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Regular Expression Matching



Regular Expressions
• Regular expressions.


• A character ɑ is a regular expression. 

• If S and T are regular expressions, then so is the union S | T, the concatenation S·T (ST) 

and the Kleene star S*.


• Regular languages. 

• The language of a regular expression is given by


• L(ɑ) = {ɑ}

• L(S | T) = L(S) ∪ L(T)

• L(S·T) = L(S) · L(T)

• L(S*) = {ε} ∪ L(S) ∪ L(S)2 ∪ L(S)3 ···


• Example.

• R = a(a*)(b|c)

• L(R) = {ab, ac, aab, aac, aaab, aaac, ...}



Regular Expression Matching
• Given a regular expression R and a string Q, decide if Q ∈ L(R). 

• What are the best known time/space bounds for regular expression matching? 



Regular Expression Matching

Time Space Reference 

[Thompson 1968]

[Myers 1992]

[B., Farach-Colton 2005]

[B. 2006]

[B., Thorup 2009]

[Backurs, Indyk 2016, Bringmann et 
al. 2016, Schepper 2020]
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m = |R|, n = |Q|, unit cost word RAM with word length w ≥ log n 



Regular Expression Matching: Adaptive Bounds

Time Space Reference 

[B., Thorup 2010]

[B., Gørtz 2024]

[B., Gørtz 2024]

𝖮(𝗆)𝖮 ( 𝗇𝗄 log 𝗐
𝗐

+ 𝗇 + 𝗆 log 𝗄)
𝖮(𝗆)𝖮 (Δ log log

𝗇𝗆
Δ

+ 𝗇 + 𝗆)
Ω(Δ𝟣−ε)

k = number of strings in R, ∆ = total size of state sets in simulation of position automaton 
m = |R|, n = |Q|, unit cost word RAM with word length w ≥ log n 



Outline
• The problem. 

• Results.

• Tour of algorithmic techniques. 


• NFAs and state-set simulation.

• NFA decomposition and micro TNFAs.

• Tabulation-based micro TNFA simulation.

• Word-level parallel micro TNFA simulation. 

• 2D decomposition. 

• Adaptive techniques.  


• NFAs vs. DFAs.

• Open problems. 



NFAs and State-set Simulation



NFAs and State-Set Simulation

• Non-deterministic finite automaton (NFA). 

• Construct Thompson's NFA (TNFA) N(R) from R [Thompson 1968]

• N(R) accepts L(R). Any path from start to accept state matches exactly the strings in L(R).

• O(m) states and transitions. 

• States with an incoming character transition have exactly 1 predecessor. 

• Almost a series-parallel graph: 


• Separator of size 2. 

• Any cycle-free path has at most 1 back edge. 
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NFAs and State-Set Simulation

• State-set transition.

• Given state set S and character ɑ.

• ẟ(S, ɑ): set of states reachable from S via paths matching ɑ. 


• Split into two operations:

• Move(S, ɑ): set of states reachable from S via single ɑ-transition. 

• Close(S): set of states reachable from S via paths of ε-transitions.


• O(m) time. 
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NFAs and State-Set Simulation

• State-set simulation.

• Given string Q of length n, compute sequence of state sets S0, ..., Sn

• S0 = Close({θ}) 

• Si = Close(Move(Si-1, ɑ))


• Q ∈ L(R) iff φ ∈ Sn.


• ⇒ O(nm) time and O(m) space [Thompson 1968].


• Top ten list of problems in stringology 1985 [Galil 1985].
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NFA Decomposition



Large and Small TNFAs

• TNFA decomposition. 

• Suppose we can do state-set transition fast on a micro TNFA of size x ≪ m.

• Can we use that to get efficient state-set transition for N(R)?

• Main problem is non-local dependencies from ε-transitions.
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Large and Small TNFAs

• TNFA decomposition. 

• Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each micro TNFA 

overlaps with enclosing micro TNFA in 2 states. 

• Implement state-set transition on N(R) by state-set transition on micro TNFAs in topological 

order twice. Propagate reachable overlapping states. 

• Implement state-set transition on micro TNFA in t(x) time ⇒ state-set transition on N(R) in 

 time [Myers1992, B. 2006].𝖮 ( 𝗆𝗍(𝗑)
𝗑 )
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Tabulation for Micro TNFAs

• Tabulation on micro TNFA with x states.   

• Encode state-set as bit string of length x.

• Move(S, ɑ): Use shift-and technique. 

• Close(S): Universal tabulation for all possible micro TNFAs. Table size 2O(x).

• With x = Θ(log n) ⇒ state-set transition on micro TNFA in constant time and O(nε) space.  


• ⇒ Regular expression matching in  time and O(nε + m) space [B., Farach-Colton 

2005].
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Word-Level Parallelism for Micro TNFAs

• Word-level parallelism on micro TNFA with Θ(w) states.   

• Can we simulate micro TNFA with bitwise logical and arithmetic operations of the w-bit 

words instead of tabulation? 

• Main challenge is Close operation. How to deal with long paths of ε-transitions? 



Word-Level Parallelism for Micro TNFAs

• Separator decompositions on micro TFNAs

• There exists two states θ and ϕ whose removal partitions a micro TNFA A into two 

subgraphs, AO and AI, of roughly equal size such that:

• Any path from AO to AI goes through θ.

• Any path from AI to AO goes through ϕ.

AI

AO

✓ �



Word-Level Parallelism for Micro TNFAs

• Recursive Close computation 

• Compute which of θ and ϕ are reachable.

• Update current set of reachable states

• Recurse on AO and AI in parallel.

• O(log w) levels of recursion each using O(1) time ⇒ state-set transition on micro TNFA in 

O(log w) time.


•  ⇒ Regular expression matching in  time and O(m) space [B. 2006].𝖮 ( 𝗇𝗆 log 𝗐
𝗐 )
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2D Decomposition
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Beyond State-Set Simulation

• Limits of state-set transitions algorithms. 

• To explicitly read/write state-sets at each character we need Ω(m/w) time for state-set 

transition.

• ⇒ Any algorithm must use Ω(nm/w) time with this approach. 


• Can we process multiple characters quickly?

• Even larger challenges from non-local ε-transitions.
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2D Decomposition Algorithm

• Processing multiple characters at a time. 

• Decompose N(R) into O(m/x) micro TNFAs with at most x = Θ(log n) states (as earlier). 

• Partition Q into segments of length y = Θ(log1/2 n).

• State-set transition on segments in O(m/x) time.

• ⇒ Regular expression matching in O(nm/xy) = O(nm/log1,5n) time [B., Thorup 2009]. 



2D Decomposition Algorithm
• Goal. Do a state set transition on y = Θ(log1/2 n) characters in O(m/x) = O(m/log n) time. 


• Algorithm overview. 4 traversals on tree of micro TNFAs. 

• 1-3 iteratively “builds” information. 

• 4 computes the actual state-set transition.


• Tabulation to do each traversal in constant time per micro TNFA.
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2D Decomposition Algorithm

• Step 1. Computing Accepted Substrings. 

• Goal: For micro TNFA A compute the substrings of q that are accepted by Ā. We have A1 : 

{ε,a,aa}, A2 : {b}, A3 : {ab,aab}. 


• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode set of substrings in O(y2) = O(log n) bits.

• Table input: micro TNFA, substrings of children, q.

• Table size 2O(x + y2+ y) = 2O(x + y2) = O(nε).

q = aab
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2D Decomposition Algorithm

• Step 2. Computing Path Prefixes to Accepting States. 

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to the accepting 

state in Ā. We have A1 : {a, aa}, A2 : ∅, A3 : {aab}. 


• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode prefixes in O(y) = O(log1/2 n) bits.

• Table input: micro TNFA, substrings and path prefixes of children, q, state-set for A. 

• Table size 2O(x + y2) = O(nε).

q = aab

S = {1,3}
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2D Decomposition Algorithm

• Step 3. Computing Path Prefixes to Start States.

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to the start state 

in N(R). We have A1 : {a}, A2 : {a, aa}, A3 : {ε}. 


• Top-down traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

q = aab

S = {1,3}
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2D Decomposition Algorithm

• Step 4. Updating State-Sets 

• Goal: For micro TNFA A compute the next state-set. We have A1 : ∅, A2 : {7,10}, A3 : {10}. 


• Traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

q = aab

S = {1,3}



2D Decomposition Algorithm
• Summary.


• Tabulation in 2O(x + y2) = O(nε) time and space.

• 4 traversals each using O(m/x) time to process length y segment of Q.

• ⇒ Regular expression matching in O(nm/xy) = O(nm/log1,5n) time and O(nε + m) space [B., 

Thorup 2009]



Adaptive Techniques 



Regular Expression Matching with Multi-Strings
• Many regular expressions consist of k ≪ m strings.


• Example. Gnutella download stream detection:

• (Server:|User-Agent:)( |\t)*(LimeWire|BearShare|Gnucleus|Morpheus|
XoloX|gtk-gnutella|Mutella|MyNapster|Qtella|AquaLime|NapShare|Comback|
PHEX|SwapNut|FreeWire|Openext|Toadnode)

• k = 21 vs.  m = 174.


• Can we exploit k ≪ m in algorithms for regular expression matching?



Regular Expression Matching with Multi-Strings

• Algorithm components. 

• Construct pruned TNFA: Replace strings L = {L1, ..., Lk} with single transitions => number of 

states and transitions is O(k).

• Maintain FIFO bit queue for Li of length |Li|. 

• Preprocess L for fast multi-string matching (Aho-Corasick automaton).
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Regular Expression Matching with Multi-Strings

• Algorithm processing. 

• Interleaved traversal of pruned TNFA and multi-string matching on one character from Q at a 

time:

• Startpoint of string transition active => Enqueue 1 else 0.

• Front of queue 1 and match of string => Make endpoint active. 


• O(k) states and transition, k queues, multi-string matching is fast ⇒ O(k) time per character


• ⇒ Regular expression matching in O(nk) time and O(m) space [B., Thorup 2010].
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Regular Expression Matching with Multi-Strings

• Decomposition with multi-strings. 

• Apply decomposition on pruned TNFA: tree of O(k/w) micro TNFAs with at most w states 

and w strings.

• Apply Close operation based on word-level parallelism [B. 2006] ⇒ O(log w) per micro TNFA


• Reuse multi-string matching algorithm.

• Advanced word-level parallel techniques to maintain parallel bit-queue, etc. 


• ⇒ regular expression matching in  time and O(m) space [B., Thorup 2010]. 𝖮 ( 𝗇𝗄 log 𝗐
𝗐 )
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NFAs vs DFAs



NFAs vs DFAs
• We can convert TNFA N(R) to a deterministic finite automaton (DFA) using the subset 

construction. 

• ⇒ DFA D with O(22m) states and O(22mσ) transitions. 


• Only need to keep track of a single state during matching. 

• Does this imply solution to regular expression matching in O(22mσ + n) time?  


• No! Only true for m = O(w).

• Word RAM model options: 


• Space is limited to 2w.

• Any data structure D with 2Ω(m) space needs Ω(m/w) time just to specify address in D.  


• ⇒ a state-transition in D uses Ω(m/w) time ⇒ regular expression matching in time 

[B. 2015].

Ω ( 𝗇𝗆
𝗐 )



Open Problems



Open Problems
• Better than 2D decomposition.  

• Other adaptive measures. 

• Regular expression extensions and variations. 
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