 end

end-to-end. In the latter case, we first train the VAE (end-to-
end), and then train the latent NCDS using the encoded data.

3.4 Latent obstacle avoidance and Riemannian
safety regions

Section 3.1 described a Riemannian metric (equation 27)
in the VAE latent space. Under this metric, shortest paths
stay within the data support while avoiding obstacles. In this
section, we build on this work and introduce a modulation
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Figure 13. Illustration of the computation of the obstacle avoidance distance field for designing Riemannian safety regions. From left:
(1) Obstacle representation (circle), (2) Metric volume around obstacle, (3) Metric inversion to compute distance map and problem with
initial boundary misalignment (white vs. red circle for real vs. approximated boundary), (4) Rescaling with α to correct the boundary.

matrix, ensuring that our NCDS vector field also stays within
data support and avoids obstacles.

We notice that the volume of the pullback Riemannian
metric in equation 27 increases when moving away from
the data manifold and when approaching an obstacle. If
we change the NCDS vector field to avoid “high volume”
areas, our goal will be achieved. We accomplish this via a
Riemannian modulation matrix GM(z) that reshapes the
vector field f , resulting in an obstacle-free vector field f̂ ,

f̂(z) = GM(z)f(z). (31)

To design this modulation matrix, we follow the recipe of
Huber et al. (2022), described in Sec. 2.4, and let GM(z) =
E(z)D(z)E(z)−1.

First, the matrix D is designed to guarantee impenetrabil-
ity and to ensure the local effect of the modulation matrix.
We use the formulation of Huber et al. (2022), which is given
in equation 15. Specifically, we ensure that λn(z) : Rd →
[0.0, 1.0] decreases towards 0.0 and λτ (z) : Rd → [1.0, 2.0]
increases towards 2.0 when the distance to the obstacle
decreases. We give explicit expressions in Appendix 6.1.

Second, the basis matrix E, which determines the modula-
tion directions, is defined by stacking the obstacle normal n
(i.e. a vector orthogonal to the tangent plane of the obstacle
surface, pointing outward) and an orthogonal basis vectors
e that defines a hyperplane tangential to the surface of the
obstacle. To allow for obstacles with complex shapes, we
compute the normal through a distance field S that determines
the distance from any point to the obstacle (Koptev 2023).
The normal vector can then be chosen as,

n(z) = ∇S(z) s.t. e(z) ⊥ n(z), (32)

where ∇S(z) is the gradient of the distance field at z.
To incorporate the Riemannian metric, we rescale the

distance field by the inverse Riemannian volume,

Sscaled(z) =
α

V(z)
S(z), with V(z) =

√
|det(M(z))|,

where α is a scaling factor. Figure 13 illustrates the
computation of the distance field and Appendix 6.2 describes
how we select the α factor.

The complete process from obstacle to distance field
involves several key steps, as illustrated in Fig. 13. The
obstacle is presented here as a circle for simplicity (leftmost
panel), but it can be represented using more complex shapes,

such as meshes, depending on the application. A Gaussian-
like function is then applied to reshape the manifold, serving
as the ambient metric centered on the obstacle (second panel).
This metric models the obstacle’s influence on the surrounding
space. The metric is inverted to construct a distance map, as
shown in the third panel. However, the computed obstacle
boundary (red circle) does not align with the real boundary
(white circle) due to the nature of the Gaussian function,
which skews distance measurements. Finally, in the fourth
panel, the distance field is rescaled using the parameter α.
This parameter adjusts the Gaussian’s influence, ensuring the
computed boundary aligns with the real obstacle boundary,
regardless of the obstacle’s shape.

As Koptev (2023) discuss, the modulation in equation 13
can generate spurious attractors around concave regions of the
obstacle’s surface (Fig.12–b). Koptev (2023) suggests using a
secondary tangential vector field that activates only when the
velocity is zero to avoid this issue. Specifically,

f̂ = GM(z) · f(z) + β(x)GM(z) · g(z), β∈ [0, 1] (33)

where β increases as the velocity generated by the main mod-
ulation approaches zero. This tangential vector field is com-
puted using the tangent vector on the surface of the obstacle.

4 Experiments
To evaluate the efficiency of NCDS, we consider several
synthetic and real tasks. Comparatively, we show that
NCDS is the only method to scale gracefully to higher-
dimensional problems, due to the latent structure. Through
ablation studies in Sec. 4.6, we further analyze the effect
of various activation functions, regularization techniques,
and network architectures on the NCDS performance. We
further demonstrate the ability to build dynamic systems
on the Lie group of rotations and to avoid obstacles
while ensuring stability. None of the baseline methods has
such capabilities. Demonstration videos are available at:
https://sites.google.com/view/extendedncds/home.

Datasets. There are currently no established benchmarks
for contraction-stable robot motion learning, so we focus on
two datasets. First, we test our approach on the LASA dataset
(Lemme et al. 2015), often used to benchmark asymptotic
stability. This consists of 26 different two-dimensional hand-
written trajectories, which the system is tasked to follow. To
evaluate our method, we have selected 5 different letter shapes
from this dataset. To ensure consistency and comparability,
we preprocess all trajectories to stop at the same target
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Figure 14. Visualization of the LASA-2D dataset: Gray contours represent the learned vector field, black trajectories depict
demonstrations, and orange/green trajectories illustrate path integrals starting from the initial points of the demonstrations and plot
corners. The magenta circles indicate the initial points of the path integrals.

Dataset Angle Multimodels Line SharpC Sine

Constant Regularization 516 436 445 490 439

State-independent Regularization Vector 135 105 255 209 176

Table 1. Average time steps spent outside the data region for 100 path integrals, each consisting of 1000 points, originating from an
equidistant grid (lower is better). The datasets and NCDS models correspond to those displayed in Fig. 14.

state. Additionally, we omit the initial few points of each
demonstration, to ensure that the only state exhibiting zero
velocity is the target state. To further complicate this easy
task, we aim at learning NCDS on 2, or 4 stacked trajectories,
resulting in 4 (LASA-4D), or 8-dimensional (LASA-8D)
data, respectively. Secondly, we consider a dataset consisting
of 5 trajectories collected via kinesthetic teaching on a 7-
DoF Franka-Emika Panda robot. These trajectories form a
V-shape path on the desk surface, with the orientation of
the end-effector smoothly changing to follow the direction
of motion. To evaluate the model’s performance in a more
challenging setting, we use the KIT Whole-Body Human
Motion Database (Mandery et al. 2016). We provide further
details on how these datasets are used in the relevant sections.

Metrics. We use dynamic time warping distance (DTWD)
as the established quantitative measure of reproduction accu-
racy w.r.t. a demonstrated trajectory, assuming equal initial
conditions (Ravichandar et al. 2017; Sindhwani et al. 2018),

DTWD(τx, τx′) =
∑

j∈l(τx′ )

min
i∈l(τx)

(
d(τxi , τx′

j
)
)
+

∑
i∈l(τx)

min
j∈l(τx′ )

(
d(τxi

, τx′
j
)
)
,

where τx and τx′ are two trajectories (e.g. a path integral
and a demonstration trajectory), d is a distance function (e.g.
Euclidean distance), and l(τ) is the length of trajectory τ .

Baseline methods. Our work is the first contractive neural
network architecture, so we cannot compare NCDS directly
to methods with identical goals. Indeed, we report in Table 2
the main papers in the contraction literature, showing that a

lack of consensus exists regarding the method or baseline for
comparison, in the context of learning contractive dynamical
systems. Instead, we compare to existing methods that provide
asymptotic stability guarantees. In particular, Euclideanizing
flow (Rana et al. 2020b), Imitation flow (Urain et al. 2020) and
SEDS (Khansari-Zadeh and Billard 2011). For Imitation flow,
we use a network of 5 layers, where each was constructed
using COUPLINGLAYER, RANDOMPERMUTATION, and
LULINEAR techniques, as recommended by Urain et al.
(2020) for managing high-dimensional data. We train for 1000
epochs, with a learning rate of 10−3. For Euclidenizing flow,
we used a coupling network with random Fourier features,
using 10 coupling layers of 200 hidden units, and a length
scale of 0.45 for the random Fourier features. This is trained
for 1000 epochs, with a learning rate of 10−4. Lastly, for
SEDS, we use a Gaussian mixture model of 5 components
that are trained for 1000 epochs with an MSE objective. In
all cases, hyperparameters were found experimentally and the
best results have been selected to be compared against.

4.1 LASA dataset
We first evaluate NCDS on two-dimensional trajectories
for ease of visualization. Here data are sufficiently low-
dimensional that we do not consider a latent structure. The
Jacobian network was implemented as a neural network
with two hidden layers, each containing 500 nodes. The
network’s output was reshaped into a square matrix format.
For integration, we used the efficient odeint function from
the torchdiffeq Python package (Chen 2018), which supports
various numerical integration methods. In our experiments,
we employed the widely used Runge-Kutta and dopri5
methods for solving ordinary differential equations.
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Paper Title Abbr. Compared Against Year

Safe Control with Learned Certificates: A
Survey of Neural Lyapunov, Barrier, and
Contraction Methods (Dawson et al. 2023)

2022

Learning Contraction Policies from Offline Data
(Rezazadeh et al. 2022)

MPC (ILQR), RL (CQL) 2022

Neural Contraction Metrics for Robust Esti-
mation and Control: A Convex Optimization
Approach (Tsukamoto and Chung 2021a)

NCM CV-STEM, LQR 2021

Learning Stabilizable Nonlinear Dynamics with
Contraction-Based Regularization (Singh et al.
2021)

CCM-R 2021

Learning Certified Control Using Contraction
Metric (Sun et al. 2020)

C3M SoS (Sum-of-Squares programming), MPC, RL
(PPO)

2020

Learning Position and Orientation Dynamics
from Demonstrations via Contraction Analysis
(Ravichandar and Dani 2019)

CDSP SEDS, CLF-DM, Tau-SEDS, NIVF 2019

Learning Stable Dynamical Systems Using
Contraction Theory (Blocher et al. 2017)

C-GMR SEDS 2017

Learning Contracting Vector Fields for Stable
Imitation Learning (Sindhwani et al. 2018)

CVF DMP, SEDS, CLF-DM 2017

Learning Partially Contracting Dynamical
Systems from Demonstrations (Ravichandar
et al. 2017)

CDSP (position
only)

DMP, CLF-DM 2017

Table 2. The present state-of-the-art literature pertaining to the learning of contractive dynamical systems.

Dataset LASA-2D LASA-4D LASA-8D 7 DoF Robot
Euclideanizing Flow 0.72 ± 0.12 3.23± 0.34 10.22± 0.40 5.11± 0.30

Imitation Flow 0.80± 0.24 0.79 ± 0.22 4.69± 0.52 2.63± 0.37

SEDS 1.60± 0.44 3.08± 0.20 4.85± 1.64 2.69± 0.18

NCDS 1.37± 0.40 0.98± 0.15 2.28 ± 0.24 1.18 ± 0.16
Table 3. Average dynamic time warping distances (DTWD) between different approaches. NCDS shows competitive performance in
low-dimensional spaces and outperforms others in higher dimensions.

Input Dim 2D 3D 8D 44D

Input Space (Without VAE) 1.23 ms - 40.9 ms -

Latent Space (With VAE) - 10.6 ms 20.2 ms 121.0 ms

Table 4. Average execution time (in milliseconds) of a single NCDS integration step for learning the vector field in different spaces.

Figure 14 shows the learned vector fields (gray contours)
for 5 different trajectory shapes chosen according to their
difficulty from the LASA dataset, covering a wide range of
demonstration patterns (black curves) and dynamics. The top
row shows the behavior of the learned dynamics for Vanilla
NCDS, while the bottom row depicts the dynamics learned
with state-independent vector regularization (which showed
the strongest contraction behavior as reported in Fig. 7). We
observe that both NCDS approaches effectively capture and
replicate the underlying dynamics. This is observed in the
orange path integrals, starting from the initial points of the
demonstrations, showing that both approaches can reproduce
the demonstrated trajectories accurately.

We compute additional path integrals starting from outside
the data support (green curves) to assess the generalization
capability of both NCDS approaches beyond the observed
demonstrations. Table 1 lists the average number of time
steps that 100 path integrals, each consisting of 1000 points

and originating from an equidistant grid, spent outside
the data region for the examples shown in Fig. 14. Low
values indicate that the trajectories converge quicker toward
the demonstration region, reflecting improved contractive
behavior. These results suggest that state-independent vector
regularization enhance the contractive behavior (see also
Fig. 7). This is evidence that the contractive construction is a
viable approach to controlling the extrapolation properties of
the neural network.

Comparative Study on the LASA Dataset: Table 3
shows average DTWD distances among five generated path
integrals and five demonstration trajectories for both NCDS
and baseline methods. For the two-dimensional problem, both
Euclideanizing flow and Imitation flow outperform NCDS and
SEDS, though all methods perform quite well. To investigate
stability, Fig. 16 displays the average distance over time
among five path integrals starting from random nearby initial
points for different methods. We observe that only for NCDS
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Figure 15. Robot experiments. The left two panels show robot experiments with orange and red paths illustrating unperturbed and
perturbed motion. The first panel shows a learned vector field in R3 with a constant orientation. In the second panel, the vector field
expands to R3 × SO(3), aligning the end-effector’s orientation with the motion direction. Superimposed robot images depict frames
of executed motion. The third panel shows the robot successfully avoiding the obstacle (orange cylinder) using the modulation
technique utilized in the Vanilla NCDS. The right panel illustrates the contours of the latent vector field in the background, with the
green and yellow curves representing the path integrals, while the black dots indicate the demonstrations in latent space.
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Figure 16. Average distance between random nearby
trajectories over time for LASA-2D. Only NCDS monotonically
decreases, i.e. it is the only contractive method.

does this distance decrease monotonically, which indicates
that it is the only contractive method. To test how these
approaches scale to higher-dimensional settings, we consider
the LASA-4D and LASA-8D datasets, where we train NCDS
with a two-dimensional latent representation. From Table 3, it
is evident that the baseline methods quickly deteriorate as the
data dimension increases, and only NCDS gracefully scales
to higher dimensional data. This is also evident from Fig. 17,
which shows the training data and reconstructed trajectories of
different LASA-8D dimensions with different methods. These
results clearly show the value of having a low-dimensional
latent structure.

Comparative study on the robot dataset: To further
compare our method, we consider a robotic setting where
we evaluate all the methods on a real dataset of joint-
space trajectories collected on a 7-DoF robot. The last
column of Table 3 shows that only NCDS scales gracefully
to high-dimensional joint-space data, and outperforms the
baseline methods. The supplementary material includes a
video showcasing the simulation environment in which the
robot executes a drawing task, depicting V-shape trajectories
on the table surface.

Dimensionality and execution time: Table 4 compares
5 different experimental setups. Both the Variational
Autoencoder (VAE) and Jacobian network Ĵθ, were
implemented using PyTorch (Paszke et al. 2019). The VAE
employs an injective generator based on M-flows (Brehmer
and Cranmer 2020), using rational-quadratic neural spline
flows with three coupling layers. The experiments were
conducted on a system with an Intel® Xeon® Processor E3-
1505M v6 (8M Cache, 3.00 GHz), 32 GB of RAM, and an
NVIDIA Quadro M2200 GPU.

Table 4 reports the average execution time when
dimensionality reduction is not used and the dynamical
system is learned directly in the input space. As the results
show, increasing the dimensionality of the input space from
2 to 8 entails a remarkable 40-fold increase in execution
time for a single integration step. This empirical relationship
reaffirms the inherent computational intensity tied to Jacobian-
based computations. This table also shows that our VAE
distinctly mitigates the computational burden. In comparison,
the considerable advantages of integrating the contractive
dynamical system with the VAE into the full pipeline become
evident as it leads to a significant halving of the execution
time in the 8D scenario. We further find that increasing the
dimensionality from 8 to 44 results in a sixfold increase in
running time. The results indicate that our current system may
not achieve real-time operation. However, the supplementary
video from our real-world robot experiments demonstrates
that the system’s rapid query response time is sufficiently fast
to control the robot arm, devoid of any operational concerns.

4.2 Learning robot motion skills

To demonstrate the application of NCDS to robotics, we
conducted several experiments on a 7-DoF Franka-Emika
robotic manipulator, where an operator kinesthetically teaches
the robot drawing tasks. Both the Variational Autoencoder
(VAE) and the Jacobian network Ĵθ , were implemented using
the PyTorch framework (Paszke et al. 2019). For the VAE,
we used an injective generator based on M-flows (Brehmer
and Cranmer 2020), specifically employing rational-quadratic
neural spline flows with three coupling layers. In each
coupling transform, half of the input values underwent
element-wise transformation through a monotonic rational-
quadratic spline. These splines were parameterized by a
residual network with two residual blocks, each containing
a hidden layer of 30 nodes. We used Tanh activations
throughout the network, without batch normalization or
dropout. The rational-quadratic splines used ten bins, evenly
spaced over the range (−10, 10). To learn these skills, we
employ the same architecture described in Sec. 4.1. The
learned dynamics are executed using a Cartesian impedance
controller. First, we demonstrate 7 sinusoidal trajectories
while keeping the end-effector orientation constant, such that
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Figure 17. Path integrals generated using different methods on LASA-8D. Black curves are training data, while yellow are the learned
path integrals. To construct the 8D dataset, we have concatenated 4 different 2D datasets.

the robot end-effector dynamics only evolve in R3. As Fig. 15-
left shows, the robot was able to successfully reproduce
the demonstrated dynamics by following the learned vector
field encoded by NCDS. Importantly, we also tested the
extrapolation capabilities of our approach by introducing
physical perturbations to the robot end-effector, under which
the robot satisfactorily adapted and completed the task (see
the supplementary video).

The second experiment tests NCDS ability to learn orien-
tation dynamics evolving in R3 × SO(3), i.e. full-pose end-
effector movements. We collect several V-shape trajectories
on a table surface on which the robot end-effector always faces
the direction of the movement, as shown in the second panel
from the left in Fig. 15. However, the orientation trajectories
of the robot experiments tend to show relatively simple
dynamics. To evaluate the performance of this setup on a
more complex dataset, we generate a synthetic LASA dataset
in R3 × SO(3). To introduce complexity within SO(3), we
project the LASA datasets onto a 3-sphere, thus generating
synthetic quaternion data. Although we consider orientation
in SO(3) here, it is worth noting that NCDS can also handle
quaternions directly. Next, we transform these into rotation
matrices on SO(3), and apply the Log map to project onto the
Lie algebra. To construct the position data in R3, we embed
the 2D LASA dataset in R3 by concatenating with a zero.
Together, this produces a state vector x in R6. To increase
the level of complexity, we employ two distinct LASA letter
shapes for the position and orientation dimensions.

Figure 15-right, depicts the 2D latent dynamical system,
where the black dots represent the demonstrations. Moreover,
the yellow path integrals start at the initial point of the
demonstrations, while the green path integrals start at random
points around the data support. This shows that NCDS can
learn complex nonlinear contractive dynamical systems in
R3 × SO(3).

4.2.1 Obstacle avoidance in Vanilla NCDS: Unlike
baselines methods, our Vanilla NCDS framework also
provides dynamic collision-free motions. To demonstrate this
in practice, we experiment with a real robot, where we block
motion demonstrations with an object. Here, the modulation
matrix is computed based on the formulation in equation 13.
The third panel of Fig. 15 shows the obstacle avoidance in
action as the robot’s end-effector navigates around the orange
cylinder. This demonstrates how the dynamic modulation

matrix approach leads to obstacle-free trajectories while
guaranteeing contraction.

4.3 Learning human motion
To assess the model’s performance in a more complex
environment, we consider the KIT Whole-Body Human
Motion Database (Mandery et al. 2016). This captures
subject-specific motions, which are standardized based on the
subject’s height and weight using a reference kinematics and
dynamics model known as the master motor map (MMM).

First, we focus on learning the motion in the 44-
dimensional joint space of the human avatar. We chose the
motion that corresponds to a human performing a tennis
forehand skill. The architecture is the same as in Sec. 4.1
except that the Jacobian network was implemented as a
neural network with two hidden layers, each containing 50
nodes. For this specific skill, we use a single demonstration
to learn the skill, showing that NCDS is able to learn and
generalize very complex skills with very few data. The results
are shown in Fig. 21–left, where the motion progresses from
left to right over time. The top row displays the demonstrated
motion, the middle row shows the motion generated by a
path integral starting from one of the demonstration’s initial
points, and the bottom row displays the motion generated by
a path integral starting far from the demonstration’s initial
points. These results demonstrate that NCDS is able to learn
high-dimensional dynamics. Figure 19–left illustrates the path
integrals generated by NCDS on a 2D latent space.

The previous human motion experiment focused on
reconstructing motions in the human joint space alone,
thereby failing to model the global position and orientation
of the human, which may be insufficient for some particular
human motions. The KIT motion database also includes the
base link pose of the human avatar, located at the hip. We
have chosen a leg kick action to emphasize the importance of
learning the base-link pose. Without incorporating the base-
link pose and only focusing on joint motion, the movement
appears unnatural, making the human avatar look as if it is
floating or disconnected from the ground. Learning the base-
link pose, which anchors the motion at the hip, helps maintain
realistic contact with the ground, resulting in a more grounded
and natural-looking movement. The architecture remained
the same as in the joint-space experiment, except that the
Jacobian network was implemented as a neural network with
two hidden layers of 200 nodes each. For this skill, we used
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Figure 18. Obstacle avoidance via a Riemannian pullback metric. Left : The robot performs a grasping task without obstacle
avoidance. Middle: The robot navigates around the obstacle by avoiding both the obstacle and the unsafe regions of the manifold.
Right : The latent modulated vector field is locally reshaped around the obstacle and in areas outside the data support.

Figure 19. Left: Latent path integrals with NCDS trained in joint
space R44. Right: Latent path integrals with NCDS trained on full
human motion space: R44 × R3 × SO(3). The background
depicts the contours of the latent vector field, green and yellow
curves depict the path integrals, and black dots represent
demonstration in latent space.

two demonstrations to learn the motion. Here each point of
the motion trajectory is defined in a 44-dimensional joint
space R44, along with the position and orientation of the base
link R3 × SO(3), leading to a 50-dimensional input space
R44 × R3 × SO(3).

Figure 19–right shows the latent path integrals generated by
NCDS, while Fig. 21–right shows the corresponding motion.
The upper row of the latter plot depicts the progressive
evolution of the demonstration motion from left to right.
Meanwhile, the middle and bottom rows illustrate the motions
generated by NCDS when the initial point is respectively
distant from and coincident with the initial point of the
demonstration. Interestingly, we experimentally found that
even this complex skill can be effectively learned using only
a 2-dimensional latent space. This may be task-dependent, as
some tasks might require a higher-dimensional latent space
to be accurately encoded (Beik-Mohammadi et al. 2023). We
have not observed this necessity in our experiments.

4.4 Vision-based grasp-and-drop with CNCDS
The Conditional Neural Dynamical System (CNCDS) can
learn multiple skills using a single network, which we
demonstrate using a vision perception system. We place a
soft object in three distinct positions on a table, and a camera
captures an image of the scene for each condition. We use a
pre-trained RESNET18 model to generate a 1000-dimensional

feature vector, which is then passed through a fully connected
network to produce a 3-dimensional embedding vector that
serves as the conditioning input. During training, only the
RESNET18 model is kept frozen, while the fully connected
network and the NCDS are trained end-to-end. The training
optimizes a combined loss function comprising cross-entropy
loss LCE, velocity reconstruction loss Lvel, and regularization
loss Lϵ, as defined in the NCDS framework. The cross-entropy
loss is given by LCE = −

∑
i yi log(ŷi), where yi represents

the true label, and ŷi is the predicted probability for class i.
The fully connected layer consists of a single layer with 1000
nodes. The Jacobian network consists of a single hidden layer
with 100 nodes, using a ReLU activation function. The VAE
encoder/decoder is designed with two layers, containing 200
and 100 nodes, respectively. Two separate CNCDS models are
trained: one for grasping the object and another for dropping
it, each functioning as an independent CNCDS conditioned
on the initial image of the object on the table. For both the
grasping and dropping skills, we collected 7 demonstrations,
each containing 500 datapoints that capture the full trajectory
of the motion. Additionally, for each object location relevant
to the task, we gathered 50 initial snapshot images that
represent the initial state of the object on the table. To build
the complete dataset, each data point in the motion trajectories
was paired with each of the initial snapshot images. The
first three panels in Fig. 20 show the grasping actions from
each initial position, while the second three panels show the
corresponding dropping actions. By conditioning on visual
information, the CNCDS framework effectively adapts to
varying initial object positions, successfully learning and
reproducing the desired skills.

4.5 Riemannian safety regions
In this section, we employ the pullback metric derived
from the decoder’s Jacobian to formulate the modulation
of a contractive dynamical system. Specifically, the robot
uses modulation to navigate around obstacles and avoid
uncertain regions far from the demonstrations, under the
assumption that out-of-support data regions are unsafe. As
explained in Sec. 3.4, we use a Riemannian pullback metric
computed via equation 27, to formulate the modulation
matrix in equation 33. Specifically, we define the ambient
metric MX for the end-effector position as in equation 26.
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Grasping right object Grasping middle object Grasping left object Dropping right object Dropping middle object Dropping left object

Figure 20. Grasping and dropping actions learned by the CNCDS for a soft object in three positions, conditioned on image input. The
CNCDS is trained using cross-entropy loss, velocity reconstruction, and regularization with ResNet18 image embeddings.

Figure 21. Left : Generated Human Motion with NCDS trained in joint space R44: The upper row depicts the progressive evolution of
the demonstration motion from left to right. Meanwhile, the middle and bottom rows illustrate the motions generated by NCDS when
the initial point is respectively distant from and coincident with the initial point of the demonstration. Right : Generated Human Motion
with NCDS trained on full human motion space R44 × R3 × SO(3): The upper row depicts the progressive evolution of the
demonstration motion from left to right. Meanwhile, the middle and bottom rows illustrate the motions generated by NCDS when the
initial point is respectively distant from and coincident with the initial point of the demonstration.

Note that we use a Gaussian-like function to represent
the obstacle here; however, more detailed representations,
such as meshes constructed from point clouds, can also
be employed. We demonstrate this approach by applying
the dynamics learned from the grasping skill experiment
reported in Sec. 4.4, where vector field modulation is
incorporated based on the Riemannian formulation introduced
in Sec. 3.4. In Fig. 18, the left panel illustrates the robot
performing a skill by grasping an object from the table
without considering obstacle avoidance or designated safety
regions. The middle panel displays the same action, this
time with obstacle avoidance and safety region constraints
enabled. The right panel represents the associated latent space,
where darker areas represent unsafe zones. The dark oval-
shaped region represents the Riemannian manifold derived
from skill demonstrations, marking the boundary of safety
regions within the latent space. The dark circular region inside
represents the latent representation of the obstacle, obtained
by pulling back the ambient metric into the latent space. These
results demonstrate that modulation based on the Riemannian
metric allows the robot to effectively avoid obstacles while
remaining within learned safety regions.

4.6 Ablation studies
In this section, we perform ablation studies to analyze the
impact of various components of our NCDS framework. By
systematically altering or removing key elements, we aim to
highlight the significance of the contraction constraint, the
choice of network architecture, and the effect of different
activation functions.

Unconstrained dynamical system: To illustrate the
influence of having a negative definite Jacobian in NCDS,
we contrast our NCDS against an identical system, except
that we remove the negative-definiteness constraint on the
Jacobian Ĵθ. Figure 23 shows the path integrals generated
by both contractive (Fig. 23-a) and unconstrained (Fig. 23-b)
dynamical systems. As anticipated, the dynamics generated
by the unconstrained system lack stable behavior. However,
the vector field aligns with the data trends in the data support
regions. Furthermore, we performed similar experiments with
two different baseline approaches: an MLP and a Neural
Ordinary Differential Equation (NeuralODE) network, to
highlight the effect of the contraction constraint on the
behavior of the dynamical system. The MLP baseline uses a
neural network with 2 hidden layers each with 100 neurons

Prepared using sagej.cls



20 Journal Title XX(X)

(a) ϵ = 10−4 (b) ϵ = 10−2 (c) ϵ = 10−1 (d) ϵ = 10

Figure 22. Path integrals generated by NCDS trained using different regularization term ϵ.

(a) Contractive (b) Unconstrained (c) MLP (d) Neural ODE

Figure 23. Path integrals generated under the Neural Contractive Dynamical Systems (NCDS) setting, along with baseline
comparisons using Multilayer Perceptron (MLP) and Neural Ordinary Differential Equation (NeuralODE) models.

(a) Tanh (b) Softplus (c) Sigmoid

Figure 24. Path integrals generated by NCDS trained using different activation functions.

with Tanh activation function. The NeuralODE baseline is
implemented based on the code provided by Poli et al. (2021),
with 2 hidden layers each with 100 neurons. The model is
then integrated into a NeuralODE framework configured with
the adjoint sensitivity method and the dopri5 solver for both
the forward and adjoint passes. It is worth mentioning that
these baselines directly reproduce the velocity according to
ẋ = f(x). Both networks are trained for 1000 epochs with
the ADAM (Kingma and Ba 2014). Figure 23-c and 23-d show
that both models effectively capture the observed dynamics
(vector field); however, as anticipated, contraction stability is
only achieved by NCDS.

Activation function: The choice of activation function
certainly affects the generalization in the dynamical system
in areas outside the data support. To show this phenomena,
we ablate a few common activation functions. For this

experiment, we employ a feedforward neural network with
two hidden layers, each of 100 units. As shown in Fig. 24,
both the Tanh and Softplus activation functions give superior
performance, coupled with satisfactory generalization
capabilities. This indicates that the contour of the vector field
aligns with the overall demonstration behavior outside of the
data support. Conversely, the Sigmoid activation function
yields commendable generalization beyond the confines of
the data support, but it fails to reach and stop at its target.

5 Discussion and future work
In this paper, we proposed an enhanced framework for
designing neural networks that are contractive, building upon
the original Neural Contractive Dynamical Systems (NCDS,
Beik-Mohammadi et al. (2024)). This allows us to create
a flexible class of models capable of learning dynamical

Prepared using sagej.cls



Beik-Mohammadi et al. 21

systems from demonstrations while retaining contractive
stability guarantees, offering a more controlled generalization
behavior. Key improvements include the introduction of
Jacobian matrix regularization, where we explore both state-
independent and state-dependent regularization strategies, as
well as eigenvalue-based methods, to fine-tune the contraction
properties and improve robustness and generalization.

Furthermore, we extended the NCDS framework by intro-
ducing asymmetry into the Jacobian matrix, incorporating
both symmetric and skew-symmetric components. However,
our evaluation showed that this modification did not provide
any significant advantage over using only the symmetric part.
This suggests that the NCDS with symmetric Jacobian is
sufficient to locally approximate the behavior of dynamical
systems with non-symmetric Jacobians, eliminating the need
for the added complexity.

We also introduced the Conditional NCDS (CNCDS),
which allows us to handle multiple motion skills by condition-
ing on task-related variables, such as target states, allowing
a single NCDS module to adapt to multiple task conditions.

Finally, to enhance real-world applicability, we improve
the model’s obstacle avoidance capabilities by employing
Riemannian safety regions on the NCDS latent space. Inspired
by modulation matrix techniques, this approach reshapes the
latent learned vector field near unsafe areas, enabling the
system to avoid obstacles and out-of-data support regions,
while maintaining contractive stability guarantees.

Overall, our extended NCDS framework significantly
addresses the key limitations of the original model,
introducing improvements in flexibility, robustness, and
adaptability.

However, several limitations persist. The model remains
sensitive to the choice of numerical integration schemes,
particularly the reliance on adaptive step sizing to ensure
reliable performance, which increases computation time and
poses challenges for real-time applications. Moreover, the
need to compute the Jacobian of the decoder at every step, in
order to calculate the ambient velocity and Riemannian metric,
further impacts performance, adding computational overhead.
Furthermore, a limitation of implementing the conditional
variable in CNCDS is its limited reactivity to changes in
the conditioning variable. In other words, if the conditioning
variable changes during skill execution, it is uncertain whether
CNCDS will adapt seamlessly to these changes. We consider
these issues minor compared to the many benefits that the
NCDS framework provides.
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6 Appendix

6.1 Modulation diagonal matrix D
Based on these requirements, matrix D can be designed
according to the following sigmoid function,

Ξ(ρ, ν, λinit, λend, k) = λinit+ (34)

λend − λinit

1 + exp
(
−k

[
S(x)− (ρ+ν)

2

]),with (35)

λn(x) = Ξ(ρ = 1, ν = 10, λinit = 0, λend = 1, k = 2),

λτ (x) = Ξ(ρ = 1, ν = 10, λinit = 2, λend = 1, k = 2),

The parameters are defined as follows: ρ specifies the
distance at which the obstacle becomes impenetrable, while ν
indicates the distance from which the modulation is inactive.
The initial and final values of the sigmoid function Ξ(...) are
given by λinit and λend, respectively. For example, in Fig. 25,
λinit and λend (shown in blue) are the initial and target values
for λτ . This means that λτ takes the value of λinit when inside
the obstacle and similarly it takes the values of λend when
outside of the obstacle. The same applies for λn, depicted in
orange. Lastly, k controls the smoothness of the transition
between these values. The specific values for these parameters
are provided in Koptev (2023) to configure the matrix D
for correct modulation activation. In this specific setup, the
modulation activates ν units away from the obstacle surface
and progressively intensifies until it reaches ρ unit from the
surface, at which point the surface becomes impenetrable.
These values can be adjusted to suit different configurations
or experimental conditions. Figure 25 illustrates how the
elements of matrix D behave as a function of the distance
from the obstacle. Note that the values of λn(x) begin to
decrease towards 0.0, while λt(x) values start increasing
towards 2.0 as the distance drops below ν units.

Figure 25. The behavior of the elements of the matrix D in
response to distance from obstacle.

6.2 Modulation scaling factor
To compute the weight α, we discretize the data manifold
with an equidistant mesh grid in the latent space Z , followed
by the computation of the corresponding metric volumes V(z)
for each point on the mesh grid. Later, the maximum and the
minimum volumes, Vmax and Vmin, are used to normalize all
volumes V(z) as follows,

V(z) =
V(z)− Vmin

Vmax − Vmin
.

Afterward, α is experimentally chosen to align with the
specified distance range defined by ρ and ν in equation 35.
This ensures that the scalar field is scaled appropriately, such
that:

S(z)(z) <ρ, z ∈ obstacle region,
S(z)(z) >ν, z /∈ obstacle region.
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