
Algorithmic Techniques for Regular Expression
Matching
Philip Bille

Regular Expression Matching

Regular Expressions
• Regular expressions.

• A character ɑ is a regular expression.

• If S and T are regular expressions, then so is the union S | T, the concatenation S·T (ST)

and the Kleene star S*.

• Regular languages.

• The language of a regular expression is given by

• L(ɑ) = {ɑ}

• L(S | T) = L(S) ∪ L(T)

• L(S·T) = L(S) · L(T)

• L(S*) = {ε} ∪ L(S) ∪ L(S)2 ∪ L(S)3 ···

• Example.

• R = a(a*)(b|c)

• L(R) = {ab, ac, aab, aac, aaab, aaac, ...}

Regular Expression Matching
• Given a regular expression R and a string Q, decide if Q ∈ L(R).

• What are the best known time/space bounds for regular expression matching?

Regular Expression Matching

Time Space Reference

[Thompson 1968]

[Myers 1992]

[B., Farach-Colton 2005]

[B. 2006]

[B., Thorup 2009]

[Backurs, Indyk 2016, Bringmann et
al. 2016, Schepper 2020]

𝖮 (𝗇𝗆
log 𝗇

+ (𝗇 + 𝗆)log 𝗇)
𝖮 (𝗇𝗆

log 𝗇
+ 𝗇 + 𝗆 log 𝗇)

𝖮 (𝗇𝗆 log 𝗐
𝗐

+ 𝗇 + 𝗆 log 𝗇)
𝖮 (𝗇𝗆 log log 𝗇

log𝟥/𝟤 𝗇
+ 𝗇 + 𝗆)

Ω((𝗇𝗆)𝟣−ε)

𝖮(𝗇𝗆) 𝖮(𝗆)

𝖮(𝗇ε𝗆)

𝖮(𝗇ε + 𝗆)

𝖮(𝗇ε + 𝗆)

𝖮(𝗆)

m = |R|, n = |Q|, unit cost word RAM with word length w ≥ log n

Regular Expression Matching: Adaptive Bounds

Time Space Reference

[B., Thorup 2010]

[B., Gørtz 2024]

[B., Gørtz 2024]

𝖮(𝗆)𝖮 (𝗇𝗄 log 𝗐
𝗐

+ 𝗇 + 𝗆 log 𝗄)
𝖮(𝗆)𝖮 (Δ log log

𝗇𝗆
Δ

+ 𝗇 + 𝗆)
Ω(Δ𝟣−ε)

k = number of strings in R, ∆ = total size of state sets in simulation of position automaton
m = |R|, n = |Q|, unit cost word RAM with word length w ≥ log n

Outline
• The problem.

• Results.

• Tour of algorithmic techniques.

• NFAs and state-set simulation.

• NFA decomposition and micro TNFAs.

• Tabulation-based micro TNFA simulation.

• Word-level parallel micro TNFA simulation.

• 2D decomposition.

• Adaptive techniques.

• NFAs vs. DFAs.

• Open problems.

NFAs and State-set Simulation

NFAs and State-Set Simulation

• Non-deterministic finite automaton (NFA).

• Construct Thompson's NFA (TNFA) N(R) from R [Thompson 1968]

• N(R) accepts L(R). Any path from start to accept state matches exactly the strings in L(R).

• O(m) states and transitions.

• States with an incoming character transition have exactly 1 predecessor.

• Almost a series-parallel graph:

• Separator of size 2.

• Any cycle-free path has at most 1 back edge.

(a) (b)

(c)
(d)

α

N(S)

N(T)

ε

N(T)

N(S)

N(S)
ε

ε

ε

ε

ε

ε ε

θ

θ
θ

θφ

φ
φ

φ

a

ε

8

76

54

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

R = a·(a∗)·(b|c)

NFAs and State-Set Simulation

• State-set transition.

• Given state set S and character ɑ.

• ẟ(S, ɑ): set of states reachable from S via paths matching ɑ.

• Split into two operations:

• Move(S, ɑ): set of states reachable from S via single ɑ-transition.

• Close(S): set of states reachable from S via paths of ε-transitions.

• O(m) time.

(a) (b)

(c)
(d)

α

N(S)

N(T)

ε

N(T)

N(S)

N(S)
ε

ε

ε

ε

ε

ε ε

θ

θ
θ

θφ

φ
φ

φ

a

ε

8

76

54

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

R = a·(a∗)·(b|c)

NFAs and State-Set Simulation

• State-set simulation.

• Given string Q of length n, compute sequence of state sets S0, ..., Sn

• S0 = Close({θ})

• Si = Close(Move(Si-1, ɑ))

• Q ∈ L(R) iff φ ∈ Sn.

• ⇒ O(nm) time and O(m) space [Thompson 1968].

• Top ten list of problems in stringology 1985 [Galil 1985].

(a) (b)

(c)
(d)

α

N(S)

N(T)

ε

N(T)

N(S)

N(S)
ε

ε

ε

ε

ε

ε ε

θ

θ
θ

θφ

φ
φ

φ

a

ε

8

76

54

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

R = a·(a∗)·(b|c)

NFA Decomposition

Large and Small TNFAs

• TNFA decomposition.

• Suppose we can do state-set transition fast on a micro TNFA of size x ≪ m.

• Can we use that to get efficient state-set transition for N(R)?

• Main problem is non-local dependencies from ε-transitions.

a

ε

8

76

54

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

Large and Small TNFAs

• TNFA decomposition.

• Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each micro TNFA

overlaps with enclosing micro TNFA in 2 states.

• Implement state-set transition on N(R) by state-set transition on micro TNFAs in topological

order twice. Propagate reachable overlapping states.

• Implement state-set transition on micro TNFA in t(x) time ⇒ state-set transition on N(R) in

 time [Myers1992, B. 2006].𝖮 (𝗆𝗍(𝗑)
𝗑)

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

Tabulation for Micro TNFAs

• Tabulation on micro TNFA with x states.

• Encode state-set as bit string of length x.

• Move(S, ɑ): Use shift-and technique.

• Close(S): Universal tabulation for all possible micro TNFAs. Table size 2O(x).

• With x = Θ(log n) ⇒ state-set transition on micro TNFA in constant time and O(nε) space.

• ⇒ Regular expression matching in time and O(nε + m) space [B., Farach-Colton

2005].

𝖮 (𝗇𝗆
𝗅𝗈𝗀𝗇)

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

Word-Level Parallelism for Micro TNFAs

• Word-level parallelism on micro TNFA with Θ(w) states.

• Can we simulate micro TNFA with bitwise logical and arithmetic operations of the w-bit

words instead of tabulation?

• Main challenge is Close operation. How to deal with long paths of ε-transitions?

Word-Level Parallelism for Micro TNFAs

• Separator decompositions on micro TFNAs

• There exists two states θ and ϕ whose removal partitions a micro TNFA A into two

subgraphs, AO and AI, of roughly equal size such that:

• Any path from AO to AI goes through θ.

• Any path from AI to AO goes through ϕ.

AI

AO

✓ �

Word-Level Parallelism for Micro TNFAs

• Recursive Close computation

• Compute which of θ and ϕ are reachable.

• Update current set of reachable states

• Recurse on AO and AI in parallel.

• O(log w) levels of recursion each using O(1) time ⇒ state-set transition on micro TNFA in

O(log w) time.

• ⇒ Regular expression matching in time and O(m) space [B. 2006].𝖮 (𝗇𝗆 log 𝗐
𝗐)

AI

AO

✓ �

2D Decomposition

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

Beyond State-Set Simulation

• Limits of state-set transitions algorithms.

• To explicitly read/write state-sets at each character we need Ω(m/w) time for state-set

transition.

• ⇒ Any algorithm must use Ω(nm/w) time with this approach.

• Can we process multiple characters quickly?

• Even larger challenges from non-local ε-transitions.

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

2D Decomposition Algorithm

• Processing multiple characters at a time.

• Decompose N(R) into O(m/x) micro TNFAs with at most x = Θ(log n) states (as earlier).

• Partition Q into segments of length y = Θ(log1/2 n).

• State-set transition on segments in O(m/x) time.

• ⇒ Regular expression matching in O(nm/xy) = O(nm/log1,5n) time [B., Thorup 2009].

2D Decomposition Algorithm
• Goal. Do a state set transition on y = Θ(log1/2 n) characters in O(m/x) = O(m/log n) time.

• Algorithm overview. 4 traversals on tree of micro TNFAs.

• 1-3 iteratively “builds” information.

• 4 computes the actual state-set transition.

• Tabulation to do each traversal in constant time per micro TNFA.

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

2D Decomposition Algorithm

• Step 1. Computing Accepted Substrings.

• Goal: For micro TNFA A compute the substrings of q that are accepted by Ā. We have A1 :

{ε,a,aa}, A2 : {b}, A3 : {ab,aab}.

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode set of substrings in O(y2) = O(log n) bits.

• Table input: micro TNFA, substrings of children, q.

• Table size 2O(x + y2+ y) = 2O(x + y2) = O(nε).

q = aab

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

2D Decomposition Algorithm

• Step 2. Computing Path Prefixes to Accepting States.

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to the accepting

state in Ā. We have A1 : {a, aa}, A2 : ∅, A3 : {aab}.

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode prefixes in O(y) = O(log1/2 n) bits.

• Table input: micro TNFA, substrings and path prefixes of children, q, state-set for A.

• Table size 2O(x + y2) = O(nε).

q = aab

S = {1,3}

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

2D Decomposition Algorithm

• Step 3. Computing Path Prefixes to Start States.

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to the start state

in N(R). We have A1 : {a}, A2 : {a, aa}, A3 : {ε}.

• Top-down traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

q = aab

S = {1,3}

a

εA1
A3

8

76

54
A2

ε ε

εε

c

b

1

ε

2 3 4 5

6 7

8 9
10

a
ε ε

2D Decomposition Algorithm

• Step 4. Updating State-Sets

• Goal: For micro TNFA A compute the next state-set. We have A1 : ∅, A2 : {7,10}, A3 : {10}.

• Traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

q = aab

S = {1,3}

2D Decomposition Algorithm
• Summary.

• Tabulation in 2O(x + y2) = O(nε) time and space.

• 4 traversals each using O(m/x) time to process length y segment of Q.

• ⇒ Regular expression matching in O(nm/xy) = O(nm/log1,5n) time and O(nε + m) space [B.,

Thorup 2009]

Adaptive Techniques

Regular Expression Matching with Multi-Strings
• Many regular expressions consist of k ≪ m strings.

• Example. Gnutella download stream detection:

• (Server:|User-Agent:)(|\t)*(LimeWire|BearShare|Gnucleus|Morpheus|
XoloX|gtk-gnutella|Mutella|MyNapster|Qtella|AquaLime|NapShare|Comback|
PHEX|SwapNut|FreeWire|Openext|Toadnode)

• k = 21 vs. m = 174.

• Can we exploit k ≪ m in algorithms for regular expression matching?

Regular Expression Matching with Multi-Strings

• Algorithm components.

• Construct pruned TNFA: Replace strings L = {L1, ..., Lk} with single transitions => number of

states and transitions is O(k).

• Maintain FIFO bit queue for Li of length |Li|.

• Preprocess L for fast multi-string matching (Aho-Corasick automaton).

�
6

�
� �

�
�

�

1

2

3

�

�
4 5 6

�

ba a

a

ab
� �

�
�

�

Regular Expression Matching with Multi-Strings

• Algorithm processing.

• Interleaved traversal of pruned TNFA and multi-string matching on one character from Q at a

time:

• Startpoint of string transition active => Enqueue 1 else 0.

• Front of queue 1 and match of string => Make endpoint active.

• O(k) states and transition, k queues, multi-string matching is fast ⇒ O(k) time per character

• ⇒ Regular expression matching in O(nk) time and O(m) space [B., Thorup 2010].

�
6

�
� �

�
�

�

1

2

3

�

�
4 5 6

�

ba a

a

ab
� �

�
�

�

Regular Expression Matching with Multi-Strings

• Decomposition with multi-strings.

• Apply decomposition on pruned TNFA: tree of O(k/w) micro TNFAs with at most w states

and w strings.

• Apply Close operation based on word-level parallelism [B. 2006] ⇒ O(log w) per micro TNFA

• Reuse multi-string matching algorithm.

• Advanced word-level parallel techniques to maintain parallel bit-queue, etc.

• ⇒ regular expression matching in time and O(m) space [B., Thorup 2010]. 𝖮 (𝗇𝗄 log 𝗐
𝗐)

�
6

�
� �

�
�

�

1

2

3

�

�
4 5 6

�

ba a

a

ab
� �

�
�

�

NFAs vs DFAs

NFAs vs DFAs
• We can convert TNFA N(R) to a deterministic finite automaton (DFA) using the subset

construction.

• ⇒ DFA D with O(22m) states and O(22mσ) transitions.

• Only need to keep track of a single state during matching.

• Does this imply solution to regular expression matching in O(22mσ + n) time?

• No! Only true for m = O(w).

• Word RAM model options:

• Space is limited to 2w.

• Any data structure D with 2Ω(m) space needs Ω(m/w) time just to specify address in D.

• ⇒ a state-transition in D uses Ω(m/w) time ⇒ regular expression matching in time

[B. 2015].

Ω (𝗇𝗆
𝗐)

Open Problems

Open Problems
• Better than 2D decomposition.

• Other adaptive measures.

• Regular expression extensions and variations.

References
• Kleene. Representation of events in nerve nets and finite automata. Ann. Math. Stud. 1956.

• Thompson. Regular expression search algorithm. CACM 1968.

• Galil. Open problems in stringology. In A. Apostolico and Z. Galil, editors, Combinatorial problems on

words, NATO ASI Series 1985.

• Myers. A four-russian algorithm for regular expression pattern matching. JACM 1992.

• Bille and Farach-Colton. Fast and compact regular expression matching. Theoret. Comput. Sci. 2008.

• Bille. New algorithms for regular expression matching. ICALP 2006.

• Bille and Thorup. Faster regular expression matching. ICALP 2009

• Bille and Thorup. Regular Expression Matching with Multi-Strings and Character-Class Intervals, SODA

2010

• Bille. On Regular Expression Matching and Deterministic Finite Automata, Tiny Transactions on Computer

Science 3, 2015.

• Backurs and Indyk. Which Regular Expressions Patterns are Hard to Match? FOCS 2016.

• Bringmann, Grønlund, and Larsen. A dichotomy for regular expression membership testing FOCS 2017.

• Schepper. Fine-grained complexity of regular expression pattern matching and membership. ESA 2020.

• Bille and Gørtz. Sparse Regular Expression Matching, SODA 2024

