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Abstract

We propose a fast, simple and robust algo-
rithm for computing shortest paths and dis-
tances on Riemannian manifolds learned from
data. This amounts to solving a system of
ordinary differential equations (ODEs) sub-
ject to boundary conditions. Here standard
solvers perform poorly because they require
well-behaved Jacobians of the ODE, and usu-
ally, manifolds learned from data imply un-
stable and ill-conditioned Jacobians. Instead,
we propose a fixed-point iteration scheme for
solving the ODE that avoids Jacobians. This
enhances the stability of the solver, while re-
duces the computational cost. In experiments
involving both Riemannian metric learning
and deep generative models we demonstrate
significant improvements in speed and stabil-
ity over both general-purpose state-of-the-art
solvers as well as over specialized solvers.

1 Introduction

A long-standing goal in machine learning is to build
models that are invariant to irrelevant transformations
of the data, as this can remove factors that are other-
wise arbitrarily determined. For instance, in nonlinear
latent variable models, the latent variables are gen-
erally unidentifiable as the latent space is by design
not invariant to reparametrizations. Enforcing a Rie-
mannian metric in the latent space that is invariant
to reparametrizations alleviate this identifiability issue,
which significantly boosts model performance and inter-
pretability (Arvanitidis et al., 2018; Tosi et al., 2014).
Irrelevant transformations of the data can alternatively
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Figure 1: A data manifold and the log-condition num-
ber of the Jacobian with fixed velocity (background).
High condition numbers can cause failures to converge
for off-the-shelf solvers.

be factored out by only modeling local behavior of
the data; geometrically this can be viewed as having a
locally adaptive inner product structure, which can be
learned from data (Hauberg et al., 2012). In both ex-
amples, the data is studied under a Riemannian metric,
so that can be seen as living on a Riemannian manifold.

While this geometric view comes with strong math-
ematical support, it is not commonly adopted. The
primary concern is that the computational overhead of
Riemannian models often outweigh the induced bene-
fits. The main bottleneck herein are distance computa-
tions, which are often at the core of machine learning
algorithms. In Euclidean space, distance evaluations
require the computation of a norm. In kernel meth-
ods, distances are evaluated via the kernel trick, but
many interesting geometries cannot be captured with a
positive definite kernel (Feragen et al., 2015). In both
cases, distances can be computed with negligible effort.

The distance between two points x,y on a Rieman-
nian manifold is defined as the length of the shortest
path between x and y known as the geodesic. Com-
puting the geodesic requires the solution of a boundary
value problem (BVP). These types of ordinary differ-
ential equations (ODEs) require specialized numerical
methods for their solution, as—unlike initial value prob-
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lems (IVPs)—they cannot be solved via step-by-step
algorithms like Runge–Kutta methods, and thus their
solution is computationally taxing (Ascher et al., 1994).

Moreover, Riemannian manifolds learned from data
usually imply high curvature and an unstable Rieman-
nian metric. The reason is that the metric is estimated
only from finite data, so it changes irregularly fast.
As a consequence, the Jacobians of the ODE, which
are required in many off-the-shelf solvers, are often
ill-conditioned which causes additional problems and
effort (Ascher et al., 1994, §8.1.2). The example in
Fig. 1 shows that the Jacobian associated with a data
driven manifold is highly oscillatory. This implies that
standard ODE solvers easily break down. Thus, spe-
cialized BVP solvers for shortest path computations
are required to make distance evaluations on manifolds
learned from data as fast and robust as in other models.

In this paper, we propose a novel method for comput-
ing shortest paths on Riemannian manifolds learned
from data. Combining the theory of smoothing
splines/Gaussian process regression (Wahba, 1990; Ras-
mussen and Williams, 2006) with fixed-point iterations
(Mann, 1953; Johnson, 1972), we arrive at an algorithm
which is simple, fast and more reliable on challenging
geometries. This is achieved by not utilizing the Jaco-
bian which is computationally costly and ill-behaved.

Our work is a significant improvement of an earlier
algorithm by Hennig and Hauberg (2014). Their al-
gorithm is an early proof of concept for probabilistic
numerics (Hennig et al., 2015). We show below that
in the original form, it provably does not converge to
the true solution. However, their algorithmic struc-
ture is capable of converging to the true solution. We
demonstrate how their algorithm needs to be adopted
to improve solution quality and convergence speed, so
that the fixed-point algorithm can efficiently compute
the shortest path on Riemannian manifolds.

2 A Brief Recap of Riemannian
Geometry

We start by defining Riemannian manifolds (do Carmo,
1992). These are well-studied metric spaces, where
the inner product is only locally defined and changes
smoothly throughout space.

Definition 1 A Riemannian manifold is a smooth
manifoldM where each tangent space TxM is equipped
with an inner product (Riemannian metric) 〈a,b〉x =
a

ᵀ
M(x)b that changes smoothly across the manifold.

This inner product structure is sufficient for defining
the length of a smooth curve c : [0, 1] → M in the

Figure 2: A data manifold with a geodesic and its
tangent vector.

usual way as

Length(c) =

∫ 1

0

√
ċ(t)ᵀM(c(t))ċ(t)dt, (1)

where ċ = ∂tc denotes the curve velocity. The length
of the shortest path connecting two points then consti-
tutes the natural distance measure onM. The short-
est curve is known as the geodesic, and can be found
through the Euler-Lagrange equations to satisfy a sys-
tem of 2nd order ODEs (Arvanitidis et al., 2018),

c̈(t) =
−M(c(t))

−1

2

[
2(ID ⊗ ċ(t)

ᵀ

)
∂vec[M(c(t))]

∂c(t)
ċ(t)

−∂vec[M(c(t))]

∂c(t)

ᵀ

(ċ(t)⊗ ċ(t))

]
, (2)

where vec[·] stacks the columns of a matrix into a vector
and ⊗ is the Kronecker product.

Most numerical calculations on Riemannian manifolds
are performed in local tangent spaces as these are
Euclidean. Key operations are therefore mappings back
and forth between the manifold and its tangent spaces.
A point y ∈ M can be mapped to the tangent space
at x ∈M by computing the shortest connecting curve
and evaluating its velocity v at x. This is a tangent
vector at x with the property that its length equals
the length of the shortest path. By the Picard-Lindelöf
theorem (Picard, 1890), this process can be reversed
by solving Eq. 2 with initial conditions c(0) = x and
ċ(0) = v. Mapping from the manifold to a tangent
space, thus, requires solving a boundary value problem,
while the inverse mapping is an initial value problem.
Practically, the BVPs dominate the computational
budget of numerical calculations on manifolds.

In the context of this paper we will focus upon
Riemannian manifolds which are learned from the data,
and capture its underlying geometric structure. Thus,
we will consider for the smooth manifold the Euclidean
space as M = RD, and learn a Riemannian metric
M : RD → RD×D. To be clear, this simply changes
the way we measure distances, while respecting the
structure of the data. An illustrative example can be
seen in Fig. 2.
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3 A Fast Fixed-Point Method for
Shortest Paths

In order to apply Riemannian models to interesting
data sets, we require a fast and robust method to solve
the boundary value problem

c̈(t) = f(c(t), ċ(t)), c(0) = x, c(1) = y (3)

where f(c(t), ċ(t)) is the right-hand side of Eq. (2) and
x, y ∈ M. Numerical BVP solvers typically replace
the analytic solution c(t) by an approximant c(t) which
is required to fulfill the ODE c̈(tn) = f(c(tn), ċ(tn)) on
a discrete mesh ∆ = {t0 = 0, t1, . . . , tN−1 = 1} ⊂ [0, 1]
of evaluation knots tn. Together with the boundary
conditions (BC) c(0) = x, c(1) = y, this results in a
D(N +2)-dimensional nonlinear equation which can be
solved for rich enoughD(N+2)-dimensional parametric
models. If the approximant is represented by the poste-
rior mean µ(t) of a GP regressor GP(c̃(t);µ(t),k(t, s)),
then it can be proven that a solution with small ap-
proximation error exists (Wendland, 2004, §11) under
suitable conditions on the kernel (Micchelli et al., 2006;
Rasmussen and Williams, 2006). This means we have to
find a (artificial) data set D with (N+2) D-dimensional
data points such that the posterior mean fulfills the
BVP on the discretization mesh ∆ and the BC on the
curve boundary B = {0, 1}. The data set D should be
thought of as a parametrization for the solution curve.

One way to generate a solution is to define the auxiliary
function F (c) = c̈− f(c, ċ) and apply a variant of the
Newton-Raphson method (Deuflhard, 2011) to find a
root of F . For example, this type of algorithm is also
at the core of Matlab’s bvp5c, a state-of-the-art BVP
solver. The convergence of these algorithms depends
on the Jacobians ∇cf,∇ċf of f at the evaluation knots
tn. In particular, Jacobians with big condition number
may cause Newton’s method to fail to converge if no
precautions are taken (Ascher et al., 1994, §8.1.2). On
manifolds learned from data, this is a common problem.
Furthermore, in practice these Jacobians are computed
with a computationally taxing finite difference scheme.
Thus, a method not based on Newton’s method should
be more suitable for the computation of shortest paths.

3.1 Method Description

As mentioned above, we model the approximate so-
lution c(t) with the posterior mean µ(t) of a (multi-
output) Gaussian process

GP(c̃(t); µ(t),V ⊗ k(t, s)) (4)

with (spatial) kernel k and inter-dimensional covariance
matrix V ∈ RD×D. If the kernel k is sufficiently par-
tially differentiable, this implies a covariance between

derivatives of c̃ as well (Rasmussen and Williams, 2006,
§ 4.1.1), in particular

cov

(
dm

dtm
c̃i(t),

dn

dsn
c̃j(s)

)
= Vij

∂m+n

∂tm∂sn
k(t, s) (5)

for the covariance between output dimensions i and
j, derivatives m and n and spatial inputs t and s.
This (prior) model class is the same as in Hennig and
Hauberg (2014).

The boundary equations fix two parameters (0,x), (1,y)
of the parametrization. The remaining N parameters
(tn, z̈n) approximate the accelerations c̈(tn) of the true
solution c(tn) at knot tn, i.e., z̈n ≈ c̈(tn). The z̈n
are updated iteratively and we denote values at the
i-th iteration with the superscript (i), e.g., c(i)(t) for
the i-th approximation, z̈

(i)
n for the i-th value of the

parameter z̈n and so forth.

At iteration i, the approximation c(i)(t) is the predic-
tive posterior GP

P (c̃(i)(t)) = GP(c̃(i)(t); µ(i)(t),k(i)(t, s))

G = V ⊗
([

k(B,B) ∂2

∂s2 k(B,∆)
∂2

∂t2 k(∆,B) ∂4

∂t2∂s2 k(∆,∆)

]

+ diag(0, 0,Σ, . . . ,Σ)

)
ωᵀ =

(
V ⊗

[
k(t,B) ∂2

∂s2 k(t,∆)
])

G−1

µ(i)(t) = m(t) + ωᵀvec

 x−m(0)
y −m(1)

z̈
(i)
∆ − m̈(∆)

ᵀ
k(i)(t, s) = V ⊗ k(t, s)− ωᵀ

(
V ⊗

[
k(B, s)
∂2

∂t2 (∆, s)

])
,

(6)

and similarly for the velocity ċ(t) by forming the G
and ω accordingly. In Eq. (6), z̈∆ ∈ RN×D represents
the accelerations, and k(B,∆) ∈ R2×N is the matrix of
kernel evaluations at boundary points and evaluation
knots and similar for k(B,B), k(∆,∆) and k(∆,B). Fi-
nally, Σ = εID is the identity matrix times a small
regularization parameter ε ≈ 10−10, so µ̈(i)(tn)→ z̈

(i)
n .

The rationale for its inclusion will be postponed to the
end of Sect. 3.2 as it will become more apparent in
contrast to the model of Hennig and Hauberg (2014).
Details for the components k(·, ·), m, ∆ in Appendix A.
Now, we proceed with the description of the algorithm.

Just like a root of the function F (c) = c̈ − f(c, ċ)
solves the ODE, so does a fixed point of the mapping
µ̈(i+1)(t) = f(µ(i)(t), µ̇(i)(t)). In particular, we can
evaluate this mapping on the discretization mesh ∆ to
map z̈

(i)
∆ to z̈

(i+1)
∆ . The big advantage of this combina-

tion of parametrization and update scheme is the sim-
plicity of obtaining closed-form iteration updates (Ras-
mussen and Williams, 2006, § 9.4). The vector field f is
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Figure 3: Step 1 : With the current estimates of z̈
(i)
∆ ( ) we generate using the GP model Eq. 6, the current

posterior curve µ(i) ( ) and velocities µ̇(i) ( ). Step 2 : Then, using the proposed fixed-point update scheme
Eq. 7, we get the updated parameters z̈

(i+1)
∆ ( ) . The algorithm iterates until ‖ − f( , )‖ small enough.

evaluated using the current iteration (µ(i), µ̇(i)) to yield
z̈

(i+1)
n = f(µ(i)(tn), µ̇(i)(tn)), and z̈

(i+1)
n ≈ µ̈(i+1)(tn)

because ε→ 0. Forming µ(i+1), µ̇(i+1) from z̈
(i+1)
n only

requires two matrix-vector products (see Eq. (6)). The
process is depicted in Fig. 3.

Algorithm 1 The proposed fixed-point method.

Require: BVP f(c(t), ċ(t)), hyper-parameters ∆, ε,
tolerance τ

1: # Compute µ(i)(t), µ̇(i)(t) using Eq. 6 and z̈
(i)
∆ .

2: Define: e(i)
n ,

∥∥∥z̈(i)
n − f(µ(i)(tn), µ̇(i)(tn))

∥∥∥2

3: z̈
(0)
n ← 0, n = 0, . . . , N − 1

4: i← 0
5: while ∃n : e

(i)
n > τ do

6: z̈∗n ← f(µ(i)(tn), µ̇(i)(tn)), n = 0, . . . , N − 1
7: for j = 0, . . . , 3 do
8: αj = 3−j

9: z̈
(∗,j)
∆ ← αj z̈

∗
∆ + (1− αj)z̈

(i)
∆

10: if
∑

n e
(∗,j)
n ≤

∑
n e

(i)
n then

11: break
12: end if
13: end for
14: z̈

(i+1)
∆ ← z̈

(∗,j)
∆

15: i← i+ 1
16: end while
17: return GP(c̃(t); µ(i),k(i))

Variants of this scheme have been repeatedly applied for
the creation of probabilistic differential equation solvers
(Hennig and Hauberg, 2014; Chkrebtii et al., 2016;
Schober et al., 2014; Cockayne et al., 2016; Kersting and
Hennig, 2016; Teymur et al., 2016; Schober et al., 2018;
Kersting et al., 2018). Of these papers, only Hennig and
Hauberg (2014) points out that this can be updated
multiple times, but even there the connection between a
fixed point of the mapping and an approximate solution

is not stated. Interpreting the iteration as a fixed point
search is the key insight of this paper.

We suggest to apply a Mann iteration (Mann, 1953;
Johnson, 1972) process for the solution of (2) given by

z̈∗n = f(µ(i)(tn), µ̇(i)(tn))

z̈(i+1)
n = αiz̈

∗
n + (1− αi)z̈

(i)
n

(7)

with “step sizes” αi ∈ [0, 1]. The results of Mann (1953);
Johnson (1972) only apply if αi = (i+1)−1, however we
found a backtracking scheme to be effective in practice.

Algorithm 1 presents our method in pseudo-code where
z̈

(∗,j)
∆ denotes the tentative parametrization. Note how

the backtracking line search for αi (Lines 7-13) requires
half of the description.

Our method is similar to a recently proposed method
by Bello et al. (2017) that is based on the variational
iterative method1 by He (2000). Bello et al. (2017)
proposed to use this scheme symbolically requiring a
computer-algebra system for its execution, which makes
it inapplicable to practical tasks. More details to these
related works can be found in Jafari (2014); Khuri and
Sayfy (2014).

3.2 Comparison with Hennig and Hauberg
(2014)

The proposed method is inspired by the previous work
of Hennig and Hauberg (2014) and we make a direct
comparison here.

The algorithm of Hennig and Hauberg (2014) is a
proof-of-concept probabilistic numerical method (Hen-
nig et al., 2015) for solving boundary value problems. It
is structurally similar to other early probabilistic IVP
solvers of Chkrebtii et al. (2016) and Skilling (1991).
Since the publication of these early works, the field

1calculus of variations not variational inference.
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has matured significantly, providing algorithms with
novel functionality (Hauberg et al., 2015; Mahsereci
and Hennig, 2015; Oates et al., 2017; Xi et al., 2018)
and rigorous analysis (Briol et al., 2015; Chkrebtii et al.,
2016; Schober et al., 2018; Kersting et al., 2018).

Their main idea is to treat the vector-field evalua-
tions z̈n as noisy observations of the true, but un-
known, second derivative c̈(tn). For a concrete sug-
gestion, they propose a Gaussian likelihood P (z̈n) =
N (z̈n; c̈(tn),Λn). Together with a GP prior on c(tn),
they arrive at an inference algorithm. Heuristically,
they propose to add mesh observations sequentially,
refine them iteratively for a fixed number of steps, and
they repeat the overall process until they find a set of
hyper-parameters of the GP which maximizes the data
likelihood of the final approximation.

However, the algorithm of Hennig and Hauberg
(2014) cannot converge to the true solution in gen-
eral. A convergent method is required to satisfy
f(µ(i)(tn), µ̇(i)(tn)) → µ̈(i)(tn) as i → ∞. However,
as Σn 6= 0 in Hennig and Hauberg (2014), µ̈(i)(tn) is
not an interpolant of z̈

(i)
n (Kimeldorf and Wahba, 1970,

Thm. 3.2; Kanagawa et al., 2018, Prop. 3.6) implying
that the true accelerations c̈(tn) cannot be a parame-
terization in the model of Hennig and Hauberg (2014)
contradicting the fixed point requirement.

The same criticism could be applied to our model,
as we propose Σn = Σ = εID 6= 0. We have ex-
perimented with annealing schemes for this hyper-
parameter Σ(i) = i−1Σ, but the benefit of ε > 0 for the
stability of the Gram matrix G is bigger than induced
numerical inprecision, in particular when the tolerance
τ is considerably larger than ε.

Although the algorithm of Hennig and Hauberg (2014)
cannot converge, three insights and resulting modifica-
tions lead to our proposed method:

1. Hennig and Hauberg (2014) did not propose a
principled scheme to determine the number of re-
finements S, but treated it as a hyper-parameter
that must be provided by the user. However,
it can be easily checked whether the posterior
mean µ(i)(t) fulfills the differential equation at
any point t. This not only removes a hyper-
parameter, but can also gives more confidence
in the returned solution. In principle, the er-
ror e(i)

n =
∥∥∥µ̈(i)(tn)− f(µ(i)(tn), µ̇(i)(tn))

∥∥∥ could

even be used to construct adaptive meshes ∆(i)

(Mazzia and Trigiante, 2004).

2. Using an universal kernel (Micchelli et al., 2006)
and a fine enough mesh ∆∗, it is known that any
curve can be fitted. While sub-optimal kernel pa-

rameters θ might require an exponential bigger
mesh (Vaart and Zanten, 2011, Thm. 10), the
property of universality holds regardless of the
hyper-parameter θ used to find the approxima-
tion. As a consequence, tuning hyper-parameters
is purely optional and certainly does not require
restarts. This also improves runtime significantly
as the Gram matrix needs only be to inverted once.
In practice, we have observed negligible solution
improvements after type-II maximum likelihood
optimization after the end of the algorithm.

3. Currently, there is no analysis when or if
coordinate-wise updates offer improvements over
simultaneous updates for all parameters z̈

(i)
∆ .

There is, however, a strong argument for updating
simultaneously: runtime. All predictive posterior
parameters can be pre-computed and kept fixed
throughout the runtime of the algorithm, if the
mesh is not adapted throughout. In particular, the
regression weights ωᵀ can be kept fixed, so each
update requires only two vector-vector products.

Finally, while our derivation does not make use of its
probabilistic interpretation, further steps in this direc-
tion could potentially unlock novel functionality which
has repeatedly been the case with other probabilistic
numerical methods (Xi et al., 2018; Oates et al., 2017;
Hauberg et al., 2015).

4 Experiments

In this section we demonstrate the advantages of our
method compared to Matlab’s bvp5c, and the algo-
rithm in Hennig and Hauberg (2014) denoted in the
experiments as H&H. Since all the methods depend
on a set of parameters, we will come up with a de-
fault setting. For the proposed method, we will use
for the ∆ a uniform grid of N = 10 points includ-
ing the boundaries. The corresponding noise term of
the points z̈ will be kept fixed to Σ = 10−7ID. For
the GP we will use the Squared Exponential kernel
k(t, t′) = exp(−(2λ2)−1 |t− t′|2). We fix the ampli-
tude V in a Bayesian fashion as Hennig and Hauberg
(2014), and the length-scale λ2 ≈ 2−1 |tn+1 − tn| which
provides enough degrees-of-freedom while covering the
entire interval at the same time. The prior mean is set
to the straight line m(t) = c(0) + t · (c(1)− c(0)), and
the derivative accordingly. For the method of Hennig
and Hauberg (2014), we use the same parameters as
for our method. We set the bounds on the Jacobian to
U = U̇ = 10 and run the method with one refinement
iteration. We set the maximum mesh size for the bvp5c
to 1000, and use for the starting mesh uniformly 10
points on the straight line connecting the boundary
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Figure 4: Left : Generated data on a semi-circle, together with some challenging geodesics computed by our
method, and a point y. Middle: The curve lengths of the geodesics between the given data and the point y, on
the horizontal axis we have the point index, and the vertical lines represent the failures of the bvp5c to converge.
Right : The runtime for the corresponding geodesic problems.

points. For all the methods we consider the resulting
curve as correct if ‖c̈(tn)− f(c(tn), ċ(tn))‖22 ≤ 0.1, ∀n.

4.1 Experiments with a Non-parametric
Riemannian Metric

We first consider the case of Riemannian metric learning
as proposed by Arvanitidis et al. (2016). This can
be seen as a way to capture the local density of the
data, and thus to uncover the underlying geometric
structure. The metric at a given point is computed
in three steps: 1) use a kernel to assign weight to
given data, 2) compute the local diagonal covariance
matrix, and 3) use its inverse as the metric tensor.
More formally, the metric is

Mdd(x) =

(
N∑

n=1

wn(x)(xnd − xd)2 + ρ

)−1

, (8)

where wn(x) = exp

(
−
‖xn − x‖22

2σ2
M

)
.

The parameter σM ∈ R controls the curvature of the
manifold, since it regulates the rate of the metric change
i.e. when the σM is small then the metric changes fast
so the curvature increases. The parameter ρ ∈ R>0 is
fixed such that to prevent zero diagonal elements.

We generated 200 data points along the upper semi-
circle and added Gaussian noise N (0, 0.01) as it is
shown in Fig. 4a. The ρ = 0.01 is kept fixed in all
the experiments. We set the parameter σM = 0.15,
and after fixing the point c(0) = y we compute the
geodesics to the given data. From the results (Fig. 4b)
we see that all three methods perform well when the
distance from the starting point is small. However,
when distances increase, we see that only our method
manages to find the correct curve, while bvp5c is not
able to solve the problem, and H&H finds too long

curves. Also, we see that the runtime of our method
(Fig. 4c) is increased only slightly for the difficult
problems, while bvp5c is always slower and especially
for the difficult problems increases the mesh size to the
maximum and fails to converge. The performance of
the H&H remains almost constant, since it is essentially
based on the converge of the model’s parameters and
not the difficulty of the problem.
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Figure 5: Failed geodesics.

Next, we generated three challenging datasets consist-
ing of 400 points each. For the first one we generate
a circle and we flip the lower half along the y axis, we
refer to it as Curly in the results. For the second we
move the lower half of the circle such that to get the
two moons. The third one is a 2-dimensional sphere
in R3. Finally, we add Gaussian noise N (0, 0.01), and
we standardize to zero mean and unit variance each di-
mension. We keep the same parameters for the metric.
Note that the resulting manifold implies high curva-
ture, so we increased the flexibility of the methods. For
the proposed model and H&H we used a grid of 50
points, and the maximum mesh size of bvp5c was set
to 5000. We pick randomly 40 points for each dataset,
and compute the pairwise distances. In Fig. 5 we see
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that our method manages to solve almost all of the
shortest path problems, while bvp5c fails in almost half
of them. H&H is expected to fail in many cases, since
it is not designed to converge to the correct solution.
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Figure 6: Scalability in higher dimensions and failures.

Furthermore, we tested the scalability of the methods
with respect to dimensionality. We generate 1000 points
on a semi-circle in 2 dimensions, and standardized to
zero mean and unit variance. We fix a point y and a
subset S of 100 points. Then, for everyD = [2, 5, 10, 20]
we construct an orthogonal basis to project the data
in RD, where we standardize the data again and add
Gaussian noise N (0, 0.01). Then, for each dimension D
we compute the geodesics between the y and the subset
S of the points. Keep in mind that the parameter σM =
0.25 is kept fixed, so as the dimensions increase the
sparsity of the data increase, and so does the curvature
of the manifold. In Fig. 6 we show the average runtime
for every dimensionality and the percentage of failures
for each method. Our method remains fast in higher
dimensions, even if the curvature of the manifold is
increased. On the other hand, we observe that bvp5c
fails more often, which causes the overhead in the
runtime. H&H remains fast, but, the resulting curves
cannot be trusted as the criterion of correct solution is
almost never met.
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Figure 7: LAND experiment.

Also, we fitted a mixture of LANDs (Arvanitidis et al.,
2016) using the three models, on the two moons dataset
generated by flipping and translating the data in Fig. 4a.
Note that we fix σM = 0.1 since we want our metric to
capture precisely the underlying structure of the data,
which implies that the curvature is increased. From the
results in Fig. 7 we see that the proposed solver faster
achieves higher log-likelihood. Additionally, in the
same time interval, it manages to run more iterations
(dots in the figure).

4.2 Experiments with a Riemannian Metric
of Deep Generative Models

The Variational Auto-Encoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014), provides a sys-
tematic way to learn a low dimensional latent repre-
sentation of the data, together with a generator that
learns to interpolate the data manifold in the input
space. Usually, deep neural networks are used to model
the generator. These flexible models are able to com-
pensate for any reparametrization of the latent space,
which renders the latent space unidendifiable. Recently,
Arvanitidis et al. (2018) defined a Riemannian metric
in the latent space, which is induced by the generator
and is invariant to the parametrization of the latent
space. This resolves the identifiability issue and makes
computations in the latent space parametrization invari-
ant. More specifically, the VAEs utilizes a stochastic
generator that maps a point x from the latent space
X to a point y in the input space Y, and it consists
of two parts: the mean and the variance function as
y(x) = µ(x) + σ(x)� ε, where ε ∼ N (0, Idim(Y)) and
� is the pointwise multiplication. This stochastic map-
ping introduces a random Riemannian metric in the
latent space. However, as it is shown (Tosi et al., 2014)
we are able to use the expectation of the metric which
has the appealing form

M(x) = Jµ(x)
ᵀ

Jµ(x) + Jσ(x)
ᵀ

Jσ(x), (9)

where J stands for the Jacobian of the corresponding
functions. The interpretation of the metric is relatively
simple. It represents the distortions due to the mean
function and the uncertainty of the generator.

In this context, for the data in the input space we gen-
erated the upper half of a 2-dim sphere in R3, added
Gaussian noise N (0, 0.01) and scaled the data in the
interval [−1, 1]3. Then, we trained a VAE, using for
the generator a simple deep network consisted of two
hidden layers with 16 units per layer, the softplus
as activation functions, and tanh for the output layer.
We used a 2-dimensional latent space, and the encoded
data can be seen in Fig. 8a. There, we show the com-
puted geodesic for the 3 methods. Interestingly, we see
that the 3 resulting curves differ, and the estimated
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Figure 8: Left : The latent space together with the computed geodesics between two points. Middle: The curve
lengths, on the x axis we show the curve length of the proposed model. The results are sorted with respect to our
model. Right : The corresponding runtimes.

curve lengths are: proposed (2.52), bvp5c (3.65) and
H&H (3.30). Our model, manages to find the shortest
path, which is a particularly curved path but the sec-
ond derivative remains relatively smooth, while bvp5c
finds a simpler curve with larger length. This is not
surprising since bvp5c prefers solutions where the curve
is smoother, while our method prefers curves where
the second derivative is smoother. In order to further
analyse this behavior, we randomly pick 50 points and
compute all pairwise distances. The results in Fig. 8b
shows that the proposed method manages to find al-
ways the shortest path, while the other methods when
the distances increase, provide a suboptimal solution.
Comparing the runtimes (Fig. 8c) we see that our
method is faster in the simple problems, and has only
a small overhead in the difficult problems, however, it
manages always to find the shortest path.
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Figure 9: Runtime comparison

As a last experiment, we generated a 2-dimensional
sphere in R3 and moved the upper half by 1, and again
added Gaussian noise and scaled the data to [−1, 1]3.
Instead of softplus in the hidden layers, we used the
tanh activation functions which increases the curvature.
Here the latent space is 2-dimensional. We fix randomly
a point in the latent space and compute the geodesic to
100 randomly chosen points. As we observe from the

results in Fig. 9, as long as we compute the distance
between points of the same semi-sphere the runtimes
of our method and bvp5c are comparable. However,
when the points belong in different semi-spheres the
runtimes increase significantly. The reason is that
curvature increases dramatically when we cross parts
of the latent space where the generator is uncertain.
That is also the reason why many problems are not
solved (dots in the figure), but even in this challenging
setting our model is more robust.

5 Conclusions

We proposed a simple, fast and robust algorithm to com-
pute shortest paths on Riemannian manifolds learned
from data. Here, standard solvers often fail due to ill-
conditioned Jacobians of the associated BVP. Instead,
our method applies a Jacobian-free fixed-point iterative
scheme. The assumption is that the true path can be
approximated smoothly by the predictive GP poste-
rior. This solver makes the Riemannian methods more
feasible since robustly in reasonable time, complex sta-
tistical models (Arvanitidis et al., 2016) can be fitted,
as well as distances can be computed in challenging
deep metric scenarios (Arvanitidis et al., 2018).

This has been achieved by analyzing and extending
an existing probabilistic numerical solver (Hennig and
Hauberg, 2014), turning it from a proof-of-concept
into a principled algorithm. The presented method
thus contributes both to Riemannian methods and to
probabilistic numerics. Further improvements might
be achieved with more complex fixed-point iterations
(Ishikawa, 1974), advanced line searches (Mahsereci
and Hennig, 2015), adaptive mesh selection (Mazzia
and Trigiante, 2004), and improved model selection
(Vaart and Zanten, 2011).



Georgios Arvanitidis†, Søren Hauberg†, Philipp Hennig‡, Michael Schober?

Acknowledgments

GA is supported by the Danish Center for Big Data
Analytics Driven Innovation. SH was supported by
a research grant (15334) from VILLUM FONDEN.
This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement no 757360). We gratefully
acknowledge the support of the NVIDIA Corporation
with the donation of the used Titan Xp GPU. PH
gratefully acknowledges financial support by the ERC
StC Action 757275 PANAMA and grant BMBF 01 IS
18 052-B of the German Federal Ministry for Education
and Research.

References

G. Arvanitidis, L. K. Hansen, and S. Hauberg. A locally
adaptive normal distribution. In Advances in Neural
Information Processing Systems (NIPS), 2016.

G. Arvanitidis, L. K. Hansen, and S. Hauberg. Latent space
oddity: on the curvature of deep generative models. In
International Conference on Learning Representations
(ICLR), 2018.

U. M. Ascher, R. M. Mattheij, and R. D. Russell. Nu-
merical solution of boundary value problems for ordinary
differential equations, volume 13. Siam, 1994.

N. Bello, A. J. Alkali, and A. Roko. A fixed point it-
erative method for the solution of two-point bound-
ary value problems for a second order differential equa-
tions. Alexandria Engineering Journal, 2017. doi:
10.1016/j.aej.2017.09.010.

F.-X. Briol, C. Oates, M. Girolami, and M. A. Osborne.
Frank-wolfe bayesian quadrature: Probabilistic integra-
tion with theoretical guarantees. In Advances in Neural
Information Processing Systems, pages 1162–1170, 2015.

O. A. Chkrebtii, D. A. Campbell, B. Calderhead, and M. A.
Girolami. Bayesian solution uncertainty quantification for
differential equations. Bayesian Anal., 11(4):1239–1267,
12 2016. doi: 10.1214/16-BA1017.

J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. Prob-
abilistic meshless methods for partial differential equa-
tions and bayesian inverse problems. arXiv preprint
arXiv:1605.07811, 2016.

P. Deuflhard. Newton methods for nonlinear problems:
affine invariance and adaptive algorithms. Springer Sci-
ence & Business Media, 2011.

M. do Carmo. Riemannian Geometry. Mathematics
(Boston, Mass.). Birkhäuser, 1992.

A. Feragen, F. Lauze, and S. Hauberg. Geodesic exponen-
tial kernels: When curvature and linearity conflict. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3032–3042, 2015.

S. Hauberg, O. Freifeld, and M. Black. A Geometric Take
on Metric Learning. In P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, editors, Advances in Neu-
ral Information Processing Systems (NIPS), pages 2033–
2041. MIT Press, 2012.

S. Hauberg, M. Schober, M. Liptrot, P. Hennig, and A. Fer-
agen. A random riemannian metric for probabilistic
shortest-path tractography. In Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2015,
volume 18, Munich, Germany, Sept. 2015. Springer.

J.-H. He. Variational iteration method for autonomous
ordinary differential systems. Applied Mathematics and
Computation, 114(2):115 – 123, 2000. ISSN 0096-3003.
doi: 10.1016/S0096-3003(99)00104-6.

P. Hennig and S. Hauberg. Probabilistic Solutions to Dif-
ferential Equations and their Application to Riemannian
Statistics. In Proc. of the 17th int. Conf. on Artificial
Intelligence and Statistics (AISTATS), volume 33. JMLR,
W&CP, 2014.

P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic
numerics and uncertainty in computations. Proceedings
of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 471(2179), 2015.

S. Ishikawa. Fixed points by a new iteration method. Pro-
ceedings of the American Mathematical Society, 44(1):
147–150, 1974.

H. Jafari. A comparison between the variational iteration
method and the successive approximations method. Ap-
plied Mathematics Letters, 32:1 – 5, 2014. ISSN 0893-9659.
doi: 10.1016/j.aml.2014.02.004.

G. G. Johnson. Fixed points by mean value iterations.
Proceedings of the American Mathematical Society, 34(1):
193–194, 1972.

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sripe-
rumbudur. Gaussian Processes and Kernel Methods: A
Review on Connections and Equivalences. ArXiv e-prints,
July 2018.

H. Kersting, T. J. Sullivan, and P. Hennig. Convergence
Rates of Gaussian ODE Filters. ArXiv e-prints, July
2018.

H. P. Kersting and P. Hennig. Active uncertainty calibration
in Bayesian ODE solvers. In Janzing and Ihlers, editors,
Uncertainty in Artificial Intelligence (UAI), volume 32,
2016.

S. Khuri and A. Sayfy. Variational iteration method:
Green’s functions and fixed point iterations perspective.
Applied Mathematics Letters, 32:28 – 34, 2014. ISSN
0893-9659. doi: 10.1016/j.aml.2014.01.006.

G. S. Kimeldorf and G. Wahba. A correspondence between
bayesian estimation on stochastic processes and smooth-
ing by splines. The Annals of Mathematical Statistics, 41
(2):495–502, 1970.

D. P. Kingma and M. Welling. Auto-Encoding Variational
Bayes. In Proceedings of the 2nd International Conference
on Learning Representations (ICLR), 2014.

M. Mahsereci and P. Hennig. Probabilistic line searches for
stochastic optimization. In Advances in Neural Informa-
tion Processing Systems, pages 181–189, 2015.

W. R. Mann. Mean value methods in iteration. Proceed-
ings of the American Mathematical Society, 4(3):506–510,
1953.

F. Mazzia and D. Trigiante. A hybrid mesh selection strat-
egy based on conditioning for boundary value ode prob-
lems. Numerical Algorithms, 36(2):169–187, 2004.



Fast and Robust Shortest Paths on Manifolds Learned from Data

C. A. Micchelli, Y. Xu, and H. Zhang. Universal kernels.
Journal of Machine Learning Research, 7(Dec):2651–2667,
2006.

C. Oates, J. Cockayne, R. G. Aykroyd, et al. Bayesian
probabilistic numerical methods for industrial process
monitoring. arXiv preprint arXiv:1707.06107, 2017.

E. Picard. Mémoire sur la théorie des équations aux dérivées
partielles et la méthode des approximations successives.
Journal de Mathématiques Pures et Appliqués, 6:145–210,
1890.

C. Rasmussen and C. Williams. Gaussian Processes for
Machine Learning. MIT, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In Proceedings of the 31st International
Conference on Machine Learning, Bejing, China, 2014.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic
ODE Solvers with Runge-Kutta Means. Advances in
Neural Information Processing Systems (NIPS), 2014.

M. Schober, S. Särkkä, and P. Hennig. A probabilis-
tic model for the numerical solution of initial value
problems. Statistics and Computing, Jan 2018. doi:
10.1007/s11222-017-9798-7.

J. Skilling. Bayesian solution of ordinary differential equa-
tions. Maximum Entropy and Bayesian Methods, Seattle,
1991.

O. Teymur, K. Zygalakis, and B. Calderhead. Probabilistic
linear multistep methods. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 29,
pages 4314–4321. Curran Associates, Inc., 2016.

A. Tosi, S. Hauberg, A. Vellido, and N. D. Lawrence. Met-
rics for Probabilistic Geometries. In The Conference on
Uncertainty in Artificial Intelligence (UAI), July 2014.

A. v. d. Vaart and H. v. Zanten. Information rates of
nonparametric gaussian process methods. Journal of
Machine Learning Research, 12(Jun):2095–2119, 2011.

G. Wahba. Spline models for observational data. Number 59
in CBMS-NSF Regional Conferences series in applied
mathematics. SIAM, 1990.

H. Wendland. Scattered data approximation. Cambridge
University Press, 2004.

X. Xi, F.-X. Briol, and M. Girolami. Bayesian quadrature
for multiple related integrals. In International Conference
on Machine Learning, 2018.


	Introduction
	A Brief Recap of Riemannian Geometry
	A Fast Fixed-Point Method for Shortest Paths
	Method Description
	Comparison with HennigAISTATS2014

	Experiments
	Experiments with a Non-parametric Riemannian Metric
	Experiments with a Riemannian Metric of Deep Generative Models

	Conclusions

