Algorithmic Techniques for Regular Expression Matching

Philip Bille

Regular Expression Matching

Regular Expressions

- · Regular expressions.
 - A character α is a regular expression.
 - If S and T are regular expressions, then so is the union S | T, the concatenation S·T (ST) and the Kleene star S*.
- Regular languages.
 - The language of a regular expression is given by
 - $L(\alpha) = \{\alpha\}$
 - $L(S \mid T) = L(S) \cup L(T)$
 - \cdot L(S·T) = L(S) \cdot L(T)
 - $L(S^*) = \{\epsilon\} \cup L(S) \cup L(S)^2 \cup L(S)^3 \cdots$
- · Example.
 - $R = a(a^*)(b|c)$
 - L(R) = {ab, ac, aab, aac, aaab, aaac, ...}

Regular Expression Matching

- Given a regular expression R and a string Q, decide if $Q \in L(R)$.
- What are the best known time/space bounds for regular expression matching?

Regular Expression Matching

Time	Space	Reference
O(nm)	O(m)	[Thompson 1968]
$O\left(\frac{nm}{\log n} + (n+m)\log n\right)$	$O(n^{arepsilon}m)$	[Myers 1992]
$O\left(\frac{nm}{\log n} + n + m \log n\right)$	$O(n^{\varepsilon} + m)$	[B., Farach-Colton 2005]
$O\left(\frac{nm\log w}{w} + n + m\log n\right)$	O(m)	[B. 2006]
$O\left(\frac{nm\log\log n}{\log^{3/2}n} + n + m\right)$	$O(n^{\varepsilon} + m)$	[B., Thorup 2009]
$\Omega((nm)^{1-arepsilon})$		[Backurs, Indyk 2016, Bringmann et al. 2016, Schepper 2020]

m = |R|, n = |Q|, unit cost word RAM with word length $w \ge \log n$

Regular Expression Matching: Adaptive Bounds

Time	Space	Reference
$O\left(\frac{nk\log w}{w} + n + m\log k\right)$	O(m)	[B., Thorup 2010]
$O\left(\Delta \log \log \frac{nm}{\Delta} + n + m\right)$	O(m)	[B., Gørtz 2024]
$\Omega(\Delta^{1-arepsilon})$		[B., Gørtz 2024]

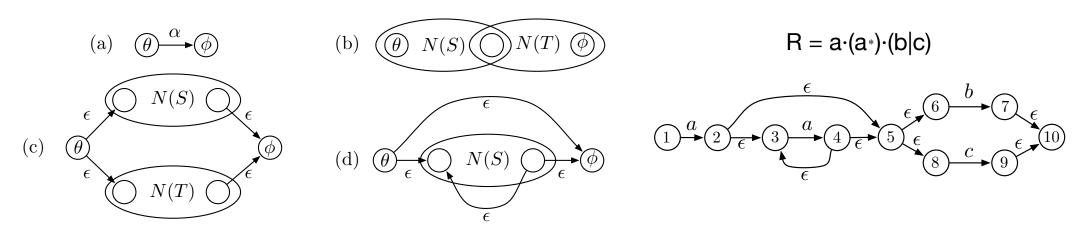
k = number of strings in R, $\Delta =$ total size of state sets in simulation of position automaton m = |R|, n = |Q|, unit cost word RAM with word length $w \ge \log n$

Outline

- The problem.
- · Results.
- Tour of algorithmic techniques.
 - NFAs and state-set simulation.
 - NFA decomposition and micro TNFAs.
 - Tabulation-based micro TNFA simulation.
 - Word-level parallel micro TNFA simulation.
 - · 2D decomposition.
 - · Adaptive techniques.
- NFAs vs. DFAs.
- · Open problems.

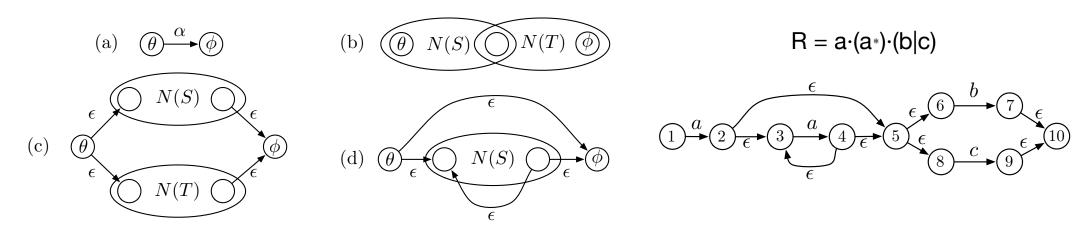
NFAs and State-set Simulation

NFAs and State-Set Simulation



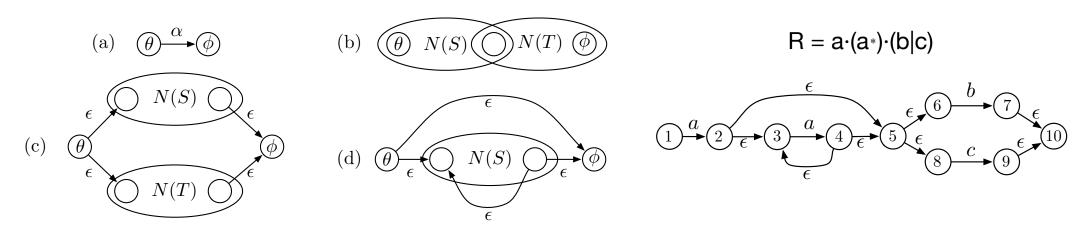
- Non-deterministic finite automaton (NFA).
 - Construct Thompson's NFA (TNFA) N(R) from R [Thompson 1968]
 - N(R) accepts L(R). Any path from start to accept state matches exactly the strings in L(R).
 - O(m) states and transitions.
 - States with an incoming character transition have exactly 1 predecessor.
 - · Almost a series-parallel graph:
 - Separator of size 2.
 - Any cycle-free path has at most 1 back edge.

NFAs and State-Set Simulation



- State-set transition.
 - Given state set S and character α.
 - $\delta(S, \alpha)$: set of states reachable from S via paths matching α .
- Split into two operations:
 - Move(S, α): set of states reachable from S via single α-transition.
 - Close(S): set of states reachable from S via paths of ε-transitions.
- O(m) time.

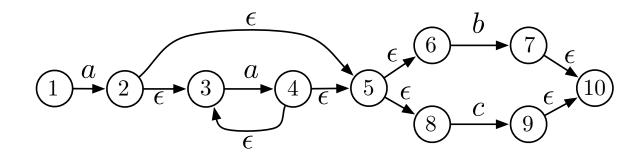
NFAs and State-Set Simulation



- State-set simulation.
 - · Given string Q of length n, compute sequence of state sets S₀, ..., S_n
 - $S_0 = Close(\{\theta\})$
 - $S_i = Close(Move(S_{i-1}, \alpha))$
- $Q \in L(R)$ iff $\varphi \in S_n$.
- $\cdot \Rightarrow O(nm)$ time and O(m) space [Thompson 1968].
- Top ten list of problems in stringology 1985 [Galil 1985].

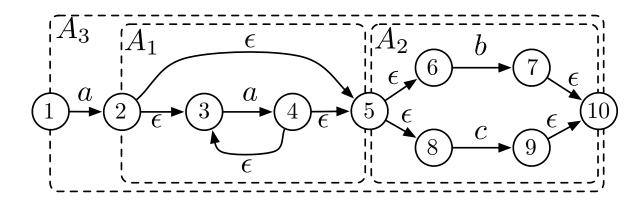
NFA Decomposition

Large and Small TNFAs



- TNFA decomposition.
 - Suppose we can do state-set transition fast on a micro TNFA of size $x \ll m$.
 - · Can we use that to get efficient state-set transition for N(R)?
 - Main problem is non-local dependencies from ε-transitions.

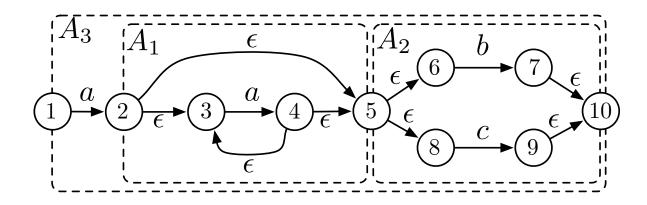
Large and Small TNFAs



· TNFA decomposition.

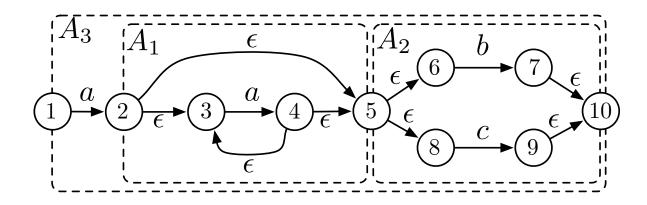
- Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each micro TNFA overlaps with enclosing micro TNFA in 2 states.
- Implement state-set transition on N(R) by state-set transition on micro TNFAs in topological order twice. Propagate reachable overlapping states.
- Implement state-set transition on micro TNFA in t(x) time \Rightarrow state-set transition on N(R) in O $\left(\frac{mt(x)}{x}\right)$ time [Myers1992, B. 2006].

Tabulation for Micro TNFAs



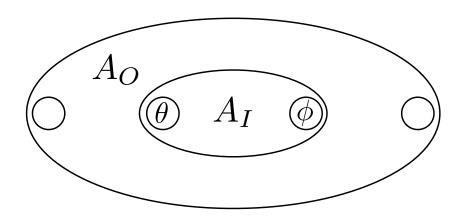
- Tabulation on micro TNFA with x states.
 - Encode state-set as bit string of length x.
 - Move(S, α): Use shift-and technique.
 - · Close(S): Universal tabulation for all possible micro TNFAs. Table size 2^{O(x)}.
 - With $x = \Theta(\log n) \Rightarrow$ state-set transition on micro TNFA in constant time and $O(n^{\epsilon})$ space.
 - . ⇒ Regular expression matching in O $\left(\frac{nm}{logn}\right)$ time and O(n^ε + m) space [B., Farach-Colton 2005].

Word-Level Parallelism for Micro TNFAs



- Word-level parallelism on micro TNFA with Θ(w) states.
 - Can we simulate micro TNFA with bitwise logical and arithmetic operations of the w-bit words instead of tabulation?
 - Main challenge is Close operation. How to deal with long paths of ε -transitions?

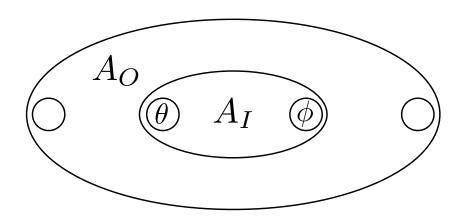
Word-Level Parallelism for Micro TNFAs



Separator decompositions on micro TFNAs

- There exists two states θ and φ whose removal partitions a micro TNFA A into two subgraphs, A_0 and A_I , of roughly equal size such that:
- Any path from A_0 to A_1 goes through θ .
- Any path from A_I to A_O goes through φ.

Word-Level Parallelism for Micro TNFAs

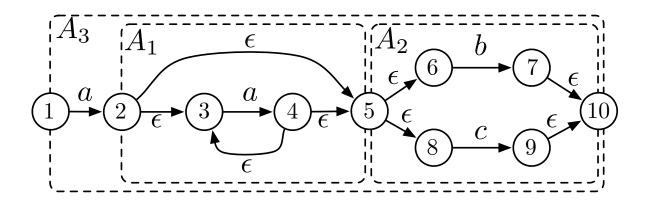


Recursive Close computation

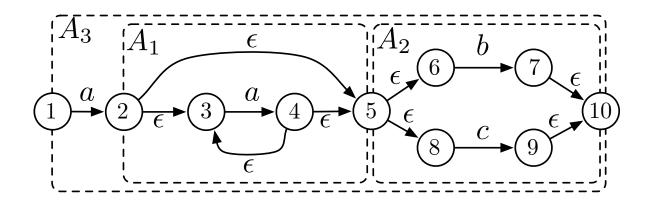
- Compute which of θ and φ are reachable.
- Update current set of reachable states
- Recurse on A₀ and A₁ in parallel.
- O(log w) levels of recursion each using O(1) time ⇒ state-set transition on micro TNFA in O(log w) time.
- . ⇒ Regular expression matching in O $\left(\frac{\text{nm} \log w}{w}\right)$ time and O(m) space [B. 2006].

2D Decomposition

Beyond State-Set Simulation

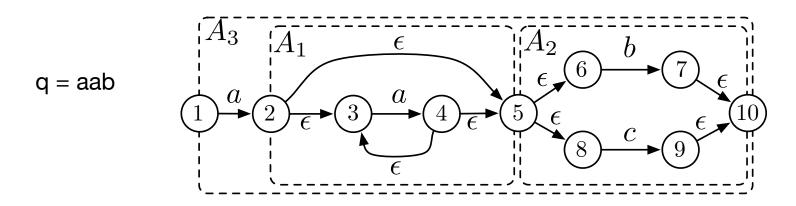


- Limits of state-set transitions algorithms.
 - To explicitly read/write state-sets at each character we need $\Omega(m/w)$ time for state-set transition.
 - \Rightarrow Any algorithm must use $\Omega(nm/w)$ time with this approach.
 - Can we process multiple characters quickly?
 - Even larger challenges from non-local ε-transitions.

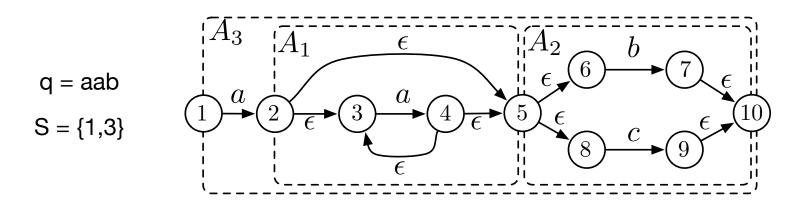


- Processing multiple characters at a time.
 - Decompose N(R) into O(m/x) micro TNFAs with at most $x = \Theta(\log n)$ states (as earlier).
 - Partition Q into segments of length $y = \Theta(\log^{1/2} n)$.
 - State-set transition on segments in O(m/x) time.
 - \Rightarrow Regular expression matching in O(nm/xy) = O(nm/log^{1,5}n) time [B., Thorup 2009].

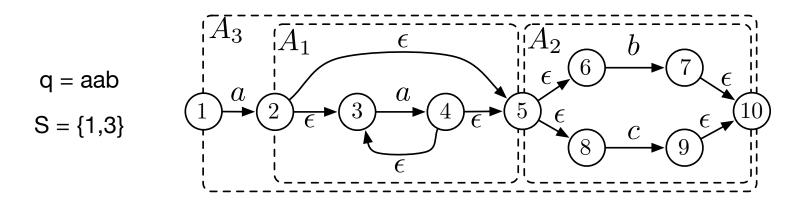
- Goal. Do a state set transition on $y = \Theta(\log^{1/2} n)$ characters in $O(m/x) = O(m/\log n)$ time.
- Algorithm overview. 4 traversals on tree of micro TNFAs.
 - 1-3 iteratively "builds" information.
 - 4 computes the actual state-set transition.
- Tabulation to do each traversal in constant time per micro TNFA.



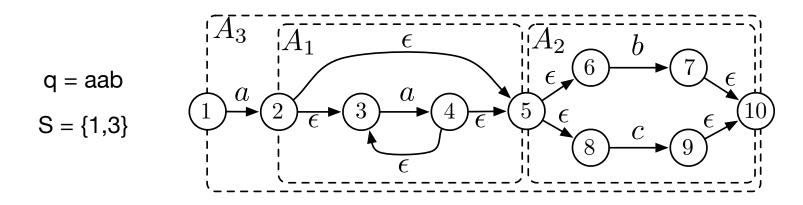
- · Step 1. Computing Accepted Substrings.
 - Goal: For micro TNFA A compute the substrings of q that are accepted by Ā. We have A₁: {ε,a,aa}, A₂: {b}, A₃: {ab,aab}.
 - Bottom-up traversal using tabulation in constant time per micro TNFA.
 - Encode set of substrings in $O(y^2) = O(\log n)$ bits.
 - · Table input: micro TNFA, substrings of children, q.
 - Table size $2^{O(x + y^2 + y)} = 2^{O(x + y^2)} = O(n^{\epsilon})$.



- · Step 2. Computing Path Prefixes to Accepting States.
 - Goal: For micro TNFA A compute the prefixes of q matching a path from S to the accepting state in \bar{A} . We have A_1 : {a, aa}, A_2 : \varnothing , A_3 : {aab}.
 - Bottom-up traversal using tabulation in constant time per micro TNFA.
 - Encode prefixes in $O(y) = O(\log^{1/2} n)$ bits.
 - Table input: micro TNFA, substrings and path prefixes of children, q, state-set for A.
 - Table size $2^{O(x + y^2)} = O(n^{\epsilon})$.



- · Step 3. Computing Path Prefixes to Start States.
 - Goal: For micro TNFA A compute the prefixes of q matching a path from S to the start state in N(R). We have A₁: {a}, A₂: {a, aa}, A₃: {ε}.
 - Top-down traversal using tabulation in constant time per micro TNFA.
 - Tabulation: Similar to previous traversal.



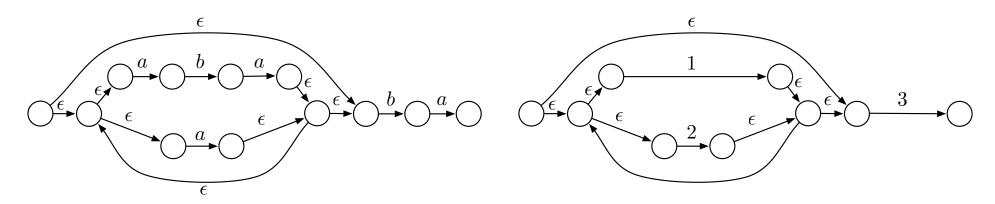
- Step 4. Updating State-Sets
 - Goal: For micro TNFA A compute the next state-set. We have A₁: Ø, A₂: {7,10}, A₃: {10}.
 - Traversal using tabulation in constant time per micro TNFA.
 - Tabulation: Similar to previous traversal.

Summary.

- Tabulation in $2^{O(x + y^2)} = O(n^{\epsilon})$ time and space.
- 4 traversals each using O(m/x) time to process length y segment of Q.
- \Rightarrow Regular expression matching in O(nm/xy) = O(nm/log^{1,5}n) time and O(n^{ϵ} + m) space [B., Thorup 2009]

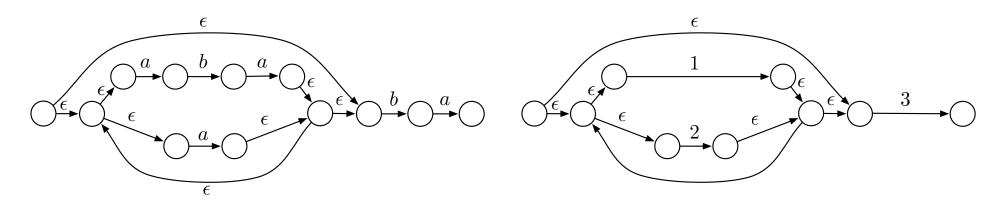
Adaptive Techniques

- Example. Gnutella download stream detection:
- ' (Server: | User-Agent:)(|\t)*(LimeWire | BearShare | Gnucleus | Morpheus |
 XoloX | gtk-gnutella | Mutella | MyNapster | Qtella | AquaLime | NapShare | Comback |
 PHEX | SwapNut | FreeWire | Openext | Toadnode)
- k = 21 vs. m = 174.

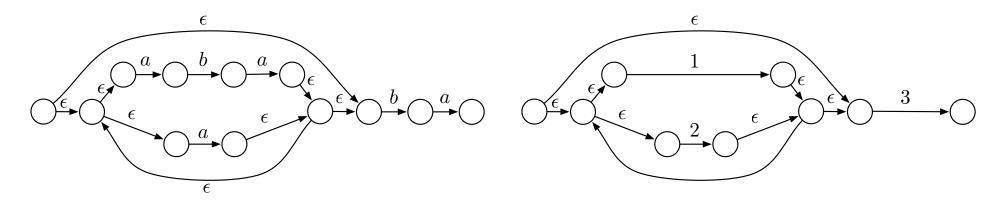


· Algorithm components.

- Construct pruned TNFA: Replace strings $L = \{L_1, ..., L_k\}$ with single transitions => number of states and transitions is O(k).
- Maintain FIFO bit queue for L_i of length |L_i|.
- Preprocess L for fast multi-string matching (Aho-Corasick automaton).



- · Algorithm processing.
 - Interleaved traversal of pruned TNFA and multi-string matching on one character from Q at a time:
 - Startpoint of string transition active => Enqueue 1 else 0.
 - Front of queue 1 and match of string => Make endpoint active.
- O(k) states and transition, k queues, multi-string matching is fast \Rightarrow O(k) time per character
- $\cdot \Rightarrow$ Regular expression matching in O(nk) time and O(m) space [B., Thorup 2010].



- Decomposition with multi-strings.
 - Apply decomposition on pruned TNFA: tree of O(k/w) micro TNFAs with at most w states and w strings.
 - Apply Close operation based on word-level parallelism [B. 2006] ⇒ O(log w) per micro TNFA
 - Reuse multi-string matching algorithm.
 - · Advanced word-level parallel techniques to maintain parallel bit-queue, etc.
 - . ⇒ regular expression matching in O $\left(\frac{\operatorname{nk} \log w}{w}\right)$ time and O(m) space [B., Thorup 2010].

NFAs vs DFAs

NFAs vs DFAs

- We can convert TNFA N(R) to a deterministic finite automaton (DFA) using the subset construction.
 - \Rightarrow DFA D with O(2^{2m}) states and O(2^{2m} σ) transitions.
 - Only need to keep track of a single state during matching.
 - Does this imply solution to regular expression matching in $O(2^{2m}\sigma + n)$ time?
- No! Only true for m = O(w).
 - Word RAM model options:
 - Space is limited to 2^w.
 - Any data structure D with $2^{\Omega(m)}$ space needs $\Omega(m/w)$ time just to specify address in D.
 - . \Rightarrow a state-transition in D uses $\Omega(m/w)$ time \Rightarrow regular expression matching in $\Omega\left(\frac{nm}{w}\right)$ time [B. 2015].

Open Problems

Open Problems

- · Better than 2D decomposition.
- Other adaptive measures.
- · Regular expression extensions and variations.

References

- Kleene. Representation of events in nerve nets and finite automata. Ann. Math. Stud. 1956.
- Thompson. Regular expression search algorithm. CACM 1968.
- Galil. Open problems in stringology. In A. Apostolico and Z. Galil, editors, Combinatorial problems on words, NATO ASI Series 1985.
- Myers. A four-russian algorithm for regular expression pattern matching. JACM 1992.
- Bille and Farach-Colton. Fast and compact regular expression matching. Theoret. Comput. Sci. 2008.
- Bille. New algorithms for regular expression matching. ICALP 2006.
- Bille and Thorup. Faster regular expression matching. ICALP 2009
- Bille and Thorup. Regular Expression Matching with Multi-Strings and Character-Class Intervals, SODA 2010
- Bille. On Regular Expression Matching and Deterministic Finite Automata, Tiny Transactions on Computer Science 3, 2015.
- Backurs and Indyk. Which Regular Expressions Patterns are Hard to Match? FOCS 2016.
- Bringmann, Grønlund, and Larsen. A dichotomy for regular expression membership testing FOCS 2017.
- Schepper. Fine-grained complexity of regular expression pattern matching and membership. ESA 2020.
- Bille and Gørtz. Sparse Regular Expression Matching, SODA 2024