Algorithmic Techniques for Regular Expression
Matching

Philip Bille

Regular Expression Matching

Regular Expressions

- Regular expressions.
- A character a is a regular expression.

- If S and T are regular expressions, then so is the union S | T, the concatenation S-T (ST)
and the Kleene star S*.

- Regular languages.
- The language of a regular expression is given by
© La) ={a}
- L(S|T)=L(S)u L
- L(ST)=L(S) - L(T)
+ L(S*) ={e} uL(S) uL(S)2 u L(S)® -

- Example.
- R =a(a*)(b|c)
- L(R) = {ab, ac, aab, aac, aaab, aaac, ...}

Regular Expression Matching

- Given a regular expression R and a string Q, decide if Q € L(R).
- What are the best known time/space bounds for regular expression matching?

Regular Expression Matching

Time Space Reference
O(nm) O(m) [Thompson 1968]
nm
@) (+ (n + m)log n) O(nfm) [Myers 1992]
logn
nm
O <log - +n+ mlog n) O(n® + m) [B., Farach-Colton 2005]
nmlogw
Ol ———+n+mlogn O(m) [B. 2006]
w
nmloglogn .
O log32n +n+m O(n®+ m) [B., Thorup 2009]
1—¢ [Backurs, Indyk 2016, Bringmann et
$A((nm)) al. 2016, Schepper 2020]

m = |R|, n = |Q|, unit cost word RAM with word length w = log n

Regular Expression Matching: Adaptive Bounds

Time Space Reference
kl
0 (" oY h+mlog k> o(m) [B., Thorup 2010]
w
nm
@) <A log log e +n+ m> O(m) [B., Gortz 2024]
Q(A'™?) [B., Gartz 2024]

k = number of strings in R, A = total size of state sets in simulation of position automaton
m = |R|, n = |Q|, unit cost word RAM with word length w = log n

Outline

- The problem.

- Results.

- Tour of algorithmic techniques.
- NFAs and state-set simulation.
- NFA decomposition and micro TNFAs.
- Tabulation-based micro TNFA simulation.
- Word-level parallel micro TNFA simulation.
- 2D decomposition.
- Adaptive techniques.

- NFAs vs. DFAs.

- Open problems.

NFAs and State-set Simulation

NFAs and State-Set Simulation

- Non-deterministic finite automaton (NFA).
- Construct Thompson's NFA (TNFA) N(R) from R [Thompson 1968]
- N(R) accepts L(R). Any path from start to accept state matches exactly the strings in L(R).
- O(m) states and transitions.
- States with an incoming character transition have exactly 1 predecessor.
- Almost a series-parallel graph:
- Separator of size 2.
- Any cycle-free path has at most 1 back edge.

NFAs and State-Set Simulation

- State-set transition.
- Given state set S and character a.
- 0(S, a): set of states reachable from S via paths matching a.

- Split into two operations:
- Move(S, a): set of states reachable from S via single a-transition.

- Close(S): set of states reachable from S via paths of e-transitions.

* O(m) time.

NFAs and State-Set Simulation

- State-set simulation.
-+ Given string Q of length n, compute sequence of state sets So, ..., Sn
- So = Close({6})
- Si= Close(Move(Si-1,)

- Qe L(R)iff ¢ € Sp.

- = O(hm) time and O(m) space [Thompson 1968].
- Top ten list of problems in stringology 1985 [Galil 1985].

NFA Decomposition

Large and Small TNFAs

- TNFA decomposition.
- Suppose we can do state-set transition fast on a micro TNFA of size x « m.
- Can we use that to get efficient state-set transition for N(R)?
- Main problem is non-local dependencies from e-transitions.

Large and Small TNFAs

- TNFA decomposition.

- Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each micro TNFA
overlaps with enclosing micro TNFA in 2 states.

- Implement state-set transition on N(R) by state-set transition on micro TNFAs in topological
order twice. Propagate reachable overlapping states.

- Implement state-set transition on micro TNFA in t(x) time = state-set transition on N(R) in

mt(x) \ .
O time [Myers1992, B. 2006].
X

Tabulation for Micro TNFAS

- Tabulation on micro TNFA with x states.
- Encode state-set as bit string of length x.
- Move(S, a): Use shift-and technique.
-+ Close(S): Universal tabulation for all possible micro TNFAs. Table size 20x),
- With x = O(log n) = state-set transition on micro TNFA in constant time and O(ng) space.

nm

. = Regular expression matching in O <) time and O(ne + m) space [B., Farach-Colton

logn

2005].

Word-Level Parallelism for Micro TNFASs

- Word-level parallelism on micro TNFA with O(w) states.

- Can we simulate micro TNFA with bitwise logical and arithmetic operations of the w-bit
words instead of tabulation?

- Main challenge is Close operation. How to deal with long paths of e-transitions?

Word-Level Parallelism for Micro TNFASs

- Separator decompositions on micro TFNAs

- There exists two states 6 and ¢ whose removal partitions a micro TNFA A into two
subgraphs, Ao and A, of roughly equal size such that:

- Any path from Ao to A goes through 6.
- Any path from A to Ao goes through o¢.

Word-Level Parallelism for Micro TNFASs

- Recursive Close computation
- Compute which of 8 and ¢ are reachable.
- Update current set of reachable states
- Recurse on Ao and A in parallel.
- O(log w) levels of recursion each using O(1) time = state-set transition on micro TNFA in
O(log w) time.

: L nmlogw \ .
= Regular expression matching in O | ———— | time and O(m) space [B. 2006].

w

2D Decomposition

Beyond State-Set Simulation

- Limits of state-set transitions algorithms.

- To explicitly read/write state-sets at each character we need Q(m/w) time for state-set
transition.

- = Any algorithm must use Q(nm/w) time with this approach.

- Can we process multiple characters quickly?
- Even larger challenges from non-local e-transitions.

2D Decomposition Algorithm

- Processing multiple characters at a time.
- Decompose N(R) into O(m/x) micro TNFAs with at most x = O(log n) states (as earlier).
- Partition Q into segments of length y = ©(log'/2 n).
- State-set transition on segments in O(m/x) time.
- = Regular expression matching in O(nm/xy) = O(nm/log'.5n) time [B., Thorup 2009].

2D Decomposition Algorithm

- Goal. Do a state set transition on y = O(log'/2 n) characters in O(m/x) = O(m/log n) time.
- Algorithm overview. 4 traversals on tree of micro TNFAs.
- 1-3 iteratively “builds” information.

- 4 computes the actual state-set transition.

- Tabulation to do each traversal in constant time per micro TNFA.

2D Decomposition Algorithm

- Step 1. Computing Accepted Substrings.

- Goal: For micro TNFA A compute the substrings of q that are accepted by A. We have A1 :
{e,a,aa}, A2: {b}, Az: {ab,aabj}.

- Bottom-up traversal using tabulation in constant time per micro TNFA.
- Encode set of substrings in O(y2) = O(log n) bits.

- Table input: micro TNFA, substrings of children, q.

+ Table size 20k +y2+y) = 20 +y2) = Q(ng).

2D Decomposition Algorithm

- Step 2. Computing Path Prefixes to Accepting States.

» Goal: For micro TNFA A compute the prefixes of g matching a path from S to the accepting
state in A. We have A1:{a, aa}, A>: @, As: {aab}.

- Bottom-up traversal using tabulation in constant time per micro TNFA.

- Encode prefixes in O(y) = O(log'/2 n) bits.

- Table input: micro TNFA, substrings and path prefixes of children, q, state-set for A.
+ Table size 20 +y2) = O(ne).

2D Decomposition Algorithm

- Step 3. Computing Path Prefixes to Start States.

- Goal: For micro TNFA A compute the prefixes of g matching a path from S to the start state
in N(R). We have A1:{a}, A2:{a, aa}, As: {€}.

- Top-down traversal using tabulation in constant time per micro TNFA.
- Tabulation: Similar to previous traversal.

2D Decomposition Algorithm

- Step 4. Updating State-Sets
- Goal: For micro TNFA A compute the next state-set. We have A1: @, A2: {7,10}, Az: {10}.

- Traversal using tabulation in constant time per micro TNFA.
- Tabulation: Similar to previous traversal.

2D Decomposition Algorithm

+ Summary.
- Tabulation in 20 +y2) = O(ne) time and space.
- 4 traversals each using O(m/x) time to process length y segment of Q.

= Regular expression matching in O(nm/xy) = O(nm/log'-°n) time and O(ne + m) space [B.,
Thorup 2009]

Adaptive Technigques

Regular Expression Matching with Multi-Strings

Many regular expressions consist of k « m strings.

Example. Gnutella download stream detection:

(Server: |User-Agent:)(|\t)*(LimeWire|BearShare|Gnucleus |Morpheus |
XoloX|gtk-gnutella|Mutella|MyNapster |Qtella|AquaLime |NapShare |Comback |
PHEX | SwapNut | FreeWire | Openext | Toadnode)

k=21vs. m=174.

- Can we exploit k « m in algorithms for regular expression matching?

Regular Expression Matching with Multi-Strings

- Algorithm components.

- Construct pruned TNFA: Replace strings L = {L4, ..., Lk} with single transitions => number of
states and transitions is O(k).

- Maintain FIFO bit queue for L; of length |Lj|.
- Preprocess L for fast multi-string matching (Aho-Corasick automaton).

Regular Expression Matching with Multi-Strings

- Algorithm processing.
- Interleaved traversal of pruned TNFA and multi-string matching on one character from Q at a
time:
- Startpoint of string transition active => Enqueue 1 else 0.
- Front of queue 1 and match of string => Make endpoint active.
- O(k) states and transition, k queues, multi-string matching is fast = O(k) time per character

- = Regular expression matching in O(nk) time and O(m) space [B., Thorup 2010].

Regular Expression Matching with Multi-Strings

- Decomposition with multi-strings.

- Apply decomposition on pruned TNFA: tree of O(k/w) micro TNFAs with at most w states
and w strings.

- Apply Close operation based on word-level parallelism [B. 2006] = O(log w) per micro TNFA

- Reuse multi-string matching algorithm.

- Advanced word-level parallel technigues to maintain parallel bit-queue, etc.
nklog w

. = regular expression matching in O < > time and O(m) space [B., Thorup 2010].

w

NFAs vs DFAs

NFAs vs DFAs

- We can convert TNFA N(R) to a deterministic finite automaton (DFA) using the subset
construction.

- = DFA D with O(22m) states and O(22m0) transitions.

- Only need to keep track of a single state during matching.
- Does this imply solution to regular expression matching in O(22mg + n) time?

+ No! Only true for m = O(w).
- Word RAM model options:
- Space is limited to 2v.
- Any data structure D with 29Mm space needs QQ(m/w) time just to specify address in D.

nm
. = a state-transition in D uses Q(m/w) time = regular expression matching in Q (—)time
W

[B. 2015].

Open Problems

Open Problems

- Better than 2D decomposition.
- Other adaptive measures.
- Regular expression extensions and variations.

References

Kleene. Representation of events in nerve nets and finite automata. Ann. Math. Stud. 1956.
- Thompson. Regular expression search algorithm. CACM 1968.

Galil. Open problems in stringology. In A. Apostolico and Z. Galil, editors, Combinatorial problems on
words, NATO ASI Series 1985.

Myers. A four-russian algorithm for regular expression pattern matching. JACM 1992,

Bille and Farach-Colton. Fast and compact regular expression matching. Theoret. Comput. Sci. 2008.
Bille. New algorithms for regular expression matching. ICALP 2006.

Bille and Thorup. Faster regular expression matching. ICALP 2009

Bille and Thorup. Regular Expression Matching with Multi-Strings and Character-Class Intervals, SODA
2010

Bille. On Regular Expression Matching and Deterministic Finite Automata, Tiny Transactions on Computer
Science 3, 2015.

Backurs and Indyk. Which Regular Expressions Patterns are Hard to Match? FOCS 2016.

Bringmann, Grgnlund, and Larsen. A dichotomy for regular expression membership testing FOCS 2017.
- Schepper. Fine-grained complexity of regular expression pattern matching and membership. ESA 2020.
Bille and Gortz. Sparse Regular Expression Matching, SODA 2024

