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Regular Expression Matching



Regular Expressions

- Regular expressions.
- A character a is a regular expression.

- If S and T are regular expressions, then so is the union S | T, the concatenation S-T (ST)
and the Kleene star S*.

- Regular languages.
- The language of a regular expression is given by
© La) ={a}
- L(S|T)=L(S)u L
- L(ST)=L(S) - L(T)
+ L(S*) ={e} uL(S) uL(S)2 u L(S)® -

- Example.
- R =a(a*)(b|c)
- L(R) = {ab, ac, aab, aac, aaab, aaac, ...}



Regular Expression Matching

- Given a regular expression R and a string Q, decide if Q € L(R).
- What are the best known time/space bounds for regular expression matching?



Regular Expression Matching

Time Space Reference
O(nm) O(m) [Thompson 1968]
nm
@) ( + (n + m)log n) O(nfm) [Myers 1992]
logn
nm
O <log - +n+ mlog n) O(n® + m) [B., Farach-Colton 2005]
nmlogw
Ol ———+n+mlogn O(m) [B. 2006]
w
nmloglogn .
O log32n +n+m O(n®+ m) [B., Thorup 2009]
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m = |R|, n = |Q|, unit cost word RAM with word length w = log n



Regular Expression Matching: Adaptive Bounds

Time Space Reference
kl
0 (" oY h+mlog k> o(m) [B., Thorup 2010]
w
nm
@) <A log log e +n+ m> O(m) [B., Gortz 2024]
Q(A'™?) [B., Gartz 2024]

k = number of strings in R, A = total size of state sets in simulation of position automaton
m = |R|, n = |Q|, unit cost word RAM with word length w = log n
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NFAs and State-set Simulation



NFAs and State-Set Simulation

- Non-deterministic finite automaton (NFA).
- Construct Thompson's NFA (TNFA) N(R) from R [Thompson 1968]
- N(R) accepts L(R). Any path from start to accept state matches exactly the strings in L(R).
- O(m) states and transitions.
- States with an incoming character transition have exactly 1 predecessor.
- Almost a series-parallel graph:
- Separator of size 2.
- Any cycle-free path has at most 1 back edge.



NFAs and State-Set Simulation

- State-set transition.
- Given state set S and character a.
- 0(S, a): set of states reachable from S via paths matching a.

- Split into two operations:
- Move(S, a): set of states reachable from S via single a-transition.

- Close(S): set of states reachable from S via paths of e-transitions.

* O(m) time.




NFAs and State-Set Simulation

- State-set simulation.
-+ Given string Q of length n, compute sequence of state sets So, ..., Sn
- So = Close({6})
- Si= Close(Move(Si-1, )

- Qe L(R)iff ¢ € Sp.

- = O(hm) time and O(m) space [Thompson 1968].
- Top ten list of problems in stringology 1985 [Galil 1985].




NFA Decomposition



Large and Small TNFAs

- TNFA decomposition.
- Suppose we can do state-set transition fast on a micro TNFA of size x « m.
- Can we use that to get efficient state-set transition for N(R)?
- Main problem is non-local dependencies from e-transitions.



Large and Small TNFAs

- TNFA decomposition.

- Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each micro TNFA
overlaps with enclosing micro TNFA in 2 states.

- Implement state-set transition on N(R) by state-set transition on micro TNFAs in topological
order twice. Propagate reachable overlapping states.

- Implement state-set transition on micro TNFA in t(x) time = state-set transition on N(R) in

mt(x) \ .
O time [Myers1992, B. 2006].
X



Tabulation for Micro TNFAS

- Tabulation on micro TNFA with x states.
- Encode state-set as bit string of length x.
- Move(S, a): Use shift-and technique.
-+ Close(S): Universal tabulation for all possible micro TNFAs. Table size 20x),
- With x = O(log n) = state-set transition on micro TNFA in constant time and O(ng) space.

nm

. = Regular expression matching in O < ) time and O(ne + m) space [B., Farach-Colton

logn

2005].



Word-Level Parallelism for Micro TNFASs

- Word-level parallelism on micro TNFA with O(w) states.

- Can we simulate micro TNFA with bitwise logical and arithmetic operations of the w-bit
words instead of tabulation?

- Main challenge is Close operation. How to deal with long paths of e-transitions?



Word-Level Parallelism for Micro TNFASs

- Separator decompositions on micro TFNAs

- There exists two states 6 and ¢ whose removal partitions a micro TNFA A into two
subgraphs, Ao and A, of roughly equal size such that:

- Any path from Ao to A goes through 6.
- Any path from A to Ao goes through o¢.



Word-Level Parallelism for Micro TNFASs

- Recursive Close computation
- Compute which of 8 and ¢ are reachable.
- Update current set of reachable states
- Recurse on Ao and A in parallel.
- O(log w) levels of recursion each using O(1) time = state-set transition on micro TNFA in
O(log w) time.

: L nmlogw \ .
= Regular expression matching in O | ———— | time and O(m) space [B. 2006].

w



2D Decomposition



Beyond State-Set Simulation

- Limits of state-set transitions algorithms.

- To explicitly read/write state-sets at each character we need Q(m/w) time for state-set
transition.

- = Any algorithm must use Q(nm/w) time with this approach.

- Can we process multiple characters quickly?
- Even larger challenges from non-local e-transitions.



2D Decomposition Algorithm

- Processing multiple characters at a time.
- Decompose N(R) into O(m/x) micro TNFAs with at most x = O(log n) states (as earlier).
- Partition Q into segments of length y = ©(log'/2 n).
- State-set transition on segments in O(m/x) time.
- = Regular expression matching in O(nm/xy) = O(nm/log'.5n) time [B., Thorup 2009].



2D Decomposition Algorithm

- Goal. Do a state set transition on y = O(log'/2 n) characters in O(m/x) = O(m/log n) time.
- Algorithm overview. 4 traversals on tree of micro TNFAs.
- 1-3 iteratively “builds” information.

- 4 computes the actual state-set transition.

- Tabulation to do each traversal in constant time per micro TNFA.



2D Decomposition Algorithm

- Step 1. Computing Accepted Substrings.

- Goal: For micro TNFA A compute the substrings of q that are accepted by A. We have A1 :
{e,a,aa}, A2: {b}, Az: {ab,aabj}.

- Bottom-up traversal using tabulation in constant time per micro TNFA.
- Encode set of substrings in O(y2) = O(log n) bits.

- Table input: micro TNFA, substrings of children, q.

+ Table size 20k +y2+y) = 20 +y2) = Q(ng).



2D Decomposition Algorithm

- Step 2. Computing Path Prefixes to Accepting States.

» Goal: For micro TNFA A compute the prefixes of g matching a path from S to the accepting
state in A. We have A1:{a, aa}, A>: @, As: {aab}.

- Bottom-up traversal using tabulation in constant time per micro TNFA.

- Encode prefixes in O(y) = O(log'/2 n) bits.

- Table input: micro TNFA, substrings and path prefixes of children, q, state-set for A.
+ Table size 20 +y2) = O(ne).



2D Decomposition Algorithm

- Step 3. Computing Path Prefixes to Start States.

- Goal: For micro TNFA A compute the prefixes of g matching a path from S to the start state
in N(R). We have A1:{a}, A2:{a, aa}, As: {€}.

- Top-down traversal using tabulation in constant time per micro TNFA.
- Tabulation: Similar to previous traversal.



2D Decomposition Algorithm

- Step 4. Updating State-Sets
- Goal: For micro TNFA A compute the next state-set. We have A1: @, A2: {7,10}, Az: {10}.

- Traversal using tabulation in constant time per micro TNFA.
- Tabulation: Similar to previous traversal.



2D Decomposition Algorithm

+ Summary.
- Tabulation in 20 +y2) = O(ne) time and space.
- 4 traversals each using O(m/x) time to process length y segment of Q.

= Regular expression matching in O(nm/xy) = O(nm/log'-°n) time and O(ne + m) space [B.,
Thorup 2009]



Adaptive Technigques



Regular Expression Matching with Multi-Strings

Many regular expressions consist of k « m strings.

Example. Gnutella download stream detection:

(Server: |User-Agent:)( |\t)*(LimeWire|BearShare|Gnucleus |Morpheus |
XoloX|gtk-gnutella|Mutella|MyNapster |Qtella|AquaLime |NapShare |Comback |
PHEX | SwapNut | FreeWire | Openext | Toadnode)

k=21vs. m=174.

- Can we exploit k « m in algorithms for regular expression matching?



Regular Expression Matching with Multi-Strings

- Algorithm components.

- Construct pruned TNFA: Replace strings L = {L4, ..., Lk} with single transitions => number of
states and transitions is O(k).

- Maintain FIFO bit queue for L; of length |Lj|.
- Preprocess L for fast multi-string matching (Aho-Corasick automaton).



Regular Expression Matching with Multi-Strings

- Algorithm processing.
- Interleaved traversal of pruned TNFA and multi-string matching on one character from Q at a
time:
- Startpoint of string transition active => Enqueue 1 else 0.
- Front of queue 1 and match of string => Make endpoint active.
- O(k) states and transition, k queues, multi-string matching is fast = O(k) time per character

- = Regular expression matching in O(nk) time and O(m) space [B., Thorup 2010].



Regular Expression Matching with Multi-Strings

- Decomposition with multi-strings.

- Apply decomposition on pruned TNFA: tree of O(k/w) micro TNFAs with at most w states
and w strings.

- Apply Close operation based on word-level parallelism [B. 2006] = O(log w) per micro TNFA

- Reuse multi-string matching algorithm.

- Advanced word-level parallel technigues to maintain parallel bit-queue, etc.
nklog w

. = regular expression matching in O < > time and O(m) space [B., Thorup 2010].

w



NFAs vs DFAs



NFAs vs DFAs

- We can convert TNFA N(R) to a deterministic finite automaton (DFA) using the subset
construction.

- = DFA D with O(22m) states and O(22m0) transitions.

- Only need to keep track of a single state during matching.
- Does this imply solution to regular expression matching in O(22mg + n) time?

+ No! Only true for m = O(w).
- Word RAM model options:
- Space is limited to 2v.
- Any data structure D with 29Mm space needs QQ(m/w) time just to specify address in D.

nm
. = a state-transition in D uses Q(m/w) time = regular expression matching in Q (—)time
W

[B. 2015].



Open Problems



Open Problems

- Better than 2D decomposition.
- Other adaptive measures.
- Regular expression extensions and variations.
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