-Inding

Philip Bille

Patterns In

rees and Strings

Agenda

e Background for PhD
* Tree Matching
* Tree Inclusion Problem
e String Matching
e Regular Expression Matching Problem
e Core Techniques and Future Research
e Short Break

e Question Session

Background For PhD

¢ Worked on data structures.

e [abeling Schemes for Small Distances in Trees.
Stephen Alstrup, Philip Bille, and Theis Rauhe.
SIAM J. Disc. Math., 2005 and SODA 2003.

e PhD funded by EU-project “Deep Structure, Singularities, and Computer
Vision” working on tree matching problems.

e A Survey on Tree Edit Distance and Related Problems. Philip Bille.
Theoret. Comp. Sci., 2005.

e The Tree Inclusion Problem: In Optimal Space and Faster. Philip and Inge Li
Gortz. ICALP 2005.

e Matching Subsequences in Trees. Philip Bille and Inge Li Gartz. CIAC 2006.

e From a 2D Shape to a String Structure using the Symmetry Set.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, Philip Bille, and Mads Nielsen.
ECCV 2004.

e Matching 2D Shapes using their Symmetry Sets.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, and Philip Bille. ICPR 2006.

BasIiC Setup

* Trees are rooted, labeled, and ordered.
e Rooted: A specific node is designated to be the root.
e | abeled: Each node is assigned a label from an alphabet %_.
e Ordered: There is a given left-to-right ordering among siblings.

¢ \We compare trees by deleting nodes.

Deleting a Node

Deleting a Node

BY,

OROROBNONONONONOMREY

Deleting a Node

Deleting a Node

Tree Inclusion

e Pisincluded in T if P can be obtained from T by deleting nodes in T.
e P is minimally included in T if Pis not included in any proper subtree of T.

e The tree inclusion problem is to decide if P is included in] and if so, compute
all subtrees of 7 which minimally include P

—Xample

—Xample

—Xample

Application: Querying XML

/ \ author

author chapter

name

Muthukrishnan Sampling

Muthukrishnan Basic Math

cha

tit

ldeas

section

tit

pter

le

Sampling New Directions

Query: “Find all books written by Muthukrishnan with
a chapter that has something to do with sampling”.

Application: Querying XML Data Bases

* book
book
/ \ author chapter
author chapter
name title section title

Muthukrishnan Sampling

Muthukrishnan) Basic Math { Sampling)New Directions
|deas

Query: “Find all books written by Muthukrishnan with
a chapter that has something to do with sampling”.

Results

Time Space Ref
O(npnT) O(npnt) [KM92]
O(lpnT) O(lp min(dy, I))|[Che98]
O(lpnT)

O(I?,D/T log log nT + nT) O(nP T nT) [Here]

Practical Implications

e Significant space reduction:
¢ Feasible to query large XML databases.

e Faster query time since more computation can be kept in main memory.

Algorithm Overview

* Reduce tree inclusion to tree embedding.
e Compute tree embeddings using a simple general framework.

e Implement the framework in 3 different ways to get the results.

Tree Inclusion and Embeddings

e An injective function f from the nodes of Pto the nodes of 7 is an embedding
if for all nodes vand w:

1. label(v) = label(f(v)),
2. v is a proper ancestor of w if and only if f(v)is a proper ancestor of f(w),
3. v is to the left of w if and only if f(v) is to the left of f(w).

e P isincluded in T if and only if there is an embedding from Pto T.

e P is minimally included in T if and only if there is an embedding from Pto T
and P cannot be embedded in a proper subtree of 7.

Computing

—mbeddings:

P IS a

Path

Computing

—mbeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P 1S a Path

Computing Embeddings:

P 1S a Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Computing Embeddings:

P IS a

Path

Time Complexity

e At each step of the algorithm the active set “moves up”.
e Each parent pointer in 7 is traversed a constant number of times.

e Using a simple data structure and exploiting the ordering of the nodes we get
a total running time of O(n7).

Computing Embeddings:

P IS not a

Path

Computing Embeddings: P is not a Path

J O® @0®)®0O®) &

Computing Embeddings:

P IS not a

Path

Computing Embeddings:

P IS not a

Path

Computing

—mbeddings:

P 1S not a Path

Computing

—mbeddings:

P IS Not a
©
(&

Path

Computing

—mbeddings:

P IS Not a
©
(&

Path

Computing Embeddings: P is not a Path

Computing

—mbeddings:

P IS not a

Path

Time Complexity

e Time complexity is bounded by the time used to compute embeddings for
each root-to-leaf path in F.

e => Time: O(/pnT)

Algorithm 2

e Reconsider the case when P is path:

e Let firstlabel(v, /) denote the nearest ancestor of node v in T labeled /.

e At each step we “essentially” compute firstlabel(v, /) for each node v in the
active set.

Algorithm 2

e |dea: Use a fast data structure supporting firstlabel queries. Known as the tree
color problem.

e Theorem [Dietz1989]: For any tree T there is a data structure using O(nr)
space, O(n1) expected preprocessing time which supports firstlabel queries in
time O(loglog nt).

Time Complexity

e For each node in P we have an active set of size at most /- and for each
node in this active set we have to compute a firstlabel query.

e —> [ime: O(HP/T Iog Iog nr + nT)

Algorithm 3: Idea

e Divide T into O(nt/log nt) micro trees of size O(log nt) which overlap in at
most 2 nodes. Based on clustering technique from [AHLT1997].

¢ \We represent each micro tree by a constant number of nodes in a macro tree
and connect them according to the overlap of the micro trees.

Algorithm 3: Idea

e Active sets are represented compactly in O(nr/log nt) space as small bit
strings for each micro tree.

¢ \We preprocess micro trees using a “Four Russian Technique” such that we
can update the active set in constant time for each micro tree.

npnNrt

log nt

e | eadstoan O (+ nt log nT> time algorithm.

Space Complexity

e | inear Space?

e No!

The Problem: Algorithm 1 and 2

O @

e Storing all active sets uses Q(/+dp) space.

Trick 1: Recurse to subtree with the most leaves

P

O @

e The number of active sets stored does not exceed O(log /p).

e => Total space for stored active sets is O(/rlog/p).

Trick 2: Strengthen Analysis

P T

i\ ANA

e Nodes in the active set for v are roots of (disjoint) subtrees that embed P(v).

* => Each of these subtrees have at least /p(,)leaves.

e => The size of the active set for v is at most O(/T//P(v)).

Space Complexity: Algorithm 1 and 2

e Trick 1 and 2 combined gives exponentially decreasing sizes of the stored
active sets.

e —> Total size of the stored active sets is O(/r).
e Space complexity is O(np + n7).

e Trick 2 shows that algorithm 2 in fact runs in O(/p/r loglog nt + nr) time.

Space Complexity: Algorithm 3

e Each active sets is represented in O(nt/log ny) space.

e Trick 1 gives us that the total space for the stored active sets is

Summary

e Time:

O(lpnT),
min { O(lplr loglog nr + nT),
O(225C + nylog nT).

log n1

e Space: O(np + nt)

String Matching

e Fast and Compact Regular Expression Matching. Philip Bille and Martin
Farach-Colton, 2005, submitted.

e New Algorithms for Regular Expression Matching. Philip Bille, ICALP 2006.

e Improved Approximate String Matching and Regular Expression Matching on
Ziv-Lempel Compressed Texts. Philip Bille and, Rolf Fagerberg, and Inge L.
Goartz, CPM 2007.

Reqgular Expressions

e The reqular expressions are defined recursively:
e A character o € X is a regular expression.
e [f Sand T are regular expressions then so is

e the concatenation ST,

e theunion S| T, and

¢ the kleene star S.

Reqgular Expressions

e The language L(R)of a regular expression R is defined by:
e Forany a € X, L(a) ={a}.

e For regular expressions S and 7
L(ST)=L(S)L(T)
L(S|T)=L(S)UL(T)

L(S*)={e}UL(S)UL(S)*UL(S)*U---

—Xample

R = acl|a™b

L(R) ={ac, b, ab, aab, aaab, aaaab, ...}

Regular expression Matching

e Given a regular expression R and a string Q the regular expression matching
problem is to decide if Q € L(R).

e Example: R = ac|a*b matches Q) = aaaab.

Applications:

¢ | exical analysis phase in compilers.

® Protein searching.

e Text editing and programming languages (e.g. EMACS and Perl).

Results

Time Space Ref
O(nm) O(m) [ThoG8]
O((n+2")[m/w]) O((2™ + o)[m/w])| [INRO4]
O (nim Cn4m Iog m> O(n) [My6925
09 Here]
(O(n™°9% 1 mlog w) ifm>w
{ O(nlog m+ mlog m) if vw<m<w O(m) [Here]

LO(min(n+ m?, nlogm+ mlogm)) if m</w.

Practical Implications

e Except for Thompson’s algorithm all previous algorithms use large tables and
perform a long series of lookups in the tables.

e => Many expensive cache misses.

e New algorithm does not require the large tables.

Algorithm Overview

e Construct non-deterministic finite automata (NFA) using Thompson’s classical
algorithm.

e Decompose the NFA into small subautomata.

e Simulate each subautomata using the arithmetic and logical instruction of the
word RAM.

e Use the simulation of the each subautomata to simulate the entire NFA.

Thompson’s Algorithm

Thompson NFA

OOyt &@%&Q

O/\O—{)—»O—{)*O*O/

e Thompson-NFA (TNFA) for R = ac|a™b .
e N(R) accepts Q if and only if there is path from 6 to ¢ that “spells” out Q.

e Qe L(R) ifand only if N(R) accepts Q.

2roperties of TNFAS

¢ Linear number of states and transitions.
® Incoming transitions to a state have the same label.

e States with an incoming transition labeled o € > (a-states) have exactly 1
predecessor.

Simulating TNFAs

e et A be TNFA with m states. To test acceptance we use the following
operations. For a state-set S and a € X_:

e Move(S, a): Find set of states reachable from S via a single a-transition.
e (Close(S): Find set of states reachable from S via a path of e-transitions.

e O(m) time for both operations.

Simulating TNFAs

e et Q be a string of length n.

e The state-set simulation of A on Q produces state-sets Sg, 51, ..., S, as
follows:

So ;= Close({0})

S; = Close(Move(S;_1, Qli]))
e S;is the set of states reachable from 6 through a path that spells out Q[1../].
e Qe L(R)ifandonlyif ¢ € S,.

e O(nm) time and O(m) space.

Four-Russian Speedup

__

OO -@@i@LOLQ\eQ

Cb/\ i__________e __________ @5 K
(?ZQ@>QE>Q—C>Q?: ‘ (}--’l@/

__

e Decompose TNFA into sub-automata with O(log n) states.

e Preprocess subautomata to get Move and Close in constant time for each.
Subautomata are made “deterministic”.

 =>0 (Iggn + n+ mlog m) time and O(n) space algorithm [Myers92, BFCO035].

Word-Level Parallel Algorithm

__

Ay As e , ,
i ¢ €, i €, a € ' € b € . i
®< O;J : CQ}O*Q*O\@ EQiQ-ﬁ*QiQ—b»Oi»O\GQ

__

¢ |dea: Use essentially same decomposition into subautomata.

e Simulate Move and Close using the arithmetic and logical instructions of the
word RAM.

Simple Algorithm for small TNFAS

e Suppose A is a TNFA with m = O(v/w) states.
e Order the states such that the (unique) predecessor of a-state / is / — 1.

* Represent state-sets as a bit string.

Representation of State-Sets

o\

i

€
a
€
p b
2 3 4 5

o7

1

@/’

6

7

€
7 ¢ =
€
8

0

0

1

0

1

0

0

0

Move Operation: Preprocessing

e For each o € > represent o -states using a bit string:

5 6 7 8
0/0/0]|0

—_— N

1 2 3
D;=10]0]0

1 2 3 4 5 6 7 8
D,=10[0]0]0|0[1]|0]0

Move Operation: Simulation

€

S

b
(5) >

e We compute Move(S,) as

S"=(5>>1)& D,

oy 2\
o

xample: S .= (5 >> 1) & D,

€

1 2 3 4 5 6 7 8

e Compute Move(S,a) where S= |[0(1]{1/0[1|0|0]|0|:

1 2 3 4 5 6 7 8

ol Of] 0O
ol Of] 0O
| O] O
O O]]10O
i o |
—| lo]|||o
ol Of] 0O
ol Of] 0O
—Q
NS
U

xample: S .= (5 >> 1) & D,

€

1 2 3 4 5 6 7 8

e Compute Move(S,a) where S= |[0(1]{1/0[1|0|0]|0|:

1 2 3 4 5 6 7 8

ol Of] 0O
ol Of] 0O
| O] O
O O]]10O
i o |
—| lo]|||o
ol Of] 0O
ol Of] 0O
—Q
NS
U

=xample: S = (5 >>1)& D,

ol
—_|o
Olo
(@R
Ol

— Iy
Am

e Compute Move(S,a) where S = |0

1 2 3 4 5 6 7 8
S>>1 (0/|0o|1(|1]|0]|1|0/|0O
& D, [o]o]o[1]olo]o]0
ololof[1]olo]o]0

xample: S .= (5 >> 1) & D,

€

1 2 3 4 5 6 7 8

e Compute Move(S,a) where S= |[0(1]{1/0[1|0|0]|0|:

1 2 3 4 5 6 7 8

ol Of] 0O
ol Of] 0O
| O] O
O O]]10O
i o |
—| lo]|||o
ol Of] 0O
ol Of] 0O
—Q
NS
U

Close Operation: Preprocessing

E= 10| E; EzQE3OE4OE5OE6O

o
|
m
-k | N
Olw
e
O|w
e K2
Y
O|w

Close Operation: Preprocessing

e 3 constant bit strings for doing word tricks:
[= (10™)™
X =1(0m)"*
C =1(0mH)ym1

Close Operation: Simulation

e Close(S) is computed as:
Y =(SxX)&E
Z=(Y|H)=(U>>m)) &I
S =(ZxCO)<<w—m(m+1))>>w-—m

—xample:

Olw
—_—h
—_ |
Ol
ol ~
O|w

e Compute Close(S) where S = |[1]0

Step1: YV =(Sx X)&E

SxX=0 SofSYo| S|o|S|oS|oS|ofSlofsS
[\
&E Ol E1 |Q| Eo|0| E3 |0] E4 |0 Es |0| Eg |0 E7 |Of ES

Step2: Z=((Y|)=(>>m)) &

Y|l =
(I >> m))

/~\

Vi1 Yal| Y5 1| Ya (1] Y5 (1] Y6 1] Y5 1] Y
1lo{1l ol o1l o1l o1l o1

k N[x| % (1) % (1] % (0] * 1] * |1]

oflillololtloll ol ol ol1 o

Step 3:S = (ZxC)<<w—m(m+1)) >>w—m

e / x C produces a bit string containing the test bits of Z as a consecutive
substring.

e Shifts clears remaining bits and aligns the substring.

Complexity

e Lemma: For TNFAs with O(v/w) states we can support Move and Close in
constant time using O(m) space and O(m?) preprocessing.

e => For string ¥ and regular expression R of lengths n and m = O(v/w)
regular expression matching can be solved in O(n 4+ m?) time and O(m)
space.

Another Algorithm

e Main bottleneck: Need an Q(m?) length string to represent the transitive
closure of e-transitions.

¢ |[dea: Compute a “good” separator for TNFAs and use a Divide-and-Conquer
strategy.

Separator Property of TNFA

e There exists two states 6p, and ¢r whose removal partitions a TNFA into two
subgraphs, P, and Fo, of roughly equal size such that:

e Any path from Poto P, goes through 6p, .

e Any path from P, to FPo goes through ¢p,.

Recursive Closure Algorithm

1.Determine which of 6p, and ®p, are e-reachable
2.Update the state-set accordingly.

3.Recurse in parallel on P, and Fo.

Complexity

e Each of the O(log m) levels of recursion can be handled in parallel in
constant time.

e => Lemma: For TNFAs with m = O(w) states we can support Move and Close
in O(log m) time using O(m) space and O(mlog m) preprocessing.

e => For string @ and regular expression R of lengths n and m = O(w), resp.,
regular expression matching can be solved in time O(nlog m + mlog m) and
space O(m).

Plug and Play

e Time:

O(n™°9% 1 mlog w) ifm>w

O(nlog m+ mlog m) f vw<m<w
O(min(n+ m?, nlogm+ mlogm)) if m</w.

e Space: O(m)

Core Techniques

e Data Structures: Organize information efficiently.

e Nearest common ancestors, firstlabel, dictionaries, dynamic perfect
hashing, predecessors.

® Tree Techniques: Use combinatorial properties of trees.

e Heavy-path decomposition, varieties of tree clusterings with or without
macro trees.

e \Word-Level Parallelism: Encode and simulate algorithms using arithmetic and
logical instructions of the word RAM.

e Four Russian technique, word level-parallelism.

Future Research

e Bring state-of-the-art techniques to combinatorial pattern matching and
related areas. Many important problems need them!

e Use developed algorithms to improve practical applications (e.g.,
bioinformatics, XML data bases).

e \Word parallel regular expression matching looks promising.

Thanks!

