
Snake in Optimal Space and Time
Philip Bille
Martín Farach-Colton

Ivor van der Hoog

Inge Li Gørtz

Snake

• Snake.

• Control the head of the snake. Can change direction.

• Avoid collision with yourself and the boundary (and maybe obstacles).

• Snake extends when it eats an item.

• Question: how many bits do we need to represent the snake and update it in constant time?

Snake

• Snake problem. Maintain snake S of length n on a u by u grid subject to the operations:

• EXTEND(d): add new point to S adjacent to the head in direction d (up, down, left, right). If

collision with itself or boundary terminate and report collision.

• REDUCE(): remove the tail from S.

• Goal. O(n + log u) bits and O(1) time operations.

Snake

• Bit matrix solution.

• Maintain complete bit matrix representing snake + head and tail pointers.

• ⇒ O(u2) bits of space and O(1) time EXTEND and REDUCE.

Snake

• Dictionary solution.

• Maintain a dictionary (eg. search tree) on the position of the snake.

• ⇒ O(n log u) bits of space and O(log n) time EXTEND and REDUCE.

• (with faster dictionaries ⇒ O(1) randomized time or deterministic time . 𝖮 (log 𝗇/log log 𝗇)

Snake

Space Time

Bit matrix O(u2) O(1)

Dictionary O(n log u) O(log n)

New O(n + log u) O(1)

Simple Snake

• Tiling.

• Partitioning grid into tiles of log u by log u.

• Key property: The number of non-empty tiles is .≤ 𝟦
𝗇

log 𝗎

Simple Snake

• Data structure.

• Direction string and head and tail positions.

• Search tree on non-empty tiles.

• Bitmatrix for each non-empty tile.

• ⇒ Space: bits. 𝖮 (𝗇 +
𝗇

log 𝗎
log 𝗎 +

𝗇
log 𝗎

log𝟤 𝗎) = 𝖮(𝗇 log 𝗎)

Simple Snake

• EXTEND(d).

• Collision check + data structure update.

• Same tile: O(1) time.

• New tile: O(log n) time.

• Tiling property ⇒ O(1) amortized time.

• Deamortize to O(1) worst-case time with buffers + scope.

Simple Snake
• Simple snake

• REDUCE in O(1) time with similar (but easier) ideas as EXTEND.

• ⇒ O(n log u) bits and O(1) time for REDUCE and EXTEND.

Optimal Snake
• Overview.

• 2-level tiling.

• Compact dynamic allocation scheme.

• Tabulation.

Optimal Snake

• 2-level tiling.

• Tiles and micro tiles.

Optimal Snake

• Dynamic allocation.

• We have Ω(n/log log u) non-empty micro tile data structures.

• ⇒ standard log n bit pointers to these require ω(n) bits.

• Key idea: Compact dynamic layout of data structures to instead use local pointers.

Empty Empty

1000N

50N

100N

[p1, q1] [p2, q2] . . . [pj , qj]

550N

104k1 104kj

[a1, b1] . . .

104k2

[aj , bj]

50N

10 logN

Tree Empty

104kj

64kj 32kj

. . .

[p01, q
0
1]

8 log logN 16kj

Tree

16kj

300N

10 logN 10 logN 10 logN

100N

Empty

40N

8kj

Empty

4kj4k0
1

(↵S(wl), �S(wl)) 2 Enc(wl)

[p0l, q
0
l]

8 log logN 32kj

[a0
1, b

0
1]

4k0
l

k0
l (�S(wl), ✏S(wl)) 2 Enc(wl)

850N

50N

Empty[a2, b2]

[a0
l, b

0
l]

Empty

10N

Optimal Snake

• Collision detection on micro tiles.

• Encode boundary snake positions in O(log log u) bits.

• Encode subsnakes in O((log log u)2) bits.

• Table: encoding + new position -> is there a collision?

• Table size: bits.

• Similar tables for updating the head and tail.
𝟤𝖮((log log 𝗎)𝟤) = 𝖮(𝗇)

Snake
• Conclusion. O(n + log u) bits of space and constant time.

• Reviewer 3: “Given that the provided data structure achieves the stated bounds at the cost of
large hidden constants, humongous instances are needed in order to appreciate its benefits
over a naive implementation. Still, this might prove beneficial for computer scientists owning
cellphones with asymptotically large screen sizes... “

• Open problems.

• First non-trivial data structure result for a classic game? Other interesting games?

• Interesting ways to include item to pick up or obstacles?

