
Finger Search in Grammar-Compressed
Strings
Philip Bille

Anders Roy Christiansen

Patrick Hagge Cording

Inge Li Gørtz

• Grammar compression

• Random access

• Bookmarking

• Finger search

• Longest common extensions

• Fringe access

• Static finger search

• Dynamic finger search

Plan

• Grammar compression.

• Compress string of length N into a straight-line program of size n.

• Captures many schemes with no or little blowup: Lempel-Ziv family, Sequitur,

Run-Length Encoding, Re-Pair, ...,

Grammar Compression

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

AGTAGTAG N = 8

X7 → X6X3
X6 → X5X5
X5 → X3X4
X4 → T
X3 → X1X2
X2 → G
X1 → A

n = 7

• Access(i): what is the ith character in S?

• Decompress(i,j): what is the substring S[i,j]?

Random Access

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

AGTAGTAG N = 8

X7 → X6X3
X6 → X5X5
X5 → X3X4
X4 → T
X3 → X1X2
X2 → G
X1 → A

n = 7

Random Access
Space Time Reference

O(n) O(h)

O(n) O(log N) [BLRSSW2011]
O(nτlogτ (N/n))
 O(n logε N)

O(logτ N)
O(log N/ log log N)

[BCPT2015]
τ = logε N

O(nlogO(1) N) Ω(log1-ε N) [VY2013]

• Decompress in taccess + O(D) time.

• b bookmarks at preprocessing time.

• Decompress string of length D from any bookmark in O(D) time.

Bookmarking

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

AGTAGTAG N = 8

X7 → X6X3
X6 → X5X5
X5 → X3X4
X4 → T
X3 → X1X2
X2 → G
X1 → A

n = 7

Bookmarking

Space Time Reference

O(nlog(N/n)) O(D) [GGKNP2014]

O((n+b) max{1,log*n - log*(n/b + b/n)}) O(D) [CGW2016]

• Setfinger(f): place finger at position f.

• Movefinger(f): move finger to position f.

• Access(i): what is the ith character in S?

Finger Search

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

AGTAGTAG N = 8

X7 → X6X3
X6 → X5X5
X5 → X3X4
X4 → T
X3 → X1X2
X2 → G
X1 → A

n = 7

Finger Search

Space setfinger access movefinger

O(n) O(log N) O(log D) x

O(n) O(log N) O(log D + log log N) O(log D + log log N)

• LCE(i,j): compute longest common extension of S[i,N] and S[j,N]

Longest Common Extension

i j
a b c a . . . a b c b . . .

Longest Common Extension
Space LCE reference

O(n) O(log Nlog L) [BCGSVV2013]

O(n log N log*N) O(log N + log L log*N) [NIIBT2016]

O(n) O(log N + log2 L) This paper

• What is the ith character in S(v)?

• Fast when i is close to left or right end of S(v).

• Goal.

• O(log i + log log N) time and O(n) space.

• Consider only left fringe.

Fringe Access

v

i

• Recursive ART [AHR1998] decomposition.

• O(log log N) levels.

van Emde Boas

top tree

≤ N1/2 leaves

bottom trees

≤ N1/2 leaves

• Data structure.

• Predecessor on tree sizes to the left of LTP

• Random access data structure.

• Access(i).

• Case 1. O(1) size tree: decompress.

• Case 2. Left or below LTP: predecessor query + recurse.

• Case 3. Right of LTP: random access.

• Lemma. Fringe access in O(n) space and O(log i + (log log N)2) time.

Fringe Access

top tree

≤ N1/2 leaves

bottom trees

≤ N1/2 leaves

leftmost top path (LTP)

O(n) space via weighted ancestor queries.

O(1)

O((log log N)2)

i > N1/2 ⟹ O(log N) = O(log i)

• How to speed up queries?

• Case 1. i ≥ 2(log logN)2: use previous solution. O(log i + (log log N)2) = O(log i) time.

• Case 2. i < 2(log logN)2: new data structure.

Fringe Access

• Data structure for i < 2(log logN)2.

• Special decomposition at level 1 in recursion.

• O(1 + log log 2(log logN)2) = O(log log log N) levels of recursion.

• Access(i).

• Level 1: O(log log N).

• Levels ≥ 2: O(log log 2(log logN)2) = O(log log log N) (with new WA trick)

• ⟹ O(log i + log log N + (log log log N)2) = O(log log N + log i) time.

• Lemma. Fringe access in O(n) space and O(log i + log log N) time.

Fringe Access

top tree

bottom trees

≤ 2(log logN)2 leaves

• Heavy path decomposition.

• Setfinger(f).

• Find heavy path to f.

• Decompress string S[f, f + log N]

• Access(i).

• Case 1. D ≤ log N: Return char.

• Case 1. D > log N: Search heavy paths + fringe search.

• Theorem. Finger search in O(n) space, O(log N) setfinger, and O(log D) access.

Static Finger Search

a b c a . . .

log N + O(1)

heavy paths

O(log N)
O(log N)

O(1)

f i

O(log log N + log D) = O(log D)

• Theorem. Finger search in O(n) space, O(log N) setfinger, and O(log D + log log N)
movefinger and access.

Dynamic Finger Search

