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Abstract

Latent space geometry has shown itself to provide a rich and rigorous framework
for interacting with the latent variables of deep generative models. The existing
theory, however, relies on the decoder being a Gaussian distribution as its simple
reparametrization allows us to interpret the generating process as a random projec-
tion of a deterministic manifold. Consequently, this approach breaks down when
applied to decoders that are not as easily reparametrized. We here propose to use the
Fisher-Rao metric associated with the space of decoder distributions as a reference
metric, which we pull back to the latent space. We show that we can achieve mean-
ingful latent geometries for a wide range of decoder distributions for which the pre-
vious theory was not applicable, opening the door to ‘black box’ latent geometries.

1 Introduction

Generative models such as variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende
et al., 2014] and generative adversarial networks (GANs) [Goodfellow et al., 2014] provide state-of-
the-art density estimators for high dimensional data. The underlying assumption is that data x ∈ X
lie near a low-dimensional manifoldM ⊂ X , which is parametrized through a low-dimensional
latent representation z ∈ Z . As data is finite and noisy, we only recover a probabilistic estimate of
the true manifold, which, in VAEs, is represented through a decoder distribution p(x|z). Our target is
the geometry of this random manifold.

The geometry of the manifold has been shown to carry great value when systematically interacting
with the latent representations, as it provides a stringent solution to the identifiability problem that
plagues latent variable models [Tosi et al., 2014, Arvanitidis et al., 2018, Hauberg, 2018]. For example,
this geometry has allowed VAEs to discover latent evolutionary signals in proteins [Detlefsen et al.,
2020], provide efficient robot controls [Scannell et al., 2021, Chen et al., 2018b], improve latent
clustering abilities [Yang et al., 2018, Arvanitidis et al., 2018] and more. The fundamental issue
with these geometric approaches is that the studied manifold is inherently a stochastic object, but
classic differential geometry only supports the study of deterministic manifolds. To bridge the gap,
Eklund and Hauberg [2019] have shown how VAEs with a Gaussian decoder family can be viewed as
a random projection of a deterministic manifold, thereby making the classic theories applicable to the
random manifold.

A key strength of VAEs is that they can model data from diverse modalities through the choice of
decoder distribution p(x|z). For discrete data, we use categorical decoders, while for continuous
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Figure 1: Traditionally (left), we view
the learned manifold as a stochastic
manifold in the observation space. We
propose (right) to view the learned man-
ifold as a deterministic manifold embed-
ded in the space of decoder distributions,
which has an information geometry.

data we may opt for a Gaussian, a Gamma or whichever distribution best suits the data. But for
non-Gaussian decoders, there exists no useful approach for treating the associated random manifold
as deterministic, which prevents us from systematically interacting with the latent representations
without being subject to identifiability issues.

In this paper, we provide a general framework that allows us to interact with the geometry of almost
any random manifold. The key, and simple idea is to reinterpret the decoder as spanning a determinis-
tic manifold in the space of probability distributionsH, rather than a random manifold in the observa-
tion space (see Fig. 1). Calling on classical information geometry [Amari, 2016, Nielsen, 2020], we
show that the learned manifold is a Riemannian submanifold ofH, and provide corresponding com-
putational tools. The approach is applicable to any family of decoders for which the KL-divergence
can be differentiated, allowing us to work with a wide array of models from a single codebase.

2 The geometry of generative models

As a starting point, consider the deterministic generative model given by a prior p(z) and a decoder
f : Z = Rd → X = RD, which is assumed to be a smooth immersion. The latent representation
z of an observation x is generally not identifiable, meaning that one can recover different latent
representations that give rise to equally good density estimates. For example, let g : Z → Z be a
smooth invertible function such that z ∼ p(z) ⇔ g(z) ∼ p(z), then the latent representation g(z)
coupled with the decoder f ◦ g−1 gives the same density estimate as z coupled with f [Hauberg,
2018]. Practically speaking, the identifiability issue implies that it is improper to view the latent
space Z as being Euclidean, as any reasonable view of Z should be invariant to reparametrizations g.

The classic geometric solution to the identifiability problem is to define any quantity of interest in the
observation space X rather than the latent space Z . For example, the length of a curve γ : [0, 1]→ Z
in the latent space can be defined as its length measured in X on the manifoldM = f(Z) as:

Length(γ) = lim
N→∞

N−1∑
n=1

‖f(n/N)− f(n+ 1/N)‖ =

∫ 1

0

‖∂tf(γ(t))‖dt (1)

=

∫ 1

0

√
γ̇(t)ᵀJf (γ(t))ᵀJf (γ(t))γ̇(t)dt, (2)

where we used the chain rule ∂tf(γ(t)) = Jf (γ(t))γ̇(t) with γ̇(t) = ∂tγ(t) being the curve
derivative, and Jf (γ(t)) ∈ RD×d the Jacobian of f at γ(t). This construction shows how we may
calculate lengths in the latent space with respect to the metric of the observation space, which is
typically assumed to be the Euclidean, but other options exist [Arvanitidis et al., 2021]. In this
way, the symmetric positive definite matrix Jf (γ(t))ᵀJf (γ(t)) is denoted by M(γ(t)) ∈ Rd×d�0 and
captures the geometry ofM in Z . This is known as the pullback metric as it pulls the Euclidean
metric from X into Z . As the Jacobian spans the d-dimensional tangent space at the point x = f(z),
we may interpret M(z) as an inner product 〈u,v〉M = uᵀM(z)v over this tangent space, given us
all the ingredients to define Riemannian manifolds:
Definition 2.1. A Riemannian manifold is a smooth manifoldM together with a Riemannian metric
M(z), which is a positive definite matrix that changes smoothly throughout space and defines an
inner product on the tangent space TzM.

We see that the decoder naturally spans a Riemannian manifold and the latent space Z can be
considered as the intrinsic coordinates. Technically, we can consider any Euclidean space as the
intrinsic coordinates of an abstractM using a suitable metric M(z), which is implicitly induced
by an abstract f . Since the Riemannian length of a latent curve (2), by construction, is invariant
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M⊂ X

µ(γ(t))

Z

γ(t)

Figure 2: A conceptual example of a Rie-
mannian manifold M = µ(Z) lying in
X and the corresponding latent space Z ,
together with an associated shortest paths.

to reparametrizations, it is natural to extend this view with a notion of distance. We say that
the distance between two points z0, z1 ∈ Z is simply the length of the shortest connecting path,
dist(z0, z1) = minγ Length(γ). Calculating distances implies finding the shortest path. One can
show [Gallot et al., 2004] that length minimizing curves also have minimal energy:

Energy(γ) =

∫ 1

0

‖∂tf(γ(t))‖2dt =

∫ 1

0

γ̇(t)ᵀM(γ(t))γ̇(t)dt, (3)

which is a locally convex functional. Shortest paths can then be found by direct energy minimization
[Yang et al., 2018] or by solving the associated system of ordinary differential equations (ODEs)
[Hennig and Hauberg, 2014, Arvanitidis et al., 2019] (see supplementary materials).

2.1 Stochastic decoders

As previously discussed, deterministic decoders directly induce a Riemannian geometry in the latent
space. However, most models of interest are stochastic and there is significant evidence that this
stochasticity is important to faithfully capture the intrinsic structure of data [Hauberg, 2018]. When
the decoder is a smooth stochastic process, e.g. as in the Gaussian Process Latent Variable Model
(GP-LVM) [Lawrence, 2005], Tosi et al. [2014] laid the ground works for modeling a stochastic
geometry. Most contemporary models, such as VAEs, are however not stochastically smooth as the
noise is assumed independent, and this theory is inapplicable. Arvanitidis et al. [2018] proposed an
extension to VAEs with Gaussian decoders which takes the form

f(z) = µ(z) + σ(z)� ε = [ID diag(ε)]

[
µ(z)
σ(z)

]
= Pε h(z), where ε ∼ N (0, ID). (4)

Here we have written the Gaussian decoder in its reparametrized form. This can be viewed as a
random projection of a deterministic manifold spanned by h with projection matrix Pε [Eklund and
Hauberg, 2019], which can easily be given a geometry. The associated Riemannian metric,

M(z) = Jµ(z)ᵀJµ(z) + Jσ(z)ᵀJσ(z), (5)

gives shortest paths that follow the data as distances grow with the model uncertainty [Arvanitidis
et al., 2018, Hauberg, 2018]. An example of a shortest path γ(t) ∈ Z computed under this metric is
shown in Fig. 2 and the respective curve on the corresponding expected manifold µ(γ(t)) ∈M ⊂ X .

Previous work has, thus, focused on pulling back the Euclidean metric from the observation space
to the latent space using the reparametrization of the Gaussian decoder. This is, however, intrinsically
linked with the simple reparametrization of the Gaussian, and this strategy can only extend to
location-scale distributions. We propose an alternative, principled way of dealing with stochasticity
by changing the focus from observations to distributions, leveraging the metrics defined in classical
information geometry.

3 An information geometric latent metric

So far we have seen how we can endow the latent space Z with meaningful distances only when our
stochastic decoders are reparameterizable and their codomain is the observation space X . Ideally, we
would like a more general framework of computing shortest path distances for a more general class
of distributions.

We first note that the codomain of a VAE decoder is the parameter spaceH of a probability density
function. In particular, depending on the type of data a likelihood p(x|η) is specified with parameters
η ∈ H and the mapping h : Z → H allows us to write the likelihood as p(x|z).

3



With this in mind, we can ask what is a natural distance in the latent space Z between two infinitesi-
mally near points z1 and z2 = z1+ε when measured inH. Since our latent codes map to distributions
we can define the (infinitesimal) distance through the KL-divergence:

dist2(z1, z2) = KL(p(x | z1), p(x | z2)). (6)

We can then define the length of a latent curve γ : [0, 1]→ Z as

Length(γ) = lim
N→∞

N−1∑
n=1

√
KL(p(x | γ(n/N)), p(x | γ(n+1/N))), (7)

and distances could be defined as before. This would satisfy our desiderata of a deterministic notion
of similarity in the latent space that is applicable to wide range of decoder distributions.

This construction may seem arbitrary, but in reality it carries deeper geometric meaning. Information
geometry [Nielsen, 2020] considers families of probabilistic densities p(x|η) as represented by their
parameters η ∈ H, such thatH is constructed as a statistical manifold equipped with the Fisher-Rao
metric, which infinitesimally coincides with the KL divergence in Eq. 6. This is known to be a
Riemannian metric overH that takes the following form:

IH(η) =

∫
X

[∇η log p(x | η) · ∇η log p(x | η)ᵀ] p(x | η)dx. (8)

When the parameter spaceH is equipped with this metric, we call it a statistical manifold.

Definition 3.1. A statistical manifold consists of the parameter space H of a probability density
function p(x|η) equipped with the Fisher-Rao information matrix IH(η) as a metric.

Note that the geometry induced by the Fisher-Rao metric is predefined and can be seen as a modeling
decision, since it does not change with data. As mentioned above, the Fisher-Rao metric coincides
with the KL-divergence locally:

Proposition 3.1. The Fisher-Rao metric is the first order approximation of the KL-divergence between
perturbed distributions:

KL(p(x | η), p(x | η + δη)) =
1

2
δηᵀIH(η)δη + o(δη2). (9)

The central idea put forward in this paper is to consider the decoder as a map h : Z → H instead
of f : Z → X , and let H be equipped with the appropriate Fisher-Rao metric. The VAE can then
be interpreted as spanning a manifold h(Z) in H and the latent space Z can be endowed with the
corresponding metric. We detail this approach in the sequel.

3.1 The Riemannian pull-back metric

Our construction implies that the length of a latent curve γ : [0, 1]→ Z when mapped through h can
be measured in the parameter spaceH using the Fisher-Rao metric therein as

Length(γ) =

∫ 1

0

√
∂th(γ(t))ᵀIH(h(γ(t)))∂th(γ(t))dt, (10)

which is obtained from the pullback metric:

Proposition 3.2. Let h : Z → H be an immersion that parametrizes the likelihood. Then, the latent
space Z is equipped with the pull-back metric M(z) = Jᵀ

h(z)IH(h(z))Jh(z).

Instead of considering the parameters η ∈ H of the probabilistic density function that models the
data, we can consider the latent variable z as the parameters of the model. This view is equivalent to
the one explained above, and the corresponding pull-back metric is directly the Fisher-Rao metric
endowed in the latent space Z:

Proposition 3.3. The pullback metric M(z) is identical to the Fisher-Rao metric obtained over the
parameter space Z as M(z) =

∫
X [∇z log p(x|z) · ∇z log p(x|z)ᵀ] p(x|z)dx.
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Therefore, pulling back the Fisher-Rao metric fromH intoZ enables us to compute length minimizing
curves which are indentifiable. The advantange of this approach is that it applies to any type of
decoders and data, as the actual distance is measured over the manifold spanned by h in the parameter
spaceH. So shortest paths between probability distributions move optimally on this manifold while
taking the geometry ofH into account through the Fisher-Rao metric.

Computing shortest paths directly inH need not result in a sensible sequence of probability density
functions p(x|η). To ensure that the shortest paths computed under our metric stay within the support
of the data, we carefully design our decoder h to extrapolate to uncertain distributions outside the
support of the data (see supplements).

Figure 3: The distributions
p(x|γ(t)) under M(z) respect
the structure of data. The
curve with minimal length in
H does not as it leavesM.

In Fig. 3 we compare a shortest path γ : [0, 1] → Z under the
proposed metric M(z) against a curve c : [0, 1]→ H with minimal
length. We consider a Gaussian likelihood with isotropic covariance.
We show the resulting sequence of means for both interpolants color-
coded by the corresponding variances. As expected c(t) does not
take into account the given data, but only respects the geometry of
H implied by the likelihood.

3.2 Efficient geodesic computation

An essential task in computational geometry is to compute shortest
paths. This can be achieved by minimizing curve energy (3) or
solving the corresponding system of ODEs (see Supplementary
Material). The latter, however, requires inordinate computational
resources, since the evaluation of the system relies on the Jacobian
of the decoder and its derivatives.

Bearing in mind that the metric is an approximation of the KL divergence between perturbations (9),
the energy is directly expressed as a sum of KL divergence terms along a discretized curve γ:

Energy(γ) = lim
N→∞

2

N

N−1∑
n=1

KL(p(x | γ(n/N)), p(x | γ(n+1/N))). (11)

A simple algorithm for computing shortest paths is to minimize Eq. 11 with respect to the parameters
of a curve γ. Here we represent γ as a cubic spline with fixed end-points. Then standard free-form
optimization can be applied to minimize energy.

3.3 Example: categorical decoders

The motivation for our approach is that while several options for decoders exist in VAEs depending
on the type of the given data, we could only capture and use the learned geometry in a principled way
with Gaussian decoders. Our proposed methodology is significantly more general.

For a constructive example, assume that x is a categorical variable. We can select a generalized
Bernoulli likelihood p(x|z), such that h(z) = (η1, · · · , ηD) where each ηi represents the probability
of xi being 1. Therefore, we know that the parameters η lie on the unit simplexH. The Fisher-Rao
distance between such categorical variables are known to coincide with spherical distance between
points

√
η on the unit sphere (here the square root is element-wise),

dist(η, η′) = arccos
(√

η
ᵀ√

η′
)
. (12)

We derive this previously known result in the supplementary materials.

Given a curve γ : [0, 1]→ Z we can approximate the energy by using the small angle approximation
cos θ ≈ 1− θ2/2⇔ θ2 ≈ 2− 2 cos θ to give

Energy(γ) =

N−1∑
n=1

(
2− 2

√
h(γ(n/N))

ᵀ√
h(γ(n+ 1/N))

)
, (13)

for sufficiently fine discretization. This gives a particular simple expression for the energy, which can
be minimized to compute geodesics.
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Figure 4: Pulling back the Euclidean and Fisher-Rao metrics with Gaussian decoders. Left to
right: Euclidean pull-back with regularized uncertainty, Euclidean pull-back with a NN to model
uncertainty, Fisher-Rao pull-back with regularized uncertainty, Fisher-Rao pull-back with a NN to
model uncertainty.

3.4 Black-box random geometry

While it is generally possible to derive suitable expressions for computing metrics and energies for a
given decoder family, doing so is tedious, error-prone and time-consuming. This limits the practical
use of the developed theory. Drawing inspiration from black-box variational inference [Ranganath
et al., 2014], we propose a notion of black-box random geometry. Assuming we have access to a
differentiable KL divergence for our choice of decoder distribution, we can apply the algorithm from
Sec. 3.2 to compute geodesics. In practice, modern libraries such as PyTorch [Paszke et al., 2019]
have this functionality implemented for several distributions, so the route is easily followed. For
some distributions, we do not have closed-form expression for the KL divergence, in which case we
can resort to Monte Carlo estimates thereof. More specifically, we can estimate the KL divergence
by generating samples from the likelihood based on the re-parametrization trick, which allows us to
get derivatives with automatic differentiation. Such an approach is e.g. also used in the probabilistic
programming language Pyro [Bingham et al., 2019].

Interestingly, apart from finding the shortest path through the KL formulation, we can also ap-
proximate the actual metric tensor M(z). As we have discussed above, evaluating explicitly this
metric is not a trivial task in many cases. One problem is that we need access to the Jacobian of
the parametrization h, which is typically a deep neural network, so the computation is not always
straightforward. Alternatively, one could use that the Fisher-Rao metric is the Hessian of the KL-
divergence (9), but such approaches fare poorly with current tools for automatic differentiation, where
higher-order derivatives are often incompatible with batching. Furthermore, the Fisher-Rao metric
itself may be intractable depending on the chosen likelihood p(x|η). Nevertheless, we show that the
KL formulation (9) allows us to approximate the latent metric as follows:

Proposition 3.4. We define perturbations vectors as: δei = ε · ei, with ε ∈ R+ a small infinitesimal
quantity, and (ei) a canonical basis vector in Rd. For better clarity, we rename KL(p(x|z), p(x|z +
δz)) = KLz(δz) and we note Mij the components of M(z). We can then approximate by a system
of equations the diagonal and non-diagonal elements of the metric:

Mii ≈ 2 KLz(δei)/ε
2

Mij = Mji ≈ (KLz(δei + δej)−KLz(δei)−KLz(δej)) /ε
2.

Note that this formulation only requires h to be a smooth immersion. This is particularly useful, as
the metric is used for other purposes on a Riemannian manifold and not exclusively for computing
shortest paths. For example, we can compute the exponential map by solving the corresponding ODE
system as an initial value problem relying on M(z). Assuming a fully differentiable KL-divergence,
then the approximated metric is also differentiable. This is all that is required for practical usage of
differential geometry, and we have a reasonable notion of black-box random geometry.

4 Experiments

4.1 Pulling back Euclidean or Fisher-Rao metric with Gaussian decoders

We start our experiments by comparing our proposed way of inducing geometry in latent spaces
with the existing theory: pulling back the Euclidean metric using a stochastic Gaussian decoder (see
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Figure 5: Pulling back the metric from different parameter spaces. From left to right: Normal,
Bernoulli, Beta, Dirichlet and Exponential. White areas represent low entropy of the decoded
distribution, while blue areas represent higher entropy. Notice that the Bernoulli latent space is darker
blue (i.e. more entropic) because distributions with parameters around 1/2 are near uniform.

Eq. 5). We also include in this comparison the effect of regularizing the uncertainty quantification in
the learned geometries. In this regularization, we use transition networks [Detlefsen et al., 2019] to
ensure high uncertainty outside the support of the data (see supplements).

In this experiment, we train four VAEs on a subset of the MNIST dataset composed of only the
digits with label 1. Two of these VAEs implement a standard Gaussian decoder, and we induce a
metric in the latent space by pulling the Euclidean metric back using the Jacobian of the decoder.
In the other two, we consider the co-domain as a stochastic manifold and approximate the pullback
of the Fisher-Rao metric by using the KL divergence locally. In these two sets, one of the decoder
implements the uncertainty regularization described above.

Figure 4 shows the latent spaces of these four decoders, illuminated by the volume measure. In each
of this latent spaces, we analyze the geometry induced by the respective pullbacks by computing
and plotting several geodesics. This figure illustrates two key findings: (1) Our approach is on par
with the existing literature in learning geometric structure, which can be seen by comparing the first
and third latent spaces (Euclidean vs. Fisher Rao, respectively), and (2) Performing uncertainty
regularization plays an instrumental role on learning a sensible geometric structure, which can be
seen when comparing the first and second latent spaces (both coming from the Euclidean pullback,
with and without regularization respectively), and similarly for the third and fourth.

4.2 Pulling back geometry for a toy latent space

For our second experiment, we induced a geometry on a known latent space (given by noisy circular
data in Ztoy = R2) by pulling back the Fisher-Rao metric from the parameter space of different
distributions, showcasing the potential for computing geodesics efficiently, even in non-Gaussian
settings. These latent codes were constructed by sampling 200 angles {θi}200

i=1, constructing vectors
[cos(θ), sin(θ)] + 0.1ε, where ε is sampled from a unit Gaussian. The stochastic manifolds from
which we pull the metric are associated with multivariate versions of the Normal, Bernoulli, Beta,
Dirichlet and Exponential distributions. For this approximation to follow the support of the data
we need to ensure that our mapping Ztoy → H extrapolates to high uncertainty outside our training
codes (see Fig. 4). To do so, we perform uncertainty regularization for each one of the decoded
distributions (see supplementary materials for details on uncertainty regularization).

Figure 5 shows the toy latent space alongside several geodesics computed using the pulled-back
the Fisher-Rao metric from the stochastic manifolds associated with the Gaussian, Bernoulli, Beta,
Dirichlet and Exponential distributions. These geodesics were embedded as splines by minimizing
their energy (as presented in Eq. (11)), using automatic differentiation. These results show that the
approximated pulled-back metric induces a meaningful geometry in this latent space, which recovers
the initial circular structure of the data. In the case of the Bernoulli manifold, we notice that some of
the geodesics fail to converge. We hypothesize that our uncertainty regularization (which decodes to
the uniform outside the support) is not strong enough since Bernoulli distributions with parameters
close to 1/2 are already highly entropic.

It is worth stating that these computations were performed using the analytical expression for the KL
divergence when minimizing the geodesics’ energy (Eq. (11)). We also experimented with computing
these divergences by sampling, arriving at similar results when the number of samples was above
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Figure 7: Geodesic
(top, green) versus lin-
ear (bottom, red) inter-
polation in a motion
capture model. The
geodesic follows the
trend of the data man-
ifold, while the linear
path traverses regions
with no data support.

the threshold of 5 × 103. Notice how this opens the doors for approximating the geometry of the
statistical manifold of any distribution that allows sampling with derivatives.

4.3 Motion capture data with products of von Mises-Fisher distributions

As a further demonstration of our black-box random geometry, we consider a model of human
motion capture data. Here we observe a time series, where each time point represent a ‘skeleton’
corresponding to a human pose. As only pose, and not shape, changes over time, individual limbs
on the body only change position and orientation, but not length. Each limb is then a point on a
sphere in R3 with radius given by the limb length. Following Tournier et al. [2009] we view the
skeleton representation space as a product of spheres. From this, we build a VAE where the decoder
distribution is a product of von Mises-Fisher distributions. To ensure a sensible uncertainty estimates
in the decoder, we enforce that the concentration parameter extrapolate to a small constant.

In this, we do not have easily accessible Fisher-Rao metrics, and instead lean on the KL-formulation
from Sec. 3.4. However, the KL-divergence does not have a closed-form expression for the von
Mises-Fisher distribution, so we resort to a Monte Carlo estimate thereof. This is realisable with
off-the-shelf tools [Davidson et al., 2018].

Figure 6: Shortest paths in the
latent space of a motion cap-
ture model with a product of
von Mises-Fisher decoder.

Figure 6 show the latent representation of a motion capture sequence
of a person walking2 with geodesics superimposed. As before,
we see that geodesics follow the trend of the data, and reflect the
underlying periodic nature of the observed walking motion. We
pick two random points in the latent space, and traverse both the
geodesic and the straight line implied by a Euclidean interpretation
of the latent space. As we traverse, we sample from the decoder
distribution, thereby producing two new motion sequences, which
appear in Fig. 7. As can be seen, the straight line traverses uncharted
territory of the latent space and end up creating an implausible
motion. This is in contrast to the shortest path, that consistently
generate meaningful poses.

4.4 Numerical approximation of the pullback metric

Proposition 3.4 provide an approximation to the metric and we test its accuracy as per Eq. 9. We
discretize the latent space for the just-described von Mises-Fisher decoder and, for each z in this
grid, we both approximate M(z) and compute the expected value of ‖KL(p(x|z), p(x|z + δz))−
1
2δz
>M(z)δz‖ for several samples of δz, uniformly distributed around the circle of radius ε = 0.1.

Notice that we do not have a ground truth to compare against, and that this error will always be
off by o(δz2). Figure 8 shows the latent space plotted against the average error. We can see that
the approximate metric is well-estimated both within and outside the support of the data. The
error, however, grows at the boundaries of the support, where the distribution is changing from a
concentrated von Mises-Fisher to a uniform distribution. It is worth mentioning that we observe
some approximated metrics have negative determinant, showing that our numerical approximations
are imprecise at the boundary. These results warrant further research on more stable ways of
approximating pulled back metrics under our proposed approach.

2Seq. 69_06 from http://mocap.cs.cmu.edu/.
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Figure 8: Left: Average error of the
approximated metric in the von Mises-
Fisher latent space. Darker colors indi-
cate lower error (less than ε2), while
higher values are clear. Right: The
LAND density well-adapts to the non-
linear structure of the latent representa-
tions due to the shortest paths behavior.

4.5 Statistical models on Riemannian manifolds

To demonstrate the usefulness of the approximated metrics, we fit a distribution to data in the
latent space, which require normalization according to the measure induced by the metric. In
particular, we fit a locally adaptive normal distribution (LAND) [Arvanitidis et al., 2016], which
extends the Gaussian distribution to learned manifolds. The probability density function is ρ(z) =

C(µ,Σ) · exp
(
−0.5 · Logµ(z)ᵀΓLogµ(z)

)
, where µ ∈ Rd is the mean, Γ ∈ Rd×d�0 is the precision

matrix and C(µ,Γ) the normalization constant. The operator Logµ(z) returns the scaled initial
velocity v = γ̇(0) ∈ Rd of the shortest connecting path with γ(1) = z and ||v|| = Length(γ). In
Figure 8 we show the LAND density on the learned latent representations under the approximated
Riemannian metric from Sec. 4.4. Since shortest paths follow the data, so does the density ρ.

5 Related work

Besides stochastic decoder models there is rich literature on models with deterministic decoders.
Autoencoders [Rumelhart et al., 1986] and generative adversarial networks [Goodfellow et al., 2014]
are two prominent examples. Our work is not applicable to this setting, and a series of papers have
investigated such deterministic decoders [Shao et al., 2018, Chen et al., 2018a, Laine, 2018]. As
demonstrated in Sec. 4.1 stochasticity is essential to shape the latent space according to the data
manifold. Hauberg [2018] argues model uncertainty plays a role much akin to topology in classic
geometry, in that it, practically, allow us to deviate from the Euclidean topology of the latent space.

Our constructions rely on information geometry, and Fisher-Rao metrics in particular [Nielsen, 2020].
Our work is well within the spirit of information geometry, but does not represent typical usage of this
theory. The most prominent examples of information geometry is within optimization with natural
gradients [Martens, 2014, Martens and Grosse, 2015] Markov Chain Monte Carlo methods [Girolami
and Calderhead, 2011] and hypothesis testing [Nielsen, 2020]. Information geometry provides a rich
family of alternative divergences over the here-applied KL-divergence. We did not investigate their
usage in our context.

To make use of the here-developed tools, we may lean on techniques for statistics on manifolds.
These provide generalizations of a long list of classic statistical algorithms [Zhang and Fletcher, 2013,
Hauberg, 2015, Fletcher, 2011]. We refer the reader to Pennec [2006] for a gentle introduction to this
line of research.

6 Conclusion and discussion

We have proposed a new approach for getting a well-defined and useful geometry in the latent space
of generative models with stochastic decoders. The theory is easy to apply and readily generalize to
a large family of decoder distributions. The latent geometry gives access to a series of operations
on latent variables that are invariant to reparametrizations of the latent space, and therefore are not
subject to a large class of identifiability issues. Such operational representations have already shown
great value in applications ranging from biology [Detlefsen et al., 2020] to robotics [Scannell et al.,
2021]. We have here focused on the Fisher-Rao metric, but other geometries over distributions may
apply equally well, e.g. the Wasserstein geometry may be interesting to explore.

9



Limitations. The largest practical hurdle with the proposed methodology, is that it only works well
for decoders with well-calibrated uncertainties. That is, the decoder should yield high entropy in
regions of little training data to ensure that geodesics follow the trend of the data. This constraint is
shared with existing approaches [Arvanitidis et al., 2018]. Some heuristics exists [Detlefsen et al.,
2019], but principled approaches are currently lacking.

Negative societal impact. The root purpose of this work is to build a rich framework for interacting
with latent variables. As latent variable models are sadly being used to generate misleading content,
e.g. deepfakes, then our tools can regretfully also be used for such purposes. We are, however,
optimistic that the positive uses outweigh the negative.
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A Additional details for information geometry

In this section we provide additional information regarding information geometry. We note that many
of these proposition are already know in the literature, however, we include them for completion and
for the paper to be standalone.

The Fisher-Rao metric is positive definite only if it is non-singular, and then, defines a Riemannian
metric [Nielsen, 2020]. In this paper, we assume that the observation x ∈ X is a random variable
following a probability distribution p(x) such that x ∼ p(x|η), and any smooth changes of the
parameter η would alter the observation x. This way, the Fisher-Rao metric used in our paper is
non-singular and the statistical manifoldH is a Riemannian manifold.

A known result in information geometry [Nielsen, 2020, Amari, 2016] is that the Fisher-Rao metric
is the first order approximation of the KL-divergence, as recall in Proposition A.1. Using this fact,
we can define the Fisher-Rao distance and energy in function of the KL-divergence, leading to
Proposition A.2.
Proposition A.1. The Fisher-Rao metric is the first order approximation of the KL-divergence
between perturbed distributions:

KL(p(x|η), p(x|η + δη)) =
1

2
δη>IH(η)δη + o(δη2),

with IH(η) =
∫
p(x|η) [∇η log p(x|η)∇η log p(x|η)ᵀ] dx.

Proof. Let’s decompose log p(x|η + δη) using the Taylor expansion:

log p(x|η + δη) = log p(x|η) +∇η log p(x|η)ᵀδη +
1

2
δηᵀHessη [log p(x|η)] δη + o(δη2),

where the Hessian is Hessη [log p(x|η)] =
Hessη [p(x|η)]

p(x|η) − ∇η log p(x|η)∇η log p(x|η)ᵀ and the

∇η log p(x|η) =
∇ηp(x|η)
p(x|η) .

Also
∫
∇ηp(x|η)dx = ∇η

∫
p(x|η)dx = 0 and

∫
Hessη[p(x|η)]dx = Hessη[

∫
p(x|η)dx] = 0.

Replacing all those expressions to the first equation finally gives:

KL(p(x|η), p(x|η + δη)) =

∫
p(x|η) log p(x|η)dx−

∫
p(x|η) log p(x|η + δη)dx

= −
∫
p(x|η)

(
∇η log p(x|η)ᵀδη +

1

2
δηᵀHessη[log p(x|η)]δη + o(δη2)

)
dx

=
1

2
δηᵀ

[∫
p(x|η) [∇η log p(x|η)∇η log p(x|η)ᵀ] dx

]
δη + o(δη2).

Definition A.1. We consider a curve γ(t) and its derivative γ̇(t) on the statistical manifold such that,
∀t ∈ [0, 1], γ(t) = ηt ∈ H. The manifold is equipped with the Fisher-Rao metric. The length and the
energy functionals are defined with respect to the metric IH(η):

Length(γ) =

∫ 1

0

√
γ̇(t)ᵀIH(η)γ̇(t)dt and Energy(γ) =

∫ 1

0

γ̇(t)ᵀIH(η)γ̇(t)dt.

Locally length-minimising curves between two connecting points are called geodesics. These can be
found by minimizing the energy using the Euler-Lagrange equations which gives the following system
of 2nd order nonlinear ordinary differential equations (ODEs) [Arvanitidis et al., 2018]

γ̈(t) = −1

2
I−1
H (γ(t))

[
2(γ̇(t)ᵀ ⊗ Id)

∂vec[IH(γ(t))]

∂γ(t)
γ̇(t)− ∂vec[IH(γ(t))]

∂γ(t)

ᵀ

(γ̇(t)⊗ γ̇(t))
]
. (14)

Proposition A.2. The KL-divergence between two close elements of the curve γ is defined as:
KL(pt, pt+δt) = KL(p(x|γ(t)), p(x|γ(t + δt))). The length and the energy functionals can be
approximated with respect to this KL-divergence:

Length(γ) ≈
√

2
∑T
t=1 KL(pt, pt+δt) and Energy(γ) ≈ δt

2

∑T
t=1 KL(pt, pt+δt)
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Proof. On the statistical manifold, we have γ(t + δt) = γ(t) + δtγ̇(t). The KL-divergence be-
tween perturbed distributions can be defined as: KL(pt, pt+δt) = KL(p(x|γ(t)), p(x|γ(t+ δt))) =
KL(p(x|ηt), p(x|ηt + δηt)), with ηt = γ(t) and δηt = δt γ̇(t). Then, we obtain:

KL(pt, pt+δt) =
1

2
δt2 γ̇(t)ᵀIH(ηt)γ̇(t) + o(δt2).

The length and energy terms appear in the following equations:∫ 1

0

KL(pt, pt+δt)dt =
δt2

2

∫ 1

0

γ̇(t)ᵀIH(ηt)γ̇(t)dt+ o(δt2) =
δt2

2
Energy(γ) + o(δt2),∫ 1

0

√
KL(pt, pt+δt)dt =

δt√
2

∫ 1

0

√
γ̇(t)ᵀIH(ηt)γ̇(t)dt+ o(δt2) =

δt√
2

Length(γ) + o(δt2).

If we want approximate any continuous function f with a discrete sequence, by partitioning it in T
small segments, such that: δt ≈ 1

T , we have:
∫ 1

0
f(t)dt ≈

∑T
t=1 f(t)δt, which in our case gives:

Length(γ) ≈
√

2
∑T
t=1 KL(pt, pt+δt) and Energy(γ) ≈ 2

δt

∑T
t=1 KL(pt, pt+δt).

A.1 The Fisher-Rao metric for several distributions

Distributions Probability density functions Parameters Fisher-Rao matrix

Normal 1√
2πσ2

exp− (x−µ)2

2σ2 µ, σ2 IN (µ, σ2)

Bernoulli θx(1− θ)1−x θ IB(θ)

Categorical
∏K
k=1 θ

xk
k θ1, . . . , θK IC(θ1, . . . , θK)

Gamma βαxα−1e−βx

Γ(α) α, β IG(α, β)

Von Mises-Fisher, for S2 κ
4π sinhκ exp (κµᵀx) κ, µ IS(κ, µ)

Beta Γ(α)Γ(β)
Γ(α+β) xα−1(1− x)β−1 α, β IB(α, β)

Table 1: List of distributions

With the notations of Table 1, the Fisher-Rao matrices of the the univariate Normal, Bernoulli and
Categorical are:

IN (µ, σ2) =

(
1
σ2 0
0 1

2σ4

)
, IB(θ) =

1

θ(1− θ)
, IC(θ1, . . . , θK) =


1/θ1 0 . . . 0
0 1/θ2 . . . 0
...

...
. . .

...
0 0 . . . 1/θK


In addition, the Fisher-Rao matrices of the Gamma, Von Mises-Fisher and the Beta distributions are:

IG(α, β) =

( α
β2 − 1

β

− 1
β Ψ1(α)

)
,

IS(κ, µ) =

(
κK(κ)(1− 3µµ>) + κ2µµ> (κK(κ)2 − 2

kK(κ) + 1)µ
(κK(κ)2 − 2

kK(κ) + 1)µ> 3K(κ)2 − 2
κK(κ) + 1

)
,

IB(α, β) =

(
Ψ1(α)−Ψ1(α+ β) −Ψ1(α+ β)
−Ψ1(α+ β) Ψ1(β)−Ψ1(α+ β)

)
,

with Ψ1(α) = ∂2 ln Γ(α)
∂α the trigamma function, and K(κ) = cothκ− 1

κ .
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Proof. The univariate Normal, Bernoulli and Categorical have already been studied by Jakub Tomczak
[2012], and the Beta distribution by Brigant and Puechmorel [2019]. We will then focus our proof on
the Gamma and the Von-Mises Fisher distributions.

In order to bypass unnecessary details, we will use the following notations, we redefine the Fisher-
Rao as: I(η) = Ex[g(η, x)g(η, x)ᵀ], with g(η, x) = ∇η ln p(x|η) the Fisher score. We call G =
g(η, x)g(η, x)>, and Gij the matrix elements.

Gamma distribution:

We have p(x|α, β) = Γ(α)−1βαxα−1e−βx, which leads to:

ln p(x|α, β) = − ln Γ(α) + α lnβ + (α− 1) lnx− βx,
∂ ln p

∂α
= −Ψ(α) + lnβ + lnx,

∂ ln p

∂β
=
α

β
− x.

Then:

G11 =

(
∂ ln p

∂α

)2

= (Ψ0(α) + lnβ)2 + 2(Ψ(α) + lnβ)lnx+ ln2 x,

G22 =

(
∂ ln p

∂β

)2

=

(
α

β

)2

− 2
α

β
x+ x2,

G12 = G21 =
∂ ln p

∂α
· ∂ ln p

∂β
= (Ψ(α) + lnβ)

(
α

β
− x
)

+
α

β
lnx− x lnx.

We know that E[x] = α
β . We can compute, using your favorite symbolic computation software, the

following moments:

E[lnx] = − lnβ + Ψ(α)

E[x lnx] =
α

β
(Ψ(α+ 1)− lnβ)

E[ln2 x] = (lnβ −Ψ(α))
2

+ Ψ1(α)

Replacing the moments for the following equations: E[G11], E[G22] and E[G12] will finally give the
Fisher-Rao matrix.

Von Mises Fisher distribution, for S2:

We have p(x|µ, κ) = C3(κ) exp(κµᵀx), with C3(κ) = κ(4π sinhκ)−1. Here, µ is a 3-dimensional
vector with ‖µ‖ = 1.

ln p(x|µ, κ) = lnκ− ln 4π − ln sinh(κ) + κµᵀx

∇µ ln p = κx

∂ ln p

∂κ
= κ−1 − coth(κ) + µᵀx.

Here, the Fisher-Rao matrix IS will be composed of block matrices, such that: IS = E[G], with G11

a 3× 3-matrix, G22 a scalar, and G12 = G>21 a 3-dimensional vector.

G11 = ∇µ ln p∇µ ln p> = κ2xxᵀ

G22 =

(
∂ ln p

∂κ

)2

= K(κ)2 + 2K(κ)µ>x + (µᵀx)2

G12 = G>21 =
∂ ln p

∂κ
· ∇µ ln p = (K(κ) + µᵀx)κx,

with K(κ) = coth(κ)− 1
κ .
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We know from Hillen et al. [2016] that the mean and variance of the Von Mises Fisher distribution in
the 3-dimensional case is: E[x] = K(κ)µ and Var[x] = 1

κK(κ)1+(1− coth(κ)
κ + 2

κ2 −coth2(κ))µµ>.
We can then deduce the following meaningful moments:

E[xx>] = Var[x] + E[x]E[x]> =

(
1− 3

κ
K(κ)

)
µµ> +

1

κ
K(κ)1,

E[µᵀx] = µ>E[x] = K(κ)µ>µ = K(κ)

E[(µᵀx)2] = µ>Var[x]µ+ E[µᵀx]2 = 1− 2

κ
K(κ),

E[µᵀxx] = E[µxxᵀ] = E[xxᵀ]µ =

(
1− 3

κ
K(κ)

)
µ+

1

κ
K(κ)µ.

Replacing those moments in the following expressions: E[G11], E[G22], E[G12] directly gives the
Fisher-Rao metric.

B Curve energy approximation for categorical data

In this section we present the details of the example in Section 3.3. In particular, we the steps to
derive an approximation to the energy of a latent curve in closed form, which is suitable for applying
automatic differentiation. This is particularly useful for our setting, since it allows us to consider our
framework as a Black Box Random Geometry processing toolbox.

Let a random variable x ∈ RD that follows a generalized Bernoulli likelihood p(x|η), so the vector
x ∈ RD is of the form x = (0, · · · , 1, · · · , 0) with

∑
i xi = 1. The parameters η ∈ RD are given

as η = h(z), with ηi ≥ 0 ∀i and
∑
i ηi = 1 so we know that the parameters lie on the unit simplex.

Actually, they represent the probability the corresponding dimension to be 1 on a random draw. Also,
the p(x|z) = η

[x1]
1 · · · η[xD]

D , where [xi] = 1 if xi = 1 else [xi] = 0 which can be seen as an indicator

function. The log p(x|η) =
∑
i[xi] log(ηi) and ∇η log p(x|η) =

(
[x1]
η1
, . . . , [xD]

ηD

)
. Due to the outer

product we have to compute the following expectations

Ex

[
[xi]

ηi

[xj ]

ηj

]
= 0, if i 6= j, (15)

Ex

[(
[xi]

ηi

)2
]

=
1

ηi
, if i = j, (16)

because the [xi] and [xj ] cannot be 1 on the same time, while the Ex[[xi]
2] = ηi as it shows the

number of times xi = 1. So the Fisher-Rao metric of H is equal to IH(η) = diag (1/η1, . . . , 1/ηD).
Note that the shortest paths between two distributions must be on the unit simplex inH, while on the
same time respecting the geometry of the Fisher-Rao metric.

We can easily parametrize the unit simplex by [η1, . . . , ηD−1, η̃D] with

η̃D(η1, . . . , ηD−1) = 1−
D−1∑
i=1

ηi. (17)

This allows to pullback the Fisher-Rao metric in the latent space [η1, . . . , ηD−1] as we have described
in this paper. Intuitively, the z = [η1, . . . , ηD−1] and the function h is the parametrization of the
simplex. Hence, we are able to compute the shortest path using the induced metric.

However, there is a simpler way to compute this path. We know that the element-wise square root of
the parameters η gives a point on the positive orthonant of the unit sphere as yi =

√
ηi ⇒

∑
i y

2
i =∑

i

√
ηi

2 = 1. We also know that the shortest path on a sphere is the great-circle. Therefore,
the distance between two distributions parametrized by η and η′ on the unit simplex in H, can be
equivalently measured using the great-circle distance between their square roots as

dist(η, η′) = arccos
√
η
ᵀ√

η′. (18)
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In this way, we can approximate the energy of a curve c(t) in the latent space as follows

Energy[c] ≈
N−1∑
n=1

dist2(h(c(n/N)), h(c(n+ 1/N))) =

N−1∑
n=1

arccos2
√
h(c(n/N))

ᵀ√
h(c(n+ 1/N))

=

N−1∑
n=1

(
2− 2

√
h(c(n/N))

ᵀ√
h(c(n+ 1/N))

)
, (19)

where we used at the last step the small angle approximation cos θ ≈ 1− θ2

2 ⇔ θ2 ≈ 2−2 cos θ. Note
that this formulation is suitable for our proposed method to compute shortest paths (see Section 3.2).

The derivation above represents the conceptual strategy, while in general we proposed to use the KL
divergence approximation result (9) in place of the great-circle distance. Intuitively, when the KL
divergence has an analytic solution, we can derive an analogous energy approximation. Even if the
solution of the KL is intractable, we can still use our approach as long as we can estimate the KL
using Monte Carlo and propagate the gradient through the samples using a re-parametrization scheme
or a score function estimator.

C Information geometry in generative modeling

In this section we present the additional technical information related to the pullback Fisher-Rao
metric in the latent space of a VAE.

C.1 Details for the pullback metric in the latent space

We call f the non linear function, typically parametrized as deep neural networks, that maps the vari-
ables from the latent space Z to the parameter spaceH, such that: f(z) = η, with z ∈ Z and η ∈ H.
Furthermore, the data x ∈ X is reconstructed such that it follows a specific distribution: x ∼ p(x|η),
with p(x|η) being for instance a Bernoulli or Gaussian distribution. The parameter spaceH is a statisti-
cal manifold equipped with Fisher-Rao metric: IH(η)

∆
=
∫
p(x|η) [∇η log p(x|η)∇η log p(x|η)ᵀ] dx.

We denote by Jf the Jacobian of f .
Proposition C.1. The latent space Z is equipped with the pullback metric:

M(z)
∆
= Jf (z)ᵀIH(f(z))Jf (z).

Proof. The parameter space is a statistical manifold equipped with the Fisher-Rao metric IH(η),
thus the scalar product at η between two vectors dη1, dη2 ∈ H is: 〈dη1, dη2〉IH(η) = dηᵀ1 IH(η)dη2.
Furthermore, we have f : Z → H a smooth immersion. For two vectors dz1, dz2 ∈ Z , we have at
η = f(z) that: 〈dη1, dη2〉IH(η) = 〈Jf (z)dz1,Jf (z)dz2〉IH(η) = dzᵀ1(Jf (z)ᵀIH(f(z))Jf (z))dz2.

Proposition C.2. Our pullback metric M(z) is actually equal to the Fisher-Rao metric obtained
over the parameter space Z:

M(z) = IZ(z)
∆
=

∫
p(x|z) [∇z log p(x|z)∇z log p(x|z)ᵀ] dx

Proof. We will show that IZ(z) = Jf (z)ᵀIH(η)Jf (z). Let’s consider the definition of the Fisher-
Rao metric in Z :

IZ(z) =

∫
∇z log p(x | z) · ∇z log p(x | z)ᵀp(x | z)dx (20)

=

∫
Jf (z)ᵀ∇η log p(x|η)∇η log p(x|η)ᵀJf (z)p(x|η)dx (21)

= Jf (z)ᵀ
[∫
X
∇η log p(x|η)∇η log p(x|η)ᵀp(x|η)dx

]
Jf (z) (22)

= Jf (z)ᵀIH(f(z))Jf (z) = M(z)
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where we use the fact that η = f(z) so the∇z log p(x|f(z)) = Jf (z)ᵀ · ∇η log p(x|η)

The same argument can be proved as follows:

〈dη, IH(η)dη〉 = 〈Jf (z)dz, IH(f(z))Jf (z)dz〉 (23)

= 〈Jf (z)dz,

∫
∇η log p(x|η)∇η log p(x|η)ᵀp(x|η)dx Jf (z)dz〉 (24)

= 〈dz,
∫

Jf (z)ᵀ · ∇η log p(x|η)∇η log p(x|η)ᵀ · Jf (z)p(x|η)dx dz〉 (25)

= 〈dz,
∫
∇z log p(x|z)∇z log p(x|z)ᵀp(x|z)dx dz〉 = 〈dz, IZ(z)dz〉 (26)

In section A.1, we have seen how to derive a close-form expression of the Fisher-Rao metric for a
one-dimensional observation x that follows a specific distribution. In practice, x ∈ X ⊂ RD is a
multi-dimensional variable where each dimension represents, for instance, a pixel when working with
images or a feature when working with tabular data. Each feature, xi with i = 1 · · ·D, is obtained
for a specific set of parameters {ηi}. We assume that the features follow the same distribution D,
such that: xi ∼ p(xi|ηi), and p(x|η) =

∏D
i=1 p(xi|ηi).

Proposition C.3. The Fisher-Rao metric IH(η) is a block matrix where the diagonal terms are the
Fisher-Rao matrices IH,i obtained for each data feature xi:

IH(η) =


IH,1 0 . . . 0

0 IH,2 . . . 0
...

...
. . .

...
0 0 . . . IH,D


Proof. We have xi ∼ p(xi|ηi) and IH,i =

∫
p(xi|ηi) [∇ηi log p(xi|ηi)∇ηi log p(xi|ηi)ᵀ] dxi. Also,

we assumed: p(x|η) =
∏D
i=1 p(xi|ηi). We then have: log p(x|η) =

∑D
i=1 log p(xi|ηi), and the

Fisher score: ∇η log p(x|η) = ∇η
∑D
i=1 log p(xi|ηi) = [∇η1 ln p(x1|η1), . . . ,∇ηD ln p(x1|ηD)]

ᵀ.

The matrix IH(η) is thus a D ×D block matrix, where the (i, j)-block element is:

Iij =

∫
p(xi|ηi) [∇ηi log p(xi|ηi)∇ηi log p(xj |ηj)ᵀ] dxi.

Let’s note that:∫
p(xi|ηi)∇ηi log p(xi|ηi)dxi =

∫
p(xi|ηi)

∇ηip(xi|ηi)
p(xi|ηi)

dxi = ∇ηi
∫
p(xi|ηi)dxi = 0.

When i = j, we have Iii = IH,i, with IH,i being the Fisher-Rao metric obtained for: xi ∼ p(xi|ηi).
When i 6= j, we have: Iij = ∇ log p(xj |ηj)ᵀ

∫
p(xi|ηi)∇ηi log p(xi|ηi)dxi = 0.

Then, for example, if we are dealing with binary images, and make the assumption that each pixel
xi follows a Bernoulli distribution: p(xi|ηi) = ηxi(1− ηi)1−xi , then according to Section A.1 and
Proposition C.3, the Fisher-Rao matrix that endows the parameter spaceH is:

IH(η) =


1

η1(1−η1) 0 . . . 0

0 1
η2(1−η2) . . . 0

...
...

. . .
...

0 0 . . . 1
ηD(1−ηD)

 .

We have seen that in theory, we can obtain a close form expression for the pullback metric, if the
probability distribution is known. In practice, we can directly infer the metric using the approximation
of the KL-divergence.
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Proposition C.4. We define perturbations vectors as: δei = ε · ei, with ε ∈ R+ a small infinitesimal
quantity, and (ei) a canonical basis vector in Rd. For better clarity, we rename KL(p(x|z), p(x|z +
δz)) = KLz(δz) and we note Mij the components of M(z). We can then approximate by a system
of equations the diagonal and non-diagonal elements of the metric:

Mii ≈ 2 KLz(δei)/ε
2

Mij = Mji ≈ (KLz(δei + δej)−KLz(δei)−KLz(δej)) /ε
2.

Proof. From Proposition A.1, we know that:

KLz(δz) =
1

2
δz>M(z)δz + o(δz2).

Let’s take δei = ε · ei. On one hand, we have: δe>i M(z)δei = ε2Mii. On the second hand, we also
have: δe>i M(z)δei ≈ 2KLz(δei), which gives us the equation to infer the diagonal elements of the
metric.

Now, let’s take δei + δej = ε · (ei + ej). Then, we have: (δei + δej)
>M(z)(δei + δej) =

ε2(Mii + Mjj + Mij + Mji). We also know that Mji = Mij . Again, we also have: (δei +
δej)

>M(z)(δei + δej) ≈ 2KLz(δei + δej).

We can replace the terms Mii and Mjj in the equation obtained above with the
KL-divergence for the diagonal terms. Which finally gives us: Mij = Mji ≈
(KLz(δei + δej)−KLz(δei)−KLz(δej)) /ε

2.

C.2 Uncertainty quantification and regularization

As discussed in the main text, we carefully design our mappings from latent space to parameter
space such that they model the training codes according to the learned decoders, and extrapolate to
uncertainty outside the support of the data. This, we refer to as uncertainty regularization. In this
section we explain it in detail. The core idea of this uncertainty regularization is imposing a “slider”
that forces the distribution p(x|z) to change when z is far from the training latent codes. For this, we
use a combination of KMeans and the sigmoid activation function.

We start by encoding our training data, arriving at a set of latent codes {zn}Nn=1 ⊆ Z . We then train
KMeans(k) on these latent codes (where k is a hyperparameter that we tweak manually), arriving
at k cluster centers {cj}kj=1. These cluster centers serve as a proxy for "closeness" to the data: we
know that a latent code z ∈ Z is near the support if D(z) := minj

{
‖z− cj‖2

}
is close to 0.

The next step in our regularization process is to reweight our decoded distributions such that we
decode to high uncertainty when D(z) is large, and we decode to our learned distributions when
D(z) ≈ 0. This mapping from [0,∞)→ (0, 1) can be constructed using a modified sigmoid function
Detlefsen et al. [2020, 2019], consider indeed

σ̃β(d) = Sigmoid
(
d− c · Softplus(β)

Softplus(β)

)
, (27)

where β ∈ R is another hyperparameter that we manually tweak, and c ≈ 7.

With this translated sigmoid, we have that σ̃β(D(z)) is close to 0 when z is close to the support of the
data (i.e. close to the cluster centers), and it converges to 1 when D(z)→∞. σ̃β(D(z)) serves, then,
as a slider that indicates closeness to the training codes. This reweighting takes the following form:

reweight(z) = (1− σ̃β(D(z)))h(z) + σ̃β(D(z)) extrapolate(z), (28)

where h(z) = η ∈ H represents our learned networks in parameter space, and extrapolate(z) returns
the parameters of the distribution that maximize uncertainty (e.g. σ →∞ in the case of an isotropic
Gaussian, p→ 1/2 in the case of a Bernoulli, and κ→ 0 in the case of the von Mises-Fisher).

For the particular case of the experiment in which we pull back the Fisher-Rao metric from the
parameter space of several distributions (see 4.2), Table 2 provides the exact extrapolation mechanisms
and implementations of h(z).
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Distribution h : Ztoy → H Extrapolation mechanism
Normal µ(z) = 10 · f3(z), σ(z) = 10 · Softplus(f3(z)) σ(z)→∞
Bernoulli p(z) = Sigmoid(f15(z)) p(z) = 1/2

Beta α(z) = 10 · Softplus(f3(z)), β(z) = 10 · Softplus(f3(z)) (α(z), β(z)) = (1, 1)

Dirichlet α(z) = Softplus(f3(z)) α(z) = 1

Exponential λ(z) = Softplus(f3(z)) λ(z)→ 0

Table 2: This table shows the implementations of the decode and extrapolate functions in Eq. (28) for
all the distributions studied in our second experiment (see Sec. 4.2). Here we represent a randomly
initialized neural network with fi, where i represents the size of the co-domain. For example, in
the case of the Dirichlet distribution, we use a randomly initialized neural network to compute the
parameters α of the distribution and, since these have to be positive, we pass the output of this
network through a Softplus activation; moreover, since the Dirichlet distribution is approximately
uniform when all its parameters equal 1, our extrapolation mechanism consists of replacing the output
of the network with a constant vector of ones.

Pulling back the Euclidean vs. Fisher-Rao (Sec. 4.1)
Module MLP

Encoder
µ Linear(728, 2)

Decoder
µ Linear(2, 728)

σUR RBF(), PosLinear(500, 1), Reciprocal(), PosLinear(1, 728)
σno UR Linear(2, 728), Softplus()

Optimizer Adam (α = 1× 10−5)
Batch size 32

Table 3: This table shows the Variational Autoencoder used in our first experiment (see Sec. 4.1). The
network for approximating the standard deviation σ leverages ideas from Arvanitidis et al. [2018],
in which an RBF network is trained on latent codes using centers positioned through KMeans. The
operation PosLinear(a, b) represents the usual Linear transformation with a inputs and b outputs,
but considering only positive weights. To compare between having and not having uncertainty
regularization, we use two different approximations of the standard deviation in the decoder: σUR
when performing meaningful uncertainty quantification, and σ no UR otherwise.

D Details for our implementation and experiments

In this section we present the technical details that we used in our implementation and experiments.
We will publish our code upon acceptance here.

D.1 Shortest path approximation with cubic splines

As we have described in the main paper, we propose an approximate solution for the shortest
paths based on cubic splines. Let a cubic spline c(t) = [1, t, t2, t3]ᵀ[ψ0, ψ1, ψ2, ψ3] with parameters
ψ ∈ R4, which we optimize using the approximation of the curve energy ψ∗ = argminψ Energy[cψ].
In general, we can use Prop. A.2 as long as we can propagate the gradient through the KL or as in
(19) if an explicit closed form solution exists. In this case, we are able to use automatic differentiation
for the optimization of the parameters.

D.2 Models used

In this section we describe, in detail, the models that we used for our experiments (see Sec.4). All the
networks that we used are Multi-Layer Perceptrons implemented in PyTorch.
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Toy latent spaces (Sec. 4.2)
Distribution Module MLP Seed for randomness β in σ̃β

Normal µ Linear(2,3) 1 -2.5
σ Linear(2,3), Softplus()

Bernoulli p Linear(2,15), Sigmoid() 1 -3.5

Beta α Linear(2,3), Softplus() 1 -4.0
β Linear(2,3), Softplus()

Dirichlet α Linear(2,3), Softplus() 17 -4.0

Exponential λ Linear(2,3), Softplus() 17 -4.0

Table 4: This table describes the neural networks used for the experiment presented in Sec. 4.2.
Following the notation of PyTorch, Linear(a, b) represents an MLP layer with a input nodes and b
output nodes. In each of these networks, we implement the reweighting operation described in Sec.
C.2, and we describe the β hyperparameter present in the modified sigmoid function (Eq. (27)). This
networks were not trained in any way, and they were initialized using the provided seed.

Decoding to a von Mises-Fisher Distribution (Sec 4.3, 4.4, 4.5)
Module MLP

Encoder (Normal dist.)
µ Linear(3× 26, 90), Linear(90, 2)
σ Linear(3× 26, 90), Linear(90, 2), Softplus()

Decoder (vMF dist.)
µ Linear(2, 90), Linear(90, 3× 26), Linear(3× 26, 3× 26)
κ Linear(2, 90), Linear(90, 3× 26), Linear(3× 26, 26), Softplus()

Optimizer Adam (α = 1× 10−3)
Batch size 16
β in σ̃β -5.5

Table 5: This table shows the Variational Autoencoder used in our last two experiments (see Sec.
4.3, 4.4). Our motion capture data tracked 26 different bones, and thus we decode to a product of 26
different von Mises-Fisher distributions.

First, Table 3 shows the Variational Autoencoder implemented for the experiment described in
Sec. 4.1. In the computations without uncertainty regularization, we used a simpler model for the
uncertainty quantification (namely, a single Linear layer, followed by a Softplus activation). For our
second experiment involving a toy latent space, we also provide the implementation of the respective
MLPs in Table 4. Finally, Table 5 presents the VAE trained for the experiments related to motion
capture data: pulling back the Fisher-Rao metric from a product of von Mises-Fisher distributions
(Sec. 4.3), approximating the metric locally by solving a system of linear equations (Sec. 4.4), and
fitting a LAND density in this latent space (Sec. 4.5).

D.3 Metric approximation and KL by sampling

When visualising our latent space as a statistical manifold, we can obtain a direct approximation of
the metric using the KL-divergence between two close distributions (Proposition 3.4). We will show
here, in simple cases, how our metric approximation compares to close-form expressions.

In the following experiment, our statistical manifold is the parameter space of known distributions
(Beta and Normal). Their Fisher-Rao matrices are well-known (Sec. A.1), and we approximate them
by computing the KL-divergence of sampled distributions. We call Mt the theoretical metric and
Ma the approximated metric, and we note εr = ‖Mt−Ma‖

‖Mt‖ the relative error between the theoretical
and approximated matrices. Here, ‖·‖ denotes the Frobenius norm. For the Normal distribution,
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we empirically obtain: εr = 5.32 · 10−4 ± 9.63 · 10−4, and for the Beta distribution, we have:
εr = 1.73 · 10−5 ± 1.17 · 10−5.

D.4 Information for fitting the LAND model

The locally adaptive normal distribution (LAND) [Arvanitidis et al., 2016] is the extension of the
normal distribution on Riemannian manifolds learned from data. Pennec [2006] first derived this
distribution on predefined manifolds as the sphere and also showed that it is the maximum entropy
distribution given a mean and a precision matrix. The flexibility of this probability density relies on
the shortest paths. However, the computational demand to fit this model is relatively high, especially
in our case, since we need to use an approximation scheme to find the shortest paths.

In particular, we compute the logarithmic map v = Logx(y) by first finding the shortest path
between x and y, and then, rescaling the initial velocity as v = ċ(0)

||ċ(0)||Length(c), which ensures
that ||v|| = Length(c). In addition, for the estimation of the normalization constant we use the
exponential map Expx(v) = cv(t), which is the inverse operator that generates the shortest path
with c(1) = y taking the rescaled initial velocity v as input. Also, we should be able to evaluate the
metric. While the logarithmic map can be approximated using our approach (Section D.1), for the
exponential map we need to solve the ODEs system (14) as an initial value problem (IVP). Note that
we fit the LAND using gradient descent, which implies that the computation of these operators is the
main computational bottleneck.

We provided a method in Proposition 3.4, which enables us to approximate the pullback metric
in the latent space of a generative model using the corresponding KL divergence. Even if this
is a sensible approach, in practice, the computational cost is relatively high as we might need to
estimate the KL using Monte Carlo. For example, this is the case when the likelihood is the von
Mises-Fisher. This further implies that fitting the LAND using this approach is prohibited due to the
computational cost. Especially, since we need to evaluate many times the metric and its derivative for
the computation of each exponential map. Hence, in order to fit the LAND efficiently, we used the
following approximation based on Hauberg et al. [2012].

First we construct a uniformly spaced grid in the latent space. Then, we evaluate the metric using
Proposition 3.4 for each point on the grid getting a set {zs,Ms}Ss=1 of metric tensors. Thus, we can
estimate the metric at any point z as

M(z) =

S∑
s=1

w̃s(z)Ms, with w̃s(z) =
ws(z)∑S
j=1 ws(z)

and ws(z) = exp

(
−||zs − z||2

2σ2

)
(29)

where σ > 0 the bandwidth parameter. This is by definition a Riemannian metric as a weighted
sum of Riemannian metrics with a smooth weighting function. In this way, we can approximate the
pullback of the Fisher-Rao metric in the latent spaceZ in order to perform the necessary computations
more efficiently.
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