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Abstract

Uncertainty quantification in image retrieval is crucial for
downstream decisions, yet it remains a challenging and largely
unexplored problem. Current methods for estimating uncertain-
ties are poorly calibrated, computationally expensive, or based
on heuristics. We present a new method that views image embed-
dings as stochastic features rather than deterministic features.
Our two main contributions are (1) a likelihood that matches the
triplet constraint and that evaluates the probability of an anchor
being closer to a positive than a negative; and (2) a prior over
the feature space that justifies the conventional l2 normalization.
To ensure computational efficiency, we derive a variational
approximation of the posterior, called the Bayesian triplet loss,
that produces state-of-the-art uncertainty estimates and matches
the predictive performance of current state-of-the-art methods.

1. Introduction
Image-based retrieval systems show impressive performance

in challenging tasks such as face verification [43, 52, 56],
instance retrieval [63], landmark retrieval [38] and place
recognition [1, 41]. These systems typically embed images into
high-level features and retrieve with a nearest neighbor search.
While this is efficient, the retrieval comes with no notion of
confidence, which is particularly problematic in safety-critical
applications. For instance, a self-driving car relying on visual
place recognition should be able to filter out place estimates
drawn from uninformative images. In a less critical but still
relevant application, quantifying the retrieval uncertainty can
significantly improve the user experience in human-computer
interfaces by not showing low-confidence results for a query.

Practical retrieval systems do not have a small set of
predefined classes as output targets, but rather need high-level
features that generalize to unseen classes. For instance, a visual
place recognition system may be deployed in a city in which
it has not been trained [58]. This is achieved by keeping the
encoder fixed and relying on nearest neighbor searches. This
pipeline does not easily match current methods for posterior
inference, and current uncertainty estimators for retrieval are
often impractical and heuristic in nature. To construct a fully

Figure 1: We model embeddings as distributions rather than
point estimates, such that data uncertainty is propagated to
retrieval. We phrase a Bayesian model that mirrors the triplet
loss, which enables us to learn the stochastic features.

Bayesian retrieval system that fits with existing computational
pipelines, we first recall the elementary equation

E
[
‖∆‖2

]
=‖E[∆]‖2+trace(cov[∆]), ∆∈RD, (1)

which follows directly from the definition of variance. From this
we see that the expected squared distance between two random
features, E

[
‖∆‖2

]
, grows with the covariance of such distance,

cov[∆], which in turn depends on the uncertainty of the features
(Figure 1). This intuition forms the basis of this paper.

In this paper we propose to use stochastic image embed-
dings instead of the usual deterministic ones. Given an image
X, we consider the posterior distribution over possible features
P(F |X). From this distribution we get direct uncertainty
estimates and can assign probabilities to events such as ‘two
images belonging to the same place’. To realize this, we derive a
likelihood corresponding to the probability that the conventional
triplet constraint is satisfied, and a prior over the feature space
that mimics conventional l2 normalization. To build a system
that is computationally efficient at both train and test time, we
derive a variational approximation to the posterior P(F |X),
such that in practice, we encode an image to a distribution in fea-
ture space. Across several datasets, we show that the proposed
model matches the state-of-the-art in predictive performance,
while attaining state-of-the-art uncertainty estimates.
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2. Related Work
Image retrieval has been a popular research problem in

the last years due to its many applications [46, 63]. Early
approaches relied on handcrafted local features aggregated
mainly by bag-of-words [22, 39, 45]. More recent models
are composed by a deep convolutional backbone followed
by an aggregation layer [1, 41] that map images to low
dimensional embeddings based on their content similarity
[1, 3, 35, 38, 41–43, 52, 54, 56]. The most similar images to
a query are found by (approximate) nearest neighbor methods.

Retrieval systems apply either classification losses (e.g.,
[30, 62]) or metric losses (e.g., [15]). Metric losses operate
on the relationships between samples in a batch, while
classification losses include a weight matrix that transforms
the embeddings into vectors of class logits [34]. Our focus is
on metric losses, of which the contrastive loss [19] is the most
fundamental one. However, this loss has the limitation that the
same margin thresholds apply to all training pairs, even though
there may be a large variation in their similarities. The triplet
loss [59] accounts for such varying interclass dissimilarities by
solely constraining an anchor a to be closer to a positive p than
a negative nminus a marginm,

‖a−p‖2<‖a−n‖2−m. (2)

Many works have extended the contrastive and triplet losses
to incorporate more structural information about the embedding
space, for example the quadruplet loss [5], N-pair loss [47],
angular loss [55], margin loss [60], signal-to-noise ratio (SNR)
contrastive loss [61] and multi-similarity (MS) loss [57]. These
methods are often supported by heuristics or empirical experi-
ments, but lack a theoretical grounding. Additionally, in a recent
study, Musgrave et al. [34] show that these more complex loss
functions offer only marginal improvements over the contrastive
and triplet losses. For this reason we focus on the triplet loss, but
in principle our approach can be extended to mirror other losses.

Uncertainty in deep networks is hard to quantify due to
the large number of parameters [13]. Uncertainty quantification
is currently being studied in the context of many computer
vision tasks, among others depth completion [12, 18], semantic
segmentation [18, 23, 27], object detection [6, 17], object
pose estimation [37] and multi-task learning [24]. In practice,
Bayesian approximations such as deep ensembles [29], Monte
Carlo dropout (MC dropout) [14] and conditional autoen-
coders [26] have shown most promise. Although scalable [18],
these methods do not directly apply to image retrieval, as
models typically do not have proper likelihood functions.

Der Kiureghian and Ditlevsen [9] identify the sources of
predictive uncertainties as the model (epistemic uncertainty) and
the data (aleatoric uncertainty). The latter can be divided into
homoscedastic (constant for all input data) and heteroscedastic
(variable depending on the particular input). We focus on het-
eroscedastic uncertainty as this is especially relevant for image
retrieval as illustrated in Figure 1.

Uncertainty quantification for image retrieval using
deep networks is a challenging and under-addressed topic.
Learning stochastic embeddings rather than deterministic ones
has been addressed i.e. for images [4, 36, 44], human poses [49]
and cross-modal data [8, 48]. Most prior work has focused on
classification [4] or pairwise losses. Oh et al. [36] use Monte
Carlo (MC) sampling from learned Gaussian distributions to
evaluate a matching probability between a pair of images. Their
approach is successful for low dimension embeddings (D=3).
The expensive Monte Carlo sampling can be avoided by directly
optimizing the likelihood that two Gaussian embeddings belong
to the same class [44]. In our work, we extend this intuition
to triplets. Triplet losses, contrary to pairwise ones, are known
to address varying interclass similarities and dissimilarities [34].
Sun et al. [49] suggest a ratio of two binary cross entropy terms.
Taking the log of these gives an expression on the form of the
triplet loss. However, their approach relies on MC samples.
Taha et al. [51] cast the triplet loss as a regression loss and
estimate epistemic uncertainty with MC dropout. In later work,
Taha et al. [50] propose to learn the heteroscedastic uncertainty
using a noise parameter per image. In contrast to our proposal,
no model is provided under which the proposed triplet losses
is a proper likelihood. We benchmark our method against a
MC sampling method (triplet regression with MC dropout [51])
and a implicit method (triplet regression that implicitly learns
a noise parameter [50]), showing significantly better uncertainty
estimates in several datasets while matching the predictive
performance of the standard triplet loss.

3. Bayesian Triplet Loss
We propose to embed images as distributions rather than

point estimates. Given these stochastic embeddings, we ask:
What is the probability that an anchor is closer to a positive than
a negative, i.e.

P
(
‖a−p‖2<‖a−n‖2−m

)
, (3)

which is the probabilistic equivalent of the triplet constraint (2).
To realize this idea, we first derive a likelihood function
corresponding to Eq. 3. As we want this to follow the intuition
of the triplet loss closely, our likelihood operates on triplets of
images. We define our likelihood for all triplets in the dataset,

L(Ω)=
∏
X∈Ω

∏
Y∈Ω

∏
Z∈Ω

P(I(X,Y,Z)|X,Y,Z), (4)

whereX, Y ,Z are images from the dataset and I is the label of a
triplet (referred to as triplet label). We note that the triplet labels
can take three values with respectively 1, 2 or 3 images from the
same class. Since I(X,Y,Z) only takes values on a discrete fi-
nite set, we define our likelihood function as the multinomial dis-
tribution. The traditional triplet loss ignores the situations where
all images are from the same or different classes, as these situ-
ations are not informative. Making a similar modeling choice,
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Figure 2: Intuition for the Bayesian triplet loss in three 1D
scenarios. The arrows below the figures indicate the gradient
direction and magnitude of the means, while the arrows
above the distributions indicate the gradients of the variances
(downwards indicate more spread, upwards means more peaky).

the likelihood reduces to only consider triplets with one pair

P(I(X,Y,Z)|X,Y,Z)=P1{I(X,Y,Z)=2}. (5)

Thus, all probability mass is in triplets where two images
are from the same class and one from a different class, just
as with the traditional triplet loss. Using the standard triplet
notation, we set P equal to Eq. 3, thus we derived a proper
likelihood function that describes the probability of an anchor
being closer to a positive than a negative. We adopt this simpler
notation throughout the remainder of the paper to make it clear
which images are from the same class, but emphasize that the
likelihood is defined for all triplets via Eq. 5.

Figure 3 shows the proposed negative log-likelihood
compared to the traditional triplet loss. Our likelihood is smooth
and bounded, making it more robust to outliers. We experience
similar training time as with the traditional triplet loss and have
not experienced zero-gradients that block learning.
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Figure 3: The traditional triplet loss (blue) compared to our
negative log likelihood (orange and green). The negative log
likelihood is smooth and bounded, yielding better robustness.

3.1. The Triplet Likelihood

Having the likelihood form in place, we proceed to
arrive at explicit expressions. We assume that the embed-
dings are isotropic Gaussians rather than points, such that
x ∼ N (µx,σ

2
xI), where x∈{a,p,n} (see Figure 1). This will

be justified in the next section. Rearranging Eq. 3 gives

P(‖a−p‖2−‖a−n‖2<−m)=P(τ <−m), (6)

where τ=

D∑
d=1

(ad−pd)2−(ad−nd)2, (7)

andD is the feature dimension. The squared distance between
two normally distributed random variables follows a scaled
non-central χ2-distribution [32]. The likelihood (6) is a linear
combination of two such distributed squared distances, which
does not have a known density, and we resort to approximations.

By the central limit theorem [31], τ will approximate a
Gaussian distribution for largeD, i.e.

lim
D→∞

P

(
τ−µ
σ

<−m
)

=Φ(−m), (8)

where Φ is the CDF of the standard normal distribution,
and µ and σ are the mean and standard deviation of τ . In
the supplements, we experimentally demonstrate that this
approximation is remarkably accurate even in low dimensions.

We still need to find the leading two moments of τ to apply
this approximation. We provide detailed derivations in the
supplements, and here only sketch the steps.

The mean is determined as

E[τ ]=E[p(p−2a)]−E[n(n−2a)]. (9)

We exploit the symmetry and write first

E[p(p−2a)]=E[p2]−2E[ap]=E[p2]−2E[a]E[p], (10)

since a and p are independent. Using identical arguments for
the second term of E[τ ] we get

E[τ ]=E[p2]−2E[a]E[p]−E[n2]+2E[a]E[n]

=E[p2]−E[n2]−2E[a](E[p]−E[n])

=µ2
p+σ2

p−µ2
n−σ2

n−2µa(µp−µn).

(11)

The variance requires a longer derivation, so we only
present the result here,

Var(τ)

2
=σ2

p(σ
2
p+2µ2

p)+σ2
n(σ2

n+2µ2
n)−4σ2

aµpµn

−2µa
(
µa(µ

2
p+µ2

n)−2µpσ
2
p−2µnσ

2
n

)
(12)

+2(σ2
a+µ2

a)
(
(σ2
p+µ2

p)+(σ2
n+µ2

n)
)
.

Thus, given a mean and a variance estimate for each image in
the triplet, we can analytically compute the mean and variance
of τ . Then the likelihood (5) is evaluated by a Gaussian
likelihood with these parameters.

The intuition of the likelihood function is shown in Figure 2
for three 1D scenarios. In the left figure, the ordering is correct
(anchor is closer to the positive than the negative). The gradients
w.r.t the variances are negative, thus reducing the uncertainty
of each stochastic embedding (indicated with the arrows above
the distributions). In the center figure, the ordering is incorrect
(anchor is closer to the negative than the positive) resulting
in higher uncertainties. The arrows below the plots indicate
the gradient direction and magnitude w.r.t. the means. In all
scenarios the mean of the anchor and positive are attracted,
while the mean of the negative is repelled.
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3.2. Normalization Priors

It is common practice in image retrieval to l2-normalize the
embeddings as this often boosts retrieval performance [1, 40, 41].
A further practical benefit is that for l2-normalized vectors, the
Euclidean distance and the cosine similarity have a monotonic
relation, and thus can be interchanged without altering the
retrieval order. The cosine similarity is computationally efficient
as it reduces to the dot product for normalized vectors [40]. We
investigate two priors to imitate this normalization.

In high dimensions, the standard Gaussian distribution con-
centrates around a sphere of radiusD. Hence, we can mimic the
l2 normalization by imposing a Gaussian prior over the embed-
dings. In particular, the prior p(x)=N (x|0, 1

DI) concentrates
around the unit sphere, and can therefore be seen as an implicit
l2 normalization. We also consider an explicit normalization
prior, by choosing a uniform prior over the unit sphere.

3.3. The Approximate Posterior

The posterior embedding is generally intractable, and we
resort to variational approximations for computational effi-
ciency [2]. We choose a parametrized approximate posterior q as
an isotropic distribution from the same family as the prior. With
the Gaussian prior we choose q(X)=N (µX,σ

2
XI). With the

uniform spherical prior we choose the approximate posterior as
a von Mises Fisher distribution q(X)=vMF(µX,κX) [10]. The
distribution parameters are here described by the neural network.

In the supplements we derive the Expected Lower Bound
(ELBO) for the marginal likelihood to be the right-hand side here

logP(I(X,Y,Z))≥Eq(X)q(Y )q(Z)[logP(I(X,Y,Z)|X,Y,Z)]

−KL(q(X)‖p(X))−KL(q(Y )‖p(Y ))

−KL(q(Z)‖p(Z)). (13)

With the chosen distribution families, the KL divergences have
closed-form expressions [11, 33].

4. Network Architecture and Training
For each image we learn an isotropic distribution rather than

a point embedding. We treat both Gaussian and von Mises
Fisher embeddings identically, and here only describe the
Gaussian setup. Similar to Taha et al. [50], we use a shared
backbone network followed by a mean and a variance head (see
Fig. 4). The mean head is a generalized mean (GeM) [41] ag-
gregation layer followed by a fully connected layer that outputs
µ∈RD. The variance head consists of a GeM layer followed
by two fully connected layers with a ReLU activation function.
We found it was advantageous to estimate σ2 with a softplus
activation rather than estimating logσ2. We have separate GeM
layers for the variance and mean heads, as we found it beneficial
to learn different p-norms for the variance head and mean head.

In real world applications this trade-off between predictive
performance and uncertainty quantification is important.

Figure 4: Overview of our network architecture.
Therefore, we ensure that the number of output parameters is
the same for probabilistic and non-probabilistic models, such
thatDµ+Dσ=D. We focus on isotropic distributions and set
Dσ=1. For the triplet loss, we follow common practice and
l2-normalize the point estimates, that is x/‖x‖2∈RD. For the
Bayesian triplet loss, we l2-normalize the mean embedding
µ/‖µ‖2 ∈RDµ for the uniform prior, and scale with a single
positive trainable parameter for the Gaussian prior.

We use a hard negative mining strategy similar to Arand-
jelovic et al. [1]. Given a query image, we find the closest
negative images in a cache. We only present the model with the
triplets that violate the triplet constraint (2). We update the cache
with 5000 new images every 1000 iterations. Arandjelovic et al.
[1] and Warburg et al. [58] report the importance of updating the
cache regularly to avoid overfitting. This speeds up learning by
reducing the number of trivial examples presented to the model.

5. Evaluation Metrics
The Recall at k (R@k) measures the number of queries

that have at least one positive among their closest k neighbors.
This is a commonly used metric for image retrieval. However,
this metric does not take into account the ratio of positives and
negatives among the neighbors. Therefore, we also evaluate the
Mean Average Precision at k (mAP@k) which measures the
precision of the k closest neighbors [1]. These metrics evaluate
the predictive performance of our models.

The Expected Calibration Error (ECE) describes how
well a model’s uncertainties correspond with its predicted
accuracy, and is a common metric to measure model calibration
in classification tasks [16, 18]. The predictions are divided into
M equally spaced bins based on their confidences. For each
bin Bm, the accuracy is compared to the model confidence,
and weighted by the bin size. We reformulate this metric to fit
for retrieval problems. Confident queries should have a high
mAP and unconfident queries low mAP. We can therefore let
ECE@k measure the weighted distance between mAP@k and
theM th percentiles of the variance. We setM=10.

ECE=

M∑
m=1

|Bm|
n
|mAP@k(Bm)−conf(Bm)|. (14)

6. Experiments and Results
We conduct experiments across three challenging image

retrieval datasets. For each of the experiments, we compare
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Figure 5: Query images for which our Bayesian embedding gives the highest (two first rows) and lowest uncertainty (two last
rows). Scenes associated with high uncertainty mostly correspond to scenes where birds blend in with the background and are hardly
discernible. The two most certain ones correspond to Cliff Swallows, easily discernible by the characteristic mud nests that they
cement to walls or cliffs. In all images, birds stand out from the background and have unique patterns.

the traditional triplet loss [59] with the proposed Bayesian
triplet loss with the Gaussian prior (Bayes Triplet) and with
the von-Mises Fisher prior (Bayes vMF). We also compare
our model’s uncertainty estimates with those produced by
the triplet regression [50] and MC dropout [51]. We evaluate
on two strong backbones, namely Resnet50 [20] (D= 2048)
and the large Densenet161 [21] (D = 2208), to illustrate
that the Bayesian triplet loss provides calibrated uncertainty
estimates across different architectures. Densenet161 is chosen
specifically as it applies dropout in the backbone, which allows
us to compare the uncertainty estimates with MC dropout. For
comparison with triplet regression [51] we consistently use a
dropout rate of 0.2 as reported in [51]. All models are imple-
mented in Pytorch and trained with the Adam optimizer [25]
with learning rate 10−5, weight decay 0.001 and an exponential
learning rate scheduler decreasing the learning rate by 1% per
epoch. We use batches of 25 triplets, each triplet consisting of
one anchor, one positive and five negative images. We resize
the images to 224×224 in all the experiments. During training,
we augment the data with random rotations (up to 10◦), resized
cropping ([0.4; 1] of image size), color jitter and horizontal
flipping. We use a KL-scale factor 10−6 in all experiments.

6.1. CUB 200-2011

We first evaluate the models’ retrieval performance and
calibration performance. The CUB 200-2011 dataset [53]
consists of 11,788 images of 200 bird species. The birds are
captured from different perspectives, making this a challenging
dataset for image retrieval. We divide the first 100 classes into
the training set and the last 100 classes into the test set similarly
to Musgrave et al. [34]. Thus, the trained models have not seen

any of the bird species in the test set, and the learned features
must generalize well across species.

Table 1 shows the retrieval performance for the CUB200
dataset for the models with both a Resnet50 and Densenet161
backbone. We notice that the larger backbone improves the
retrieval performance across all models. MC dropout performs
worse than the other models in terms of predictive performance
and uncertainty quantification. The triplet loss and the triplet
regression have slightly better predictive performance than
the proposed Bayesian models, however both of the Bayesian
models, especially with the Gaussian embeddings, produce
notably better uncertainty estimates.

To gain a better understanding of which images have high
and low variance estimates, Fig. 5 shows the 12 queries with
highest and lowest variance. The (green/red) border indicates if
the image’s nearest neighbor is correctly retrieved. The network
correctly associates high variance to images where the bird
blends in with its surroundings, and low variance to birds that
are centered or easily distinguishable by their color or patterns.

For applications, the user will often be interested in the co-
variance of the distance cov[∆] between a query and its nearest
neighbor. The covariance depends on both the variance of the
query and its nearest neighbor. Figure 6 shows six examples of
queries and nearest neighbors which exhibit high or low covari-
ances. The model assigns low confidence when multiple birds
are present or when a bird blends into its surroundings. High con-
fidence is associated with birds with unique patterns or colors.

Figure 7 shows the Bayesian model with Gaussian embed-
dings is better calibrated than other methods which produce
uncertainty estimates, especially for uncertain queries. The
queries are divided into 10 equi-sized bins. For each bin the
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Low Confidence High Confidence 

Figure 6: Six query images (top) and their NN (bottom), all true positives. Our Bayesian model assigns low confidence to images
with multiple birds or where birds blend in with their surroundings. Birds with distinguishable patterns or colors have high confidence.

R@1 R@5 R@10 M@1 M@5 M@10 ECE@1 ECE@5 ECE@10

R
es

N
et

50

Triplet 0.648 0.864 0.917 0.648 0.505 0.440
TripReg 0.643 0.863 0.916 0.643 0.503 0.437 0.196 0.331 0.397
Bayes vMF 0.635 0.855 0.911 0.635 0.492 0.426 0.138 0.064 0.089
Bayes Triplet 0.612 0.842 0.902 0.612 0.467 0.397 0.119 0.037 0.099
Bayes Triplet (Exp) 0.632 0.857 0.912 0.630 0.489 0.424 0.137 0.020 0.072

D
en

se
ne

t1
61

Triplet 0.717 0.894 0.935 0.717 0.598 0.537
Triplet (MC=50) 0.349 0.591 0.700 0.349 0.200 0.143 0.290 0.428 0.480
TripReg 0.711 0.897 0.939 0.711 0.587 0.524 0.181 0.302 0.363
Bayes vMF 0.713 0.898 0.938 0.713 0.590 0.528 0.022 0.139 0.200
Bayes Triplet 0.683 0.879 0.926 0.683 0.564 0.502 0.176 0.059 0.023
Bayes Triplet (Exp) 0.617 0.838 0.902 0.617 0.494 0.437 0.101 0.025 0.075

Table 1: Recall (R), Mean Average Precision (M) and Expected Calibration Error (ECE) at 1, 5 and 10 on the CUB200 dataset.
Bayes Triplet (Exp) refers to the Expected distance rather than the Euclidean distance was used for nearest neighbor search.
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Figure 7: Calibration plots for triplet regression (TripReg), MC
dropout (MCDrop), Bayesian triplet loss with Gaussian distribu-
tion (BayesTrip) and Bayesian triplet loss with von Mises-Fisher
distribution (vMF).The solid line indicates mAP@5 and the
shaded area covers from mAP@1 to mAP@10. Note how, for
both backbones, the Gaussian distributed embeddings are better
calibrated, especially for uncertain queries.

mAP@{1, 5, 10} is calculated, indicated with the top part of the
shaded area, the solid line, and lower part of shaded area respec-
tively. The black dotted line shows a perfectly calibrated model.

This experiment shows our proposed Bayesian triplet loss
produces retrieval performance comparable to the triplet loss
across two strong backbones. Further, the experiment shows
that our model produces very well-calibrated uncertainty
estimates based on the ECE metric, calibration plots, and
qualitative visualizations.

6.2. Stanford Car-196

Next, we investigate how well the models perform on out-of-
distribution (OOD) examples. This is an important capability for
image retrieval systems since it is infeasible to retrain the models
continuously, and in many practical applications unseen cate-
gories are likely to be added to the database or used as queries
over time. To test the OOD capabilities of the models, we use
the Stanford Car-196 [28] dataset and the models trained on the
CUB200 dataset. The Car-196 dataset is composed of 16,185
images of 196 classes of cars. It is traditionally a classification
dataset, but can be cast as a retrieval dataset by using the first 98
categories as a training set and the last 98 ones as a test set [34].

First, we evaluate how well the models generalize to the
Car-196 test set. Table 2 shows that both Bayesian models
match (and for vMF embeddings with the ResNet50 backbone
surpass) the retrieval performance of the triplet loss. The
ECE metric shows that the Bayesian models are significantly
better calibrated. Among the Bayesian models, the Gaussian
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R@1 R@5 R@10 M@1 M@5 M@10 ECE@1 ECE@5 ECE@10

R
es

N
et

50 Triplet 0.451 0.723 0.813 0.451 0.255 0.179
TripReg 0.447 0.712 0.813 0.447 0.254 0.178 0.292 0.479 0.555
Bayes vMF 0.471 0.733 0.827 0.471 0.270 0.191 0.117 0.162 0.225
Bayes Triplet 0.431 0.696 0.795 0.431 0.235 0.163 0.094 0.271 0.343

D
en

se
ne

t1
61 Triplet 0.495 0.751 0.837 0.495 0.293 0.212

Triplet (MC=50) 0.470 0.717 0.813 0.470 0.269 0.191 0.178 0.367 0.438
TripReg 0.481 0.744 0.836 0.481 0.285 0.205 0.263 0.456 0.536
Bayes vMF 0.478 0.740 0.834 0.474 0.284 0.204 0.160 0.288 0.355
Bayes Triplet 0.467 0.724 0.814 0.467 0.269 0.192 0.101 0.134 0.208

Table 2: Recall (R), Mean Average Precision (M) and Expected Calibration Error (ECE) at 1, 5 and 10 on the CAR196 dataset.

Figure 8: Histogram of the covariance of the distances between queries and their nearest neighbor for triplet regression (TripReg),
Bayesian triplet model with Gaussian embeddings (BayesTrip) and MC Dropout for Resnet50 (R50) and Densenet161 (D161).
Note that in-distribution (blue) and out-of-distribution (orange) covariances are significantly more separated for the Bayesian model.

Figure9:Leastprobableamonginandoutof distributionfor
tripletregression.Carsareoutof distributionqueriesandbirds
areindistributionqueries.
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Figure 9: Least probable among in and out of distribution for
triplet regression (TripReg) and Bayesian triplet Loss with
Gaussian embeddings (BayesTrip). Cars are out of distribution
queries and birds are in distribution queries.

embeddings give better uncertainty estimates, whereas the vMF
embeddings give slightly better predictive performance.

Second, we show that the Bayesian models can detect OOD
queries. To do so, we construct a database consisting of bird im-
ages. We retrieve the nearest neighbor with bird queries – in dis-
tribution (ID) – and car queries – out-of-distribution (OOD). We
expect the distance to the nearest neighbor of the OOD queries
to have high uncertainty compared to ID queries. Figure 8 shows
that the Bayesian model with Gaussian embeddings is signifi-

cantly better at differentiating between ID and OOD queries.
The six least confident Gaussian query embeddings from our

Bayesian model (Fig. 9) reveal OOD queries (cars), whereas for
the triplet regression, several ID queries (birds) are seen among
the least certain. Even though these queries are challenging
birds, we would expect the model to be less confident about
images from a completely different domain.

This experiment shows that the confidences generated by
the Bayesian models generalize well to out-of-distribution
examples and can be used to discriminate between queries from
in- and out-of-distribution. Again, the Bayesian models match
the predictive performance to the other methods, and achieve
state-of-the-art uncertainty estimates.

6.3. Mapillary Street Level Sequences (MSLS)

Finally, we show that the Bayesian models also have com-
petitive retrieval performance and state-of-the-art uncertainty
estimates for large datasets. MSLS [58] is the largest and
most diverse place recognition dataset currently available, and
comprises 1.6M images from 30 cities spanning six continents.
The goal in place recognition is to retrieve images from the
same place as a query image (where the same place is typically
defined within a radius of 25 m). This is challenging due
to the large number of unique places and large spectrum of
appearance changes for each place, such as weather, dynamic,
structural, view-point, seasonal and day/night changes. We use
the train/test split recommended in [58], training on 24 cities
and testing on six other different cities.

The Bayesian models achieve a performance comparable
to the traditional triplet loss, even outperforming it when using
the von Mises-Fisher distribution (Table 3). Furthermore,
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Low Confidence High Confidence 
Figure 10: Low-confidence (columns 1–3) and high-confidence (columns 4 and 5) retrievals from the MSLS dataset. The top
row shows queries and the bottom row shows their NNs. Our model gives low confidence to images with harsh sunlight, blur and
ambiguous tunnels and vegetation. In contrast, high confidence is given for landmark buildings.

R@1 R@5 R@10 M@1 M@5 M@10 ECE@1 ECE@5 ECE@10

R
es

N
et

50 Triplet 0.350 0.495 0.554 0.350 0.235 0.210
TripReg 0.349 0.499 0.551 0.349 0.238 0.215 0.482 0.571 0.593
Bayes vMF 0.349 0.494 0.559 0.349 0.249 0.226 0.482 0.571 0.593
Bayes Triplet 0.354 0.489 0.549 0.354 0.241 0.218 0.208 0.319 0.341

D
en

se
ne

t1
61 Triplet 0.386 0.531 0.583 0.386 0.270 0.246

Triplet (MC=50) 0.282 0.412 0.458 0.282 0.188 0.163 0.540 0.625 0.648
TripReg 0.386 0.529 0.596 0.386 0.268 0.245 0.424 0.543 0.566
Bayes vMF 0.383 0.526 0.588 0.383 0.268 0.245 0.227 0.327 0.350
Bayes Triplet 0.364 0.506 0.571 0.364 0.252 0.228 0.196 0.264 0.283

Table 3: Recall (R), Mean Average Precision (M) and Expected Calibration Error (ECE) at 1, 5 and 10 on the MSLS dataset.

the Bayesian model with Gaussian embeddings provides
state-of-the-art uncertainty estimates for both backbones.

Figure 10 illustrates how the Bayesian model with Gaussian
embeddings associates low confidence to images that are
difficult to retrieve due to harsh sunlight, blur or the ambiguous,
repetitive patterns in tunnels. Furthermore, the model is
able to assign high confidence to images that have unique
structural appearance, as seen in the last two columns. This
experiment shows that the Bayesian models have a competitive
performance in very large and challenging datasets, matching
the predictive performance of the standard triplet loss, and
producing state-of-the-art uncertainty estimates.

6.4. Trade-off between predictive performance and
uncertainty quantification

In many applications, reliable uncertainties are a requirement.
This is common for method that needs to provide guarantees of
certifiability. In safety-critical applications uncertainty is impor-
tant as it can ensure timely interventions from the user e.g. when
image retrieval is used in loop closure for robot localization.

Contemporary probabilistic methods often exhibit a slight
decrease in performance over non-probabilistic methods, but the
trade-off is worth making in the above-mentioned examples. We
indeed observe a similar trend, where the Bayesian Triplet Loss
is either on par or slightly below state-of-the-art in predictive
performance, but is clear state-of-the-art in terms of uncertainty
quantification. One reason for the decrease in predictive per-

formance is that we have less free parameters for the mean
prediction than other methods: To ensure a fair comparison,
we constraint the different models to have the same number of
parameters, which imply that we use some of our capacity on
predicting σ. This lessens our capacity for mean predictions.

7. Conclusion
We have proposed to model image embeddings as stochastic

features rather than point estimates. We derive a new likelihood
that follows the intuition of the triplet loss, but works for
stochastic features. We introduce a prior over the feature
space that together with our likelihood enables us to learn
either Gaussian distributed or von Mises-Fisher distributed
stochastic features. The proposed method, the Bayesian triplet
loss, produces state-of-the-art uncertainty estimates, without
sacrificing predictive performance compared to the triplet loss.
Quantification of uncertainty in image retrieval is vital for
safety-critical applications, while reliable uncertainty estimates
also open many other doors, for example related to interpretabil-
ity or user-friendly retrieval interfaces. We speculate that
reliable uncertainty estimates can also be used for hard negative
mining and avoidance of outliers in query expansion [7].
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