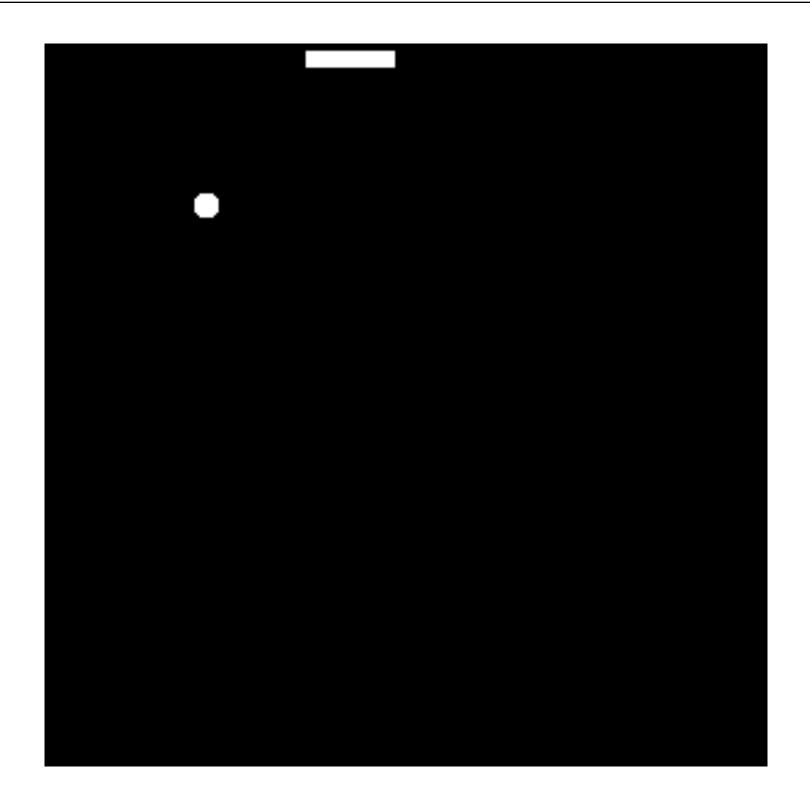
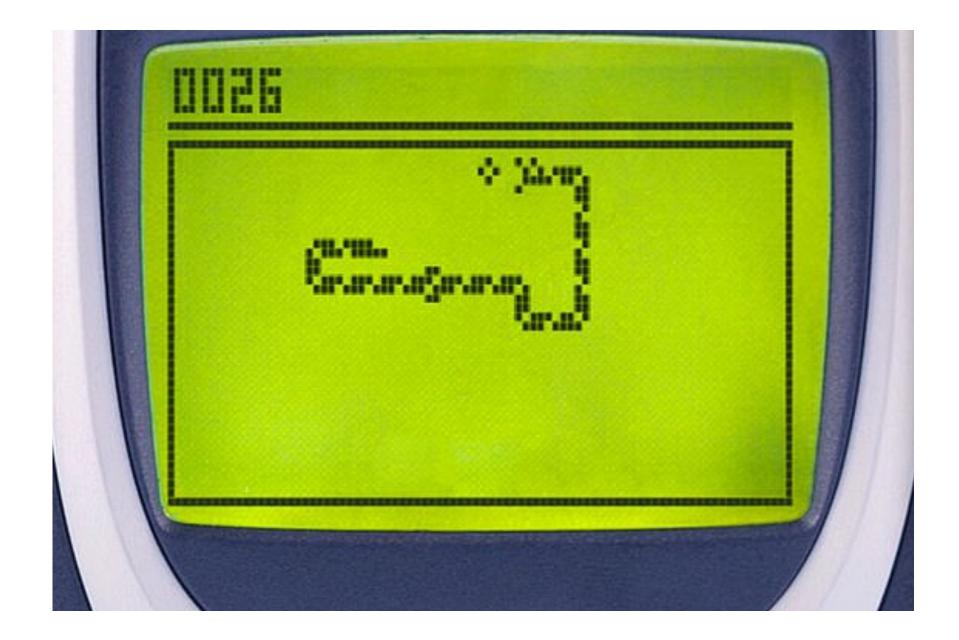
Snake in Optimal Space and Time

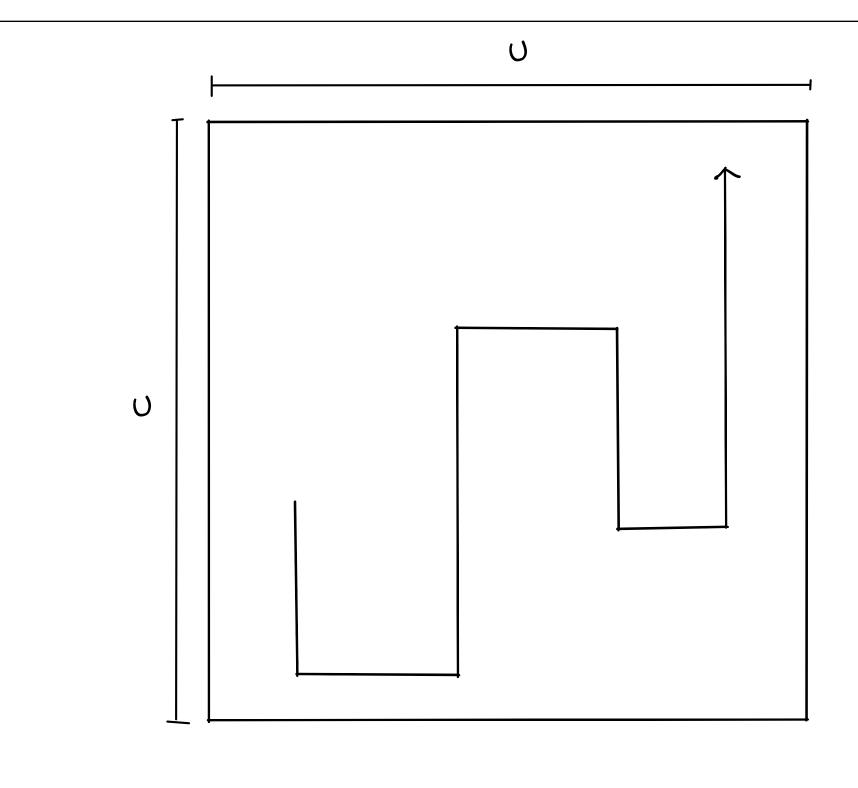
Philip Bille Martín Farach-Colton Ivor van der Hoog Inge Li Gørtz



- Snake. •
 - Control the head of the snake. Can change direction.
 - Avoid collision with yourself and the boundary (and maybe obstacles).
 - Snake extends when it eats an item.

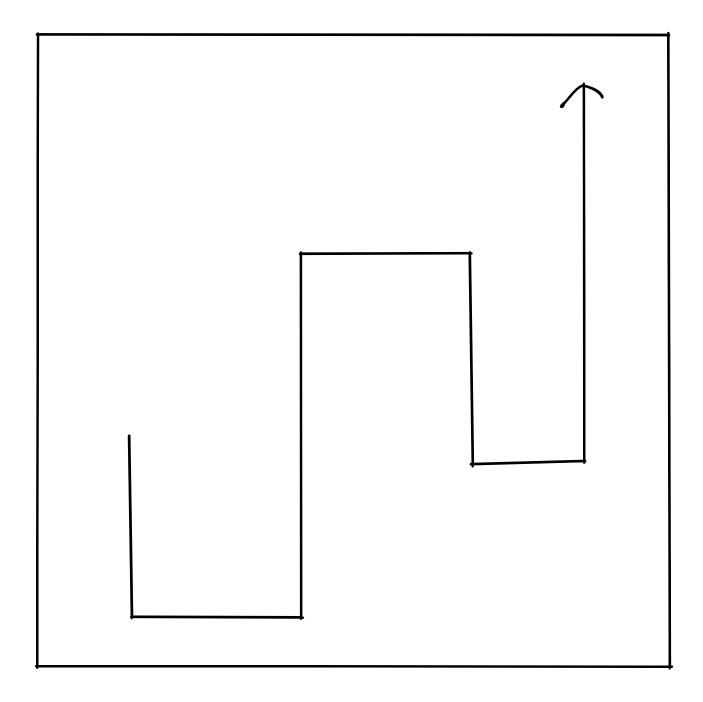


• Question: how many bits do we need to represent the snake and update it in constant time?

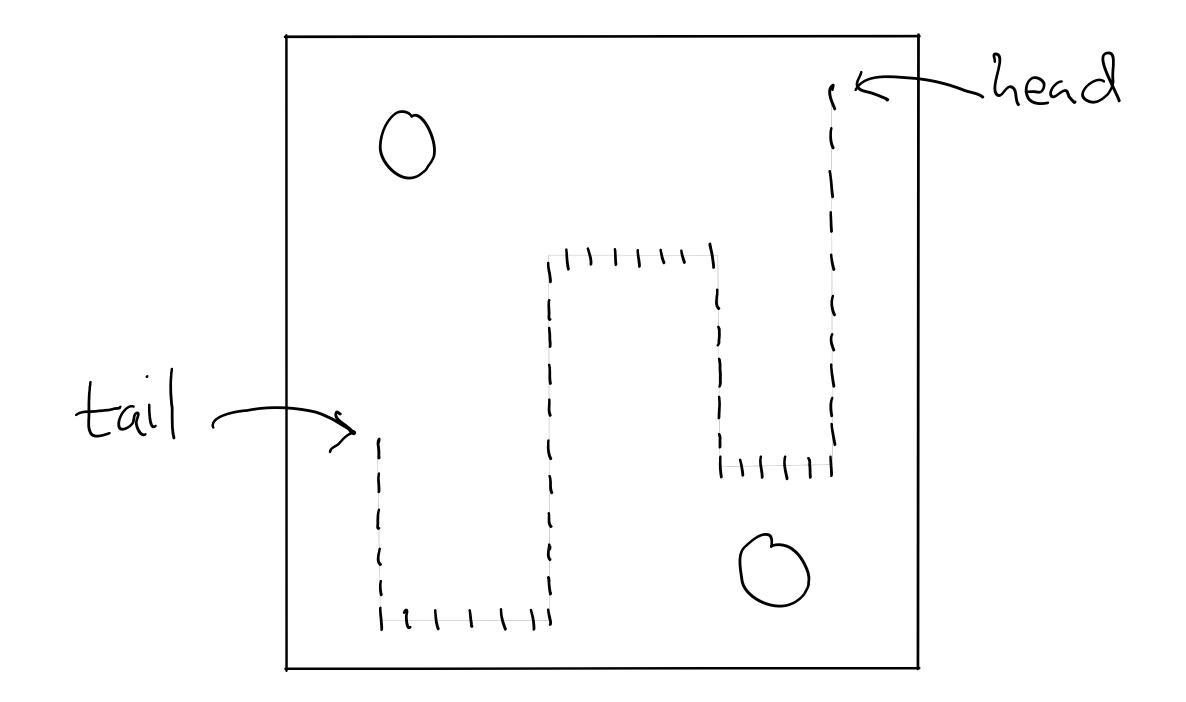


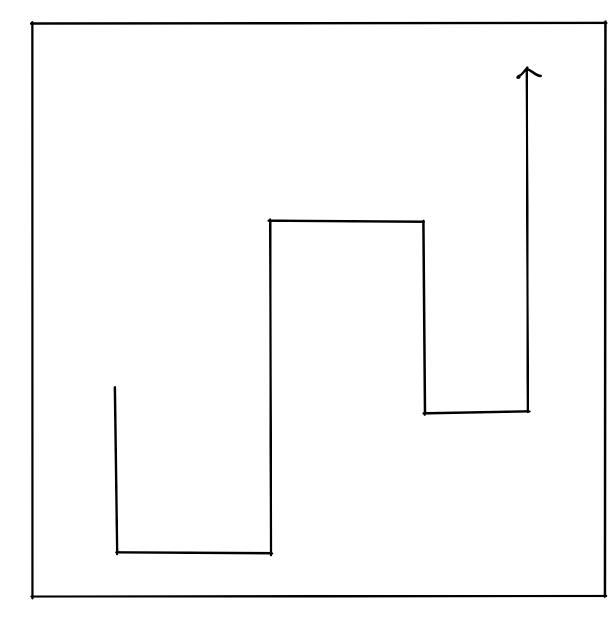
- - collision with itself or boundary terminate and report collision.
 - REDUCE(): remove the tail from S.
- Goal. $O(n + \log u)$ bits and O(1) time operations.

Snake problem. Maintain snake S of length n on a u by u grid subject to the operations: EXTEND(d): add new point to S adjacent to the head in direction d (up, down, left, right). If



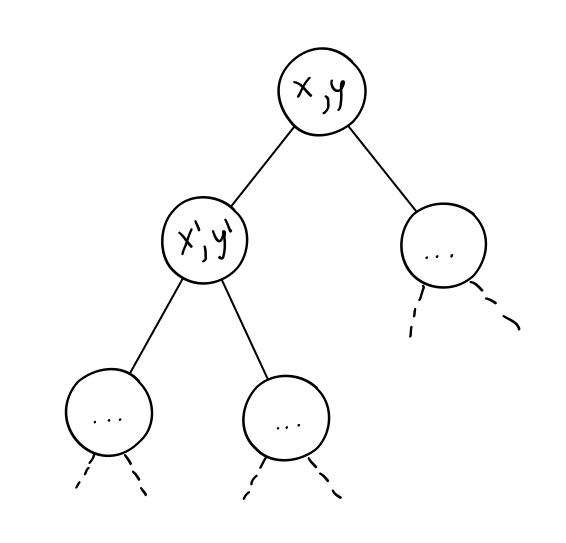
- Bit matrix solution. •
 - Maintain complete bit matrix representing snake + head and tail pointers. •
- \Rightarrow O(u²) bits of space and O(1) time EXTEND and REDUCE.



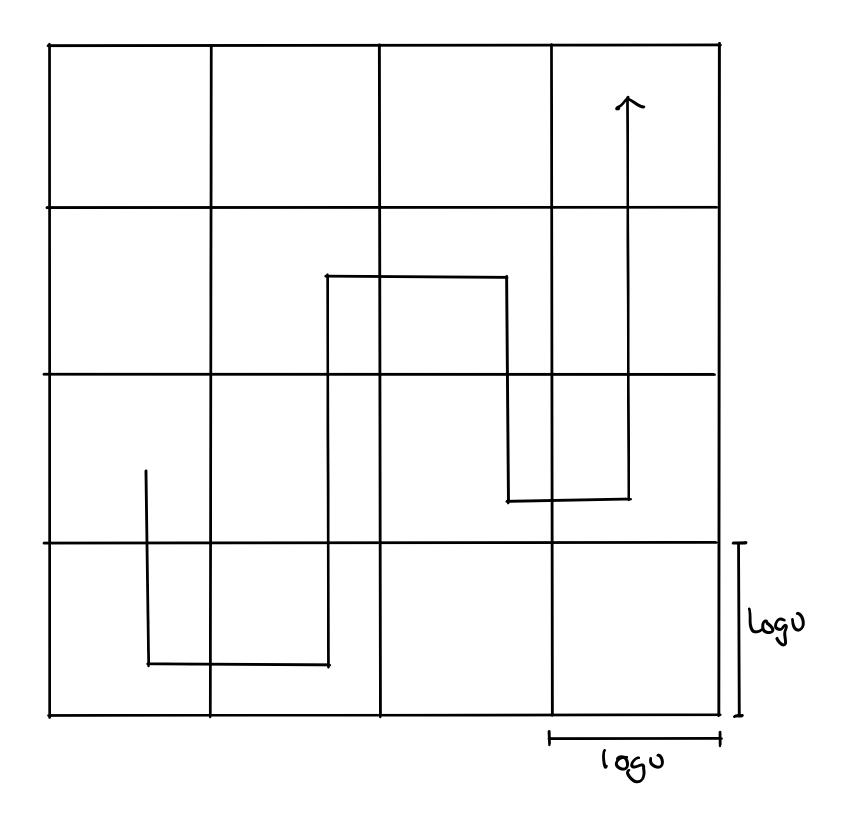


Dictionary solution. •

- Maintain a dictionary (eg. search tree) on the position of the snake. •
- \Rightarrow O(n log u) bits of space and O(log n) time EXTEND and REDUCE. . (with faster dictionaries \Rightarrow O(1) randomized time or O $\left(\sqrt{\log n/\log \log n}\right)$ deterministic time.

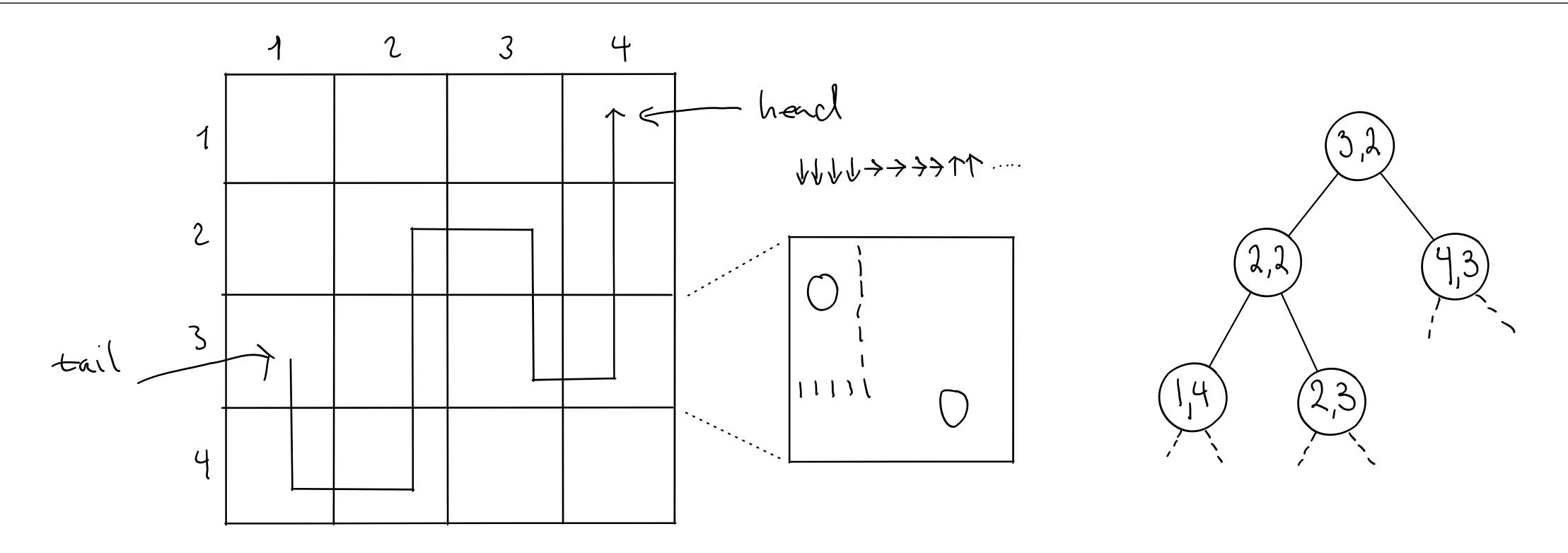


	Space	Time
Bit matrix	O(u ²)	O(1)
Dictionary	O(n log u)	O(log n)
New	O(n + log u)	O(1)



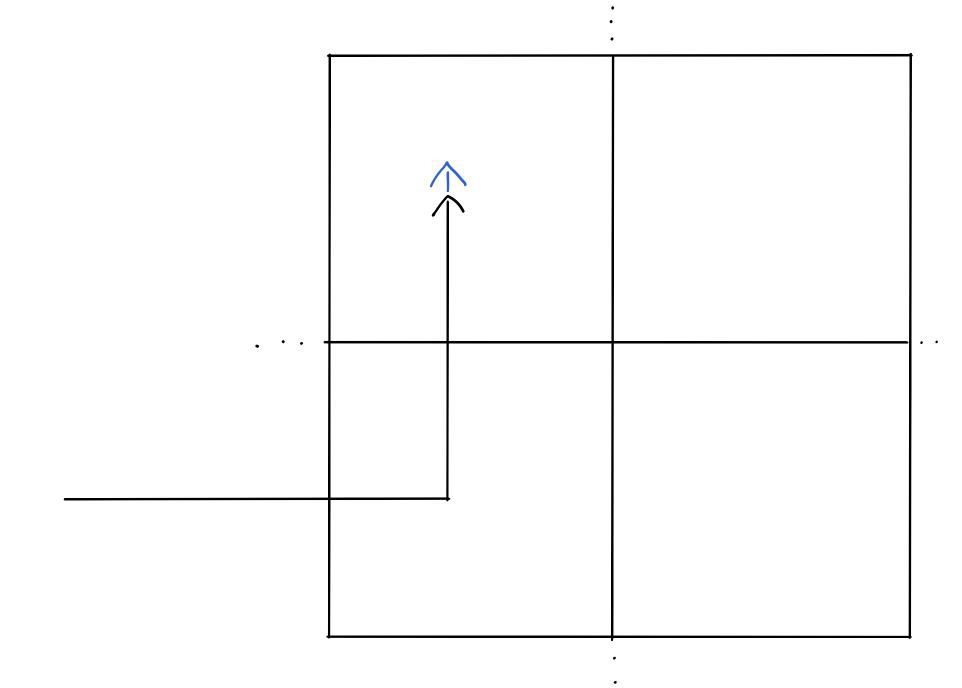
- Tiling.
 - Partitioning grid into tiles of log u by log u.
 - . Key property: The number of non-empty tiles is $\leq 4^{-1}$

u. tiles is $\leq 4 \frac{n}{\log u}$



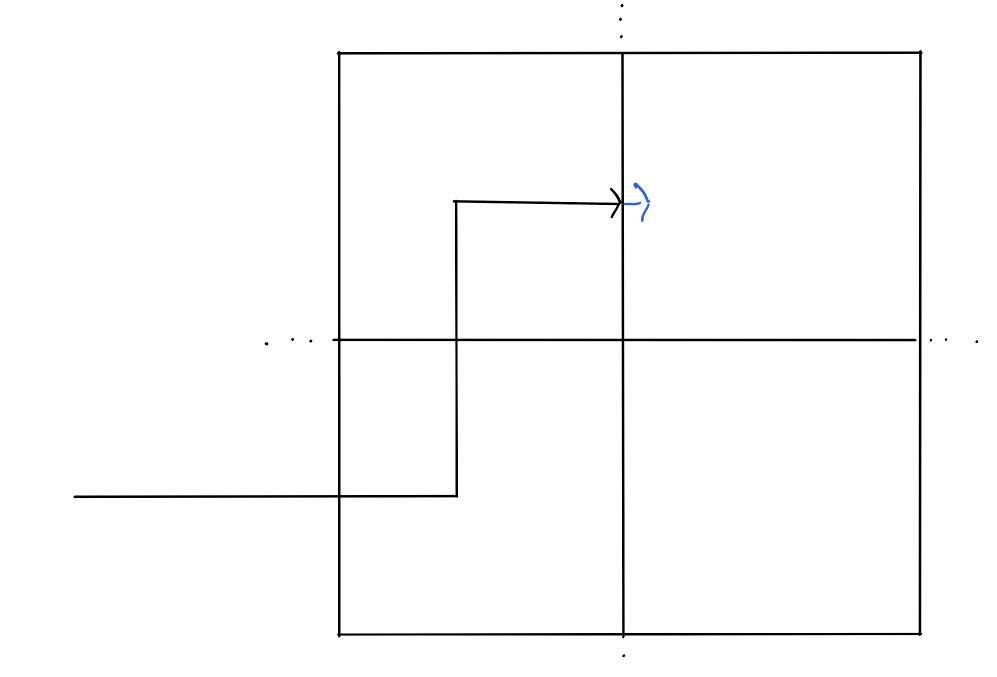
- Data structure. •
 - Direction string and head and tail positions. •
 - Search tree on non-empty tiles.
 - Bitmatrix for each non-empty tile.

$$\Rightarrow \text{Space: O}\left(n + \frac{n}{\log u}\log u + \frac{n}{\log u}\log^2 u\right) = O(n\log u) \text{ bits.}$$



EXTEND(d). •

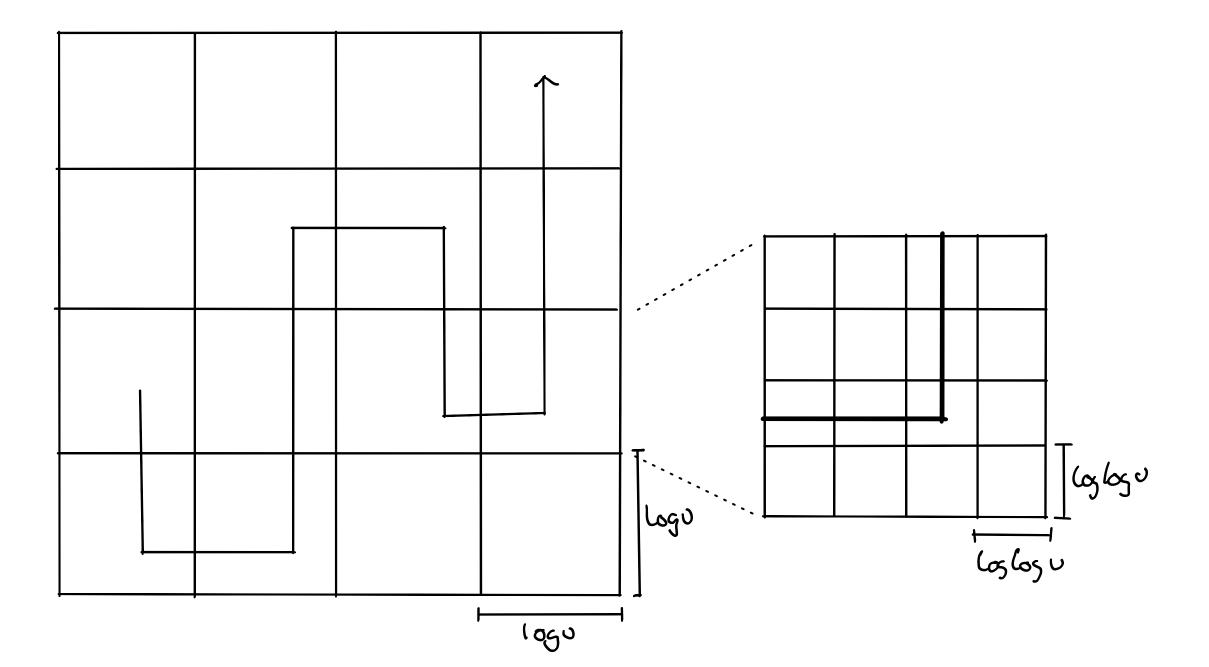
- Collision check + data structure update.
- Same tile: O(1) time.
- New tile: O(log n) time. •
- Tiling property \Rightarrow O(1) amortized time.
- Deamortize to O(1) worst-case time with buffers + scope. •



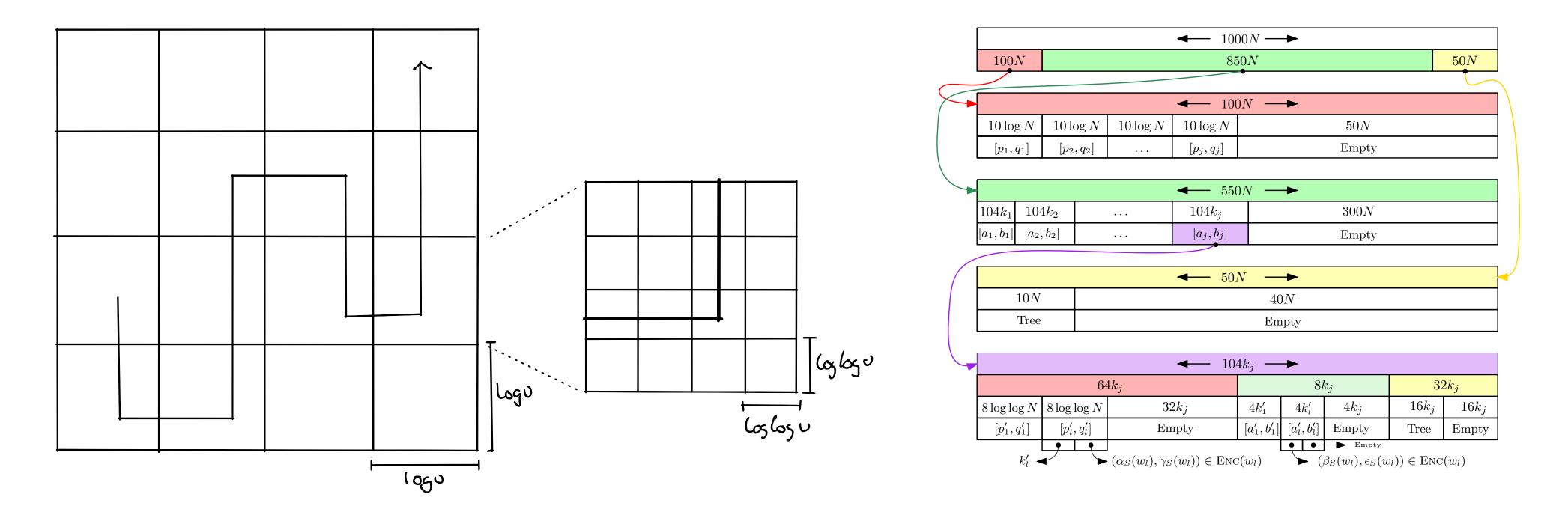
- Simple snake
 - REDUCE in O(1) time with similar (but easier) ideas as EXTEND.
 - \Rightarrow O(n log u) bits and O(1) time for REDUCE and EXTEND.

er) ideas as Extend.

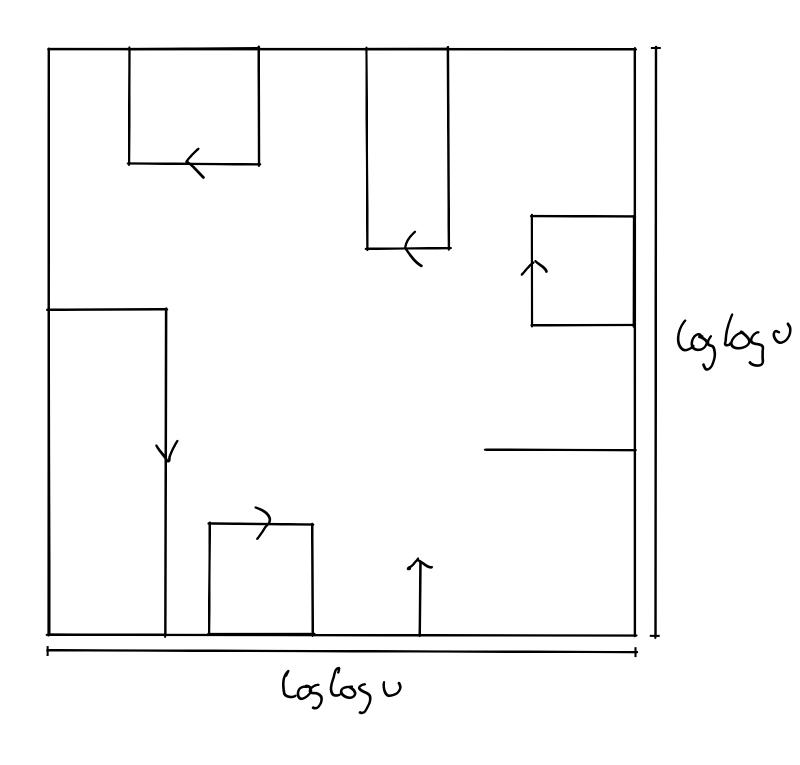
- Overview.
 - 2-level tiling.
 - Compact dynamic allocation scheme.
 - Tabulation.



- 2-level tiling.
 - Tiles and micro tiles.



- Dynamic allocation. •
 - We have $\Omega(n/\log \log u)$ non-empty micro tile data structures.
 - \Rightarrow standard log n bit pointers to these require $\omega(n)$ bits. •
 - Key idea: Compact dynamic layout of data structures to instead use local pointers.



- Collision detection on micro tiles. •
 - Encode boundary snake positions in O(log log u) bits. •
 - Encode subsnakes in O((log log u)²) bits. •
 - Table: encoding + new position -> is there a collision? •
 - Table size: $2^{O((\log \log u)^2)} = O(n)$ bits.
- Similar tables for updating the head and tail.

- Conclusion. O(n + log u) bits of space and constant time.
- cellphones with asymptotically large screen sizes... "
- Open problems. •
 - First non-trivial data structure result for a classic game? Other interesting games?
 - Interesting ways to include item to pick up or obstacles? •

Reviewer 3: "Given that the provided data structure achieves the stated bounds at the cost of large hidden constants, humongous instances are needed in order to appreciate its benefits over a naive implementation. Still, this might prove beneficial for computer scientists owning