
Data Structures on the Ultra-Wide Word
RAM
Philip Bille

Inge Li Gørtz

Tord Stordalen

• UWRAM model.

• Predecessor on UWRAM.

• Parallel hashing.

• Dynamic dictionaries with parallel queries.

• x-fast trie with parallel queries.

Outline

Word RAM

Ultra-Wide Word RAM [FLNS2015]

Ultra-Wide Word RAM

Ultra-Wide Word RAM

Ultra-Wide Word RAM

• Predecessor problem. Maintain a set S of n w-bit integers subject to the operations:

• Predecessor(x): return largest integers in S that is ≤ x.

• Insert(x): add x to S.

• Delete(x): remove x from S.

Predecessor

Predecessor

Θ min log𝗐 𝗇,
log 𝗐

log 𝗐

log (log 𝗐
log 𝗐 /log log 𝗇

log 𝗐)
, log

log(𝟤𝗐 − 𝗇)
log 𝗐

Predecessor

time space model ref

ω(1) O(n) WRAM [vEB1975, MN1990, Willard1983,
FW1990, PT2014, …]

O(1) O(2w/w) RAMBO [BKMN2006]

O(1) O(w2w) UWRAM [FLNS2015]

O(1) O(n) UWRAM new

Multiply-Shift Hashing [DM1990]

• Given x0, …, xw-1 and h0, …, hw-1, compute h0(x0), …, hw-1(xw-1) in constant time.

Multiply Shift Hashing in Parallel

• w-parallel dictionary problem. Maintain a set S of n w-bit integers subject to the
operations:

• Member(x): determine if x ∈ S.

• pMember(x0, x1, ..., xw-1): return b0, b1, ..., bw-1 where bi = 1 iff xi ∈ S.

• Insert(x): add x to S.

• Delete(x): remove x from S.

Dictionaries with Parallel Queries

• Two-level structure.

• Lookup via universal hash function to find bucket i

• Lookup in bucket i with universal hash function hi.

• Updates via global rebuilding strategy.

• ⇒ O(1) member, O(1) amortized expected insert and delete.

Dynamic Perfect Hashing [DKMMRT1994]

• Parallel queries.

• Compute level 1 hash with parallel multiply-shift hashing.

• Retrieve w buckets + hash function descriptions with scattered reads.

• Compute level 2 hash with parallel multiply-shift hashing.

• Retrieve data using scattered reads

• Verify using component-wise comparison.

• ⇒ O(1) pMember, O(1) member, O(1) amortized expected insert and delete.

Dynamic Perfect Hashing with Parallel Queries

• Dictionary with parallel queries.

• O(1) time member.

• O(1) time pMember.

• O(1) amortized expected time insert and delete.

• O(n + w) space.

• More tricks.

• Holds on UWRAM with ultrawords of w1+ε bits.

Dictionaries with Parallel Queries

• x-fast trie.

• Trie on S.

• Dictionary D on all prefixes of S in trie.

x-fast Trie [Willard1983]

• Predecessor(x):

• binary search on prefixes of x to find longest common prefix ⇒ identify

predecessor.

• Insert and delete by updating dictionary.

• With dynamic perfect hashing ⇒ O(log w) predecessor, O(w) amortized expected

insert and delete, O(nw) space.

x-fast Trie [Willard1983]

• xtra-fast trie.

• Compressed trie on S.

• Dictionary D on prefixes of branching nodes in trie.

xtra-fast Trie

• Predecessor(x):

• Generate all prefixes of x in ultraword with scattered read + masking.

• Parallel member on dictionary.

• Compress.

• Find MSB ⇒ length of match ⇒ predecessor.

• Insert and delete change constant number of edges and nodes in trie

• ⇒ O(1) predecessor, O(1) amortized expected insert and delete, O(n + w) space

xtra-fast Trie

• Predecessor data structure.

• O(1) time predecessor.

• O(1) amortized expected time insert and delete.

• O(n + w) space.

• More tricks.

• Holds on UWRAM with ultrawords of w1+ε bits.

• No + w term in space.

Predecessor

