
Finding Patterns in Trees and Strings

Philip Bille

Agenda
• Background for PhD

• Tree Matching

• Tree Inclusion Problem

• String Matching

• Regular Expression Matching Problem

• Core Techniques and Future Research

• Short Break

• Question Session

Background For PhD

• Worked on data structures.

• Labeling Schemes for Small Distances in Trees.
Stephen Alstrup, Philip Bille, and Theis Rauhe.
SIAM J. Disc. Math., 2005 and SODA 2003.

• PhD funded by EU-project “Deep Structure, Singularities, and Computer
Vision” working on tree matching problems.

• A Survey on Tree Edit Distance and Related Problems. Philip Bille.
Theoret. Comp. Sci., 2005.

• The Tree Inclusion Problem: In Optimal Space and Faster. Philip and Inge Li
Gørtz. ICALP 2005.

• Matching Subsequences in Trees. Philip Bille and Inge Li Gørtz. CIAC 2006.

• From a 2D Shape to a String Structure using the Symmetry Set.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, Philip Bille, and Mads Nielsen.
ECCV 2004.

• Matching 2D Shapes using their Symmetry Sets.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, and Philip Bille. ICPR 2006.

• Trees are rooted, labeled, and ordered.

• Rooted: A specific node is designated to be the root.

• Labeled: Each node is assigned a label from an alphabet .

• Ordered: There is a given left-to-right ordering among siblings.

• We compare trees by deleting nodes.

Basic Setup

�

Deleting a Node

acc b

a

a b

a

a

c b

b

b

b

b

a

Deleting a Node

acc b

a

a b

a

a

c b

b

b

b

b

a

Deleting a Node

acc b

a

a b

a

a

c b

b

b

b

a

Deleting a Node

acc b

a

a b

a

a

c b

b

b

b

a

Tree Inclusion

• is included in if can be obtained from by deleting nodes in .

• is minimally included in if is not included in any proper subtree of .

• The tree inclusion problem is to decide if is included in , and if so, compute
all subtrees of which minimally include .

P T

P

P

P

P
P

T T

T T

T
T

acc b

a

a b

a

c

c b

b

b

b

b

aa

b

a

Example

acc b

a

a b

a

c

c b

b

b

b

b

aa

b

a

Example

acc b

a

a b

a

c

c b

b

b

b

b

aa

b

a

Example

catalog

book

chapterauthor

Muthukrishnan

book

title

Basic Math
Ideas

chapter

name section

Sampling

title

New Directions

book

book

chapterauthor

Muthukrishnan Sampling

Query: “Find all books written by Muthukrishnan with
a chapter that has something to do with sampling”.

Application: Querying XML Data Bases

catalog

book

chapterauthor

Muthukrishnan

book

title

Basic Math
Ideas

chapter

name section

Sampling

title

New Directions

book

book

chapterauthor

Muthukrishnan Sampling

Query: “Find all books written by Muthukrishnan with
a chapter that has something to do with sampling”.

Application: Querying XML Data Bases

[KM92]

[Che98]

[Here][Here][Here]

Time Space Ref

O(nP nT)

O(lP nT)

O(lP nT)

O(nP nT)

O(lP min(dT , lT))

O(nP lT log log nT + nT) O(nP + nT)

O

�
nP nT
log nT

+ nT log nT

⇥

Results

Practical Implications

• Significant space reduction:

• Feasible to query large XML databases.

• Faster query time since more computation can be kept in main memory.

Algorithm Overview

• Reduce tree inclusion to tree embedding.

• Compute tree embeddings using a simple general framework.

• Implement the framework in 3 different ways to get the results.

• An injective function from the nodes of to the nodes of is an embedding
if for all nodes and :

1. ,

2. is a proper ancestor of if and only if is a proper ancestor of ,

3. is to the left of if and only if is to the left of .

• is included in if and only if there is an embedding from to .

• is minimally included in if and only if there is an embedding from to
and cannot be embedded in a proper subtree of .

Tree Inclusion and Embeddings

label(v) = label(f (v))

v w f (v) f (w)

v w f (v) f (w)

f
v w

P T

P T P T

P P
P

T T
T

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Computing Embeddings: P is a Path

b

a

acc b a b

a

c

c b

b

b

b

c

P T

= Active set = Root of min. subtree including

Time Complexity

• At each step of the algorithm the active set “moves up”.

• Each parent pointer in is traversed a constant number of times.

• Using a simple data structure and exploiting the ordering of the nodes we get
a total running time of . O(nT)

T

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Computing Embeddings: P is not a Path

acc b a b

a

c

c b

b

b

b

c

P T

b

b

a

Time Complexity

• Time complexity is bounded by the time used to compute embeddings for
each root-to-leaf path in .

• => Time: O(lP nT)

P

Algorithm 2

• Reconsider the case when is path:

• Let denote the nearest ancestor of node in labeled .

• At each step we “essentially” compute for each node in the
active set.

firstlabel(v , l) v T l

P

firstlabel(v , l) v

• Idea: Use a fast data structure supporting queries. Known as the tree
color problem.

• Theorem [Dietz1989]: For any tree there is a data structure using
space, expected preprocessing time which supports queries in
time .

Algorithm 2

O(nT)
O(nT)
O(log log nT)

firstlabel

firstlabel
T

• For each node in we have an active set of size at most and for each
node in this active set we have to compute a query.

• => Time:

Time Complexity

lT

O(nP lT log log nT + nT)

firstlabel
P

Algorithm 3: Idea

• Divide T into micro trees of size which overlap in at
most 2 nodes. Based on clustering technique from [AHLT1997].

• We represent each micro tree by a constant number of nodes in a macro tree
and connect them according to the overlap of the micro trees.

O(log nT)O(nT / log nT)

Algorithm 3: Idea

• Active sets are represented compactly in space as small bit
strings for each micro tree.

• We preprocess micro trees using a “Four Russian Technique” such that we
can update the active set in constant time for each micro tree.

• Leads to an time algorithm. O

�
nP nT
log nT

+ nT log nT

⇥

O(nT / log nT)

Space Complexity

• Linear Space?

• No!

lT

lT

lT

lT

lT

lT lT

dP

P

The Problem: Algorithm 1 and 2

• Storing all active sets uses space. �(lT dP)

lT

lT

lT

P

lT

Trick 1: Recurse to subtree with the most leaves

• The number of active sets stored does not exceed .

• => Total space for stored active sets is .

O(log lP)

O(lT log lP)

Trick 2: Strengthen Analysis

• Nodes in the active set for are roots of (disjoint) subtrees that embed .

• => Each of these subtrees have at least leaves.

• => The size of the active set for is at most .

P

v

T

lP (v)

v O(lT /lP (v))

P (v)v

Space Complexity: Algorithm 1 and 2

• Trick 1 and 2 combined gives exponentially decreasing sizes of the stored
active sets.

• => Total size of the stored active sets is .

• Space complexity is .

• Trick 2 shows that algorithm 2 in fact runs in time.

O(nP + nT)

O(lP lT log log nT + nT)

O(lT)

Space Complexity: Algorithm 3

• Each active sets is represented in space.

• Trick 1 gives us that the total space for the stored active sets is

O(nT / log nT)

O

�
nT
log nT

log lP

⇥
= O(nT)

Summary

• Time:

• Space:

min

�
⌅⇤

⌅⇥

O(lP nT),

O(lP lT log log nT + nT),

O(nP nTlog nT
+ nT log nT).

O(nP + nT)

String Matching

• Fast and Compact Regular Expression Matching. Philip Bille and Martin
Farach-Colton, 2005, submitted.

• New Algorithms for Regular Expression Matching. Philip Bille, ICALP 2006.

• Improved Approximate String Matching and Regular Expression Matching on
Ziv-Lempel Compressed Texts. Philip Bille and, Rolf Fagerberg, and Inge Li
Gørtz, CPM 2007.

Regular Expressions

• The regular expressions are defined recursively:

• A character is a regular expression.

• If and are regular expressions then so is

• the concatenation ,

• the union , and

• the kleene star .

� � �

S T

ST

S�

S | T

Regular Expressions

• The language of a regular expression is defined by:

• For any , .

• For regular expressions and :

L(R) R

L(�) = {�}� � �

L(ST) = L(S)L(T)

L(S|T) = L(S) � L(T)

L(S�) = {�} ⇥ L(S) ⇥ L(S)2 ⇥ L(S)3 ⇥ · · ·

S T

L(R) = {ac, b, ab, aab, aaab, aaaab, . . .}

Example

R = ac |a�b

Regular expression Matching

• Given a regular expression and a string the regular expression matching
problem is to decide if .

• Example: matches .

Q � L(R)

R = ac |a�b Q = aaaab

R Q

Applications:

• Lexical analysis phase in compilers.

• Protein searching.

• Text editing and programming languages (e.g. EMACS and Perl).

[Tho68]

[NR04]

[Mye92,
Here]

[Here]

Time

�
⌅⇤

⌅⇥

O(nm logww +m logw) if m > w

O(n logm +m logm) if
⇥
w < m � w

O(min(n +m2, n logm +m logm)) if m �
⇥
w .

Results

O

�
nm

log n
+ n +m logm

⇥

O((n + 2m)�m/w⇥)

O(nm) O(m)

O((2m + �)�m/w⇥)

O(n)

Space Ref

O(m)

Practical Implications

• Except for Thompson’s algorithm all previous algorithms use large tables and
perform a long series of lookups in the tables.

• => Many expensive cache misses.

• New algorithm does not require the large tables.

Algorithm Overview

• Construct non-deterministic finite automata (NFA) using Thompson’s classical
algorithm.

• Decompose the NFA into small subautomata.

• Simulate each subautomata using the arithmetic and logical instruction of the
word RAM.

• Use the simulation of the each subautomata to simulate the entire NFA.

Thompson’s Algorithm

α
N(T)ε ε ε

N(S)

N(ST)

N(S)
ε

N(T)
ε

ε

ε

N(S|T)

N(S)

ε

ε

ε ε

N(S∗)

N(α)

Thompson NFA

ba
ε

ε

a cε ε

ε ε

ε

ε

ε

ε ε ε
ε

ε

• Thompson-NFA (TNFA) for .

• accepts if and only if there is path from to that “spells” out .

• if and only if accepts .

R = ac |a�b

N(R) Q � � Q

Q � L(R) N(R) Q

Properties of TNFAs

• Linear number of states and transitions.

• Incoming transitions to a state have the same label.

• States with an incoming transition labeled (-states) have exactly 1
predecessor.

� � � �

Simulating TNFAs

• Let be TNFA with states. To test acceptance we use the following
operations. For a state-set and :

• : Find set of states reachable from via a single -transition.

• : Find set of states reachable from via a path of -transitions.

• time for both operations.

A m
S � � �

Move(S,�)

Close(S)

S �

�S

O(m)

Simulating TNFAs

• Let be a string of length .

• The state-set simulation of on produces state-sets as
follows:

• is the set of states reachable from through a path that spells out .

• if and only if .

• time and space.

Q n

A Q S0, S1, . . . , Sn

S0 := Close({�})

Si := Close(Move(Si�1, Q[i]))

Si � Q[1..i]

Q � L(R) � � Sn

O(nm) O(m)

Four-Russian Speedup

b

ba
ε

ε

A1 A3

a cε ε

A2

ε ε

ε

ε

ε

ε ε ε
ε

ε

ε
ε ε ε

ε

ε
ε β

β

• Decompose TNFA into sub-automata with states.

• Preprocess subautomata to get and in constant time for each.
Subautomata are made “deterministic”.

• => time and space algorithm [Myers92, BFC05].

O(log n)

Move Close

O

�
nm

log n
+ n +m logm

⇥
O(n)

Word-Level Parallel Algorithm

b

ba
ε

ε

A1 A3

a cε ε

A2

ε ε

ε

ε

ε

ε ε ε
ε

ε

ε
ε ε ε

ε

ε
ε β

β

• Idea: Use essentially same decomposition into subautomata.

• Simulate and using the arithmetic and logical instructions of the
word RAM.

Move Close

Simple Algorithm for small TNFAs

• Suppose is a TNFA with states.

• Order the states such that the (unique) predecessor of -state is .

• Represent state-sets as a bit string.

A m = O(
�
w)

� i i � 1

0 0 1 0 1 0 0 0S =
1 2 3 4 5 6 7 8

Representation of State-Sets

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

• For each represent -states using a bit string:

Move Operation: Preprocessing

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

0 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8

Da =

0 0 0 0 0 1 0 0

1 2 3 4 5 6 7 8

Db =

� � � �

Move Operation: Simulation

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

• We compute as Move(S,�)

S� := (S >> 1) &D�

• Compute where :

S >> 1

0 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8

Move(S, a) S =

Example:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

S� := (S >> 1) &D�

0 0 1 1 0 1 0 0

1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0&Da

0 0 0 1 0 0 0 0

• Compute where :

S >> 1

0 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8

Move(S, a) S =

Example:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

S� := (S >> 1) &D�

0 0 1 1 0 1 0 0

1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0&Da

0 0 0 1 0 0 0 0

• Compute where :

S >> 1

0 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8

Move(S, a) S =

Example:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

S� := (S >> 1) &D�

0 0 1 1 0 1 0 0

1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0&Da

0 0 0 1 0 0 0 0

• Compute where :

S >> 1

0 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8

Move(S, a) S =

Example:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

S� := (S >> 1) &D�

0 0 1 1 0 1 0 0

1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0&Da

0 0 0 1 0 0 0 0

• Encode -paths compactly:

Close Operation: Preprocessing

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

0 0 0 0 0 0 0 0E1 E2 E3 E4 E5 E6 E7 E8

1 1 0 1 0 1 1 0

1 2 3 4 5 6 7 8

E2 =

E =

�

Close Operation: Preprocessing

• 3 constant bit strings for doing word tricks:

I = (10m)m

X = 1(0m)m�1

C = 1(0m�1)m�1

Close Operation: Simulation

• is computed as:Close(S)

Y := (S �X) & E

Z := ((Y | I)� (I >> m)) & I
S� := ((Z ⇥ C) << w �m(m + 1)) >> w �m

• Compute where . S =Close(S)

Example:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

1 0 0 1 1 0 0 0

1 2 3 4 5 6 7 8

Step 1: Y := (S �X) & E

0 0 0 0 0 0 0 0S S S S S S S S

E1 E4 E5 E6 E7 E80 0 0 0 0 0 0 0E2 E3

Y1 Y4 Y5 Y6 Y7 Y80 0 0 0 0 0 0 0Y2 Y3

S �X =

&E

Y =

1 1 0 1 0 1 1 0

1 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0

1 2 3 4 5 6 7 8

Y2 =

S =

&E2
1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

Y1 Y4 Y5 Y6 Y7 Y81 1 1 1 1 1 1 1Y2 Y3

11 1 1 1 1 1 10 0 0 0 0 0 0 0�(I >> m))

� � � � � � � �01 1 1 1 1 1 1

0 0 0 0 0 0 0 001 1 1 1 1 1 1

0 0 0 0 0 0 0 01 1 1 1 1 1 11&I

Z =

1 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8

1

1 1 0 0 0 1 1 1 1

Step 2:

1

5

3 4

72

b

a

ε

ε

ε

ε

ε

ε

6

8

ε

Z := ((Y | I)� (I >> m)) & I

Y | I =

Y2 =

0 0 0 0 0 0 0 0 1�

Step 3:

• produces a bit string containing the test bits of as a consecutive
substring.

• Shifts clears remaining bits and aligns the substring.

S� := ((Z ⇥ C) << w �m(m + 1)) >> w �m

Z � C Z

Complexity

• Lemma: For TNFAs with states we can support and in
constant time using space and preprocessing.

• => For string and regular expression of lengths and
regular expression matching can be solved in time and
space.

O(
�
w) Move Close

O(m) O(m2)

Q R n m = O(
�
w)

O(n +m2) O(m)

Another Algorithm

• Main bottleneck: Need an length string to represent the transitive
closure of -transitions.

• Idea: Compute a “good” separator for TNFAs and use a Divide-and-Conquer
strategy.

�(m2)
�

• There exists two states and whose removal partitions a TNFA into two
subgraphs, and , of roughly equal size such that:

• Any path from to goes through .

• Any path from to goes through .

�PO �PI �PI �PO

PO

PI

PI PO

�PI �PI

Separator Property of TNFA

PIPO

POPI �PI

�PI

1.Determine which of and are -reachable

2.Update the state-set accordingly.

3.Recurse in parallel on and .

Recursive Closure Algorithm

�PI�PI �

PI PO

O(m)

Complexity

• Each of the levels of recursion can be handled in parallel in
constant time.

• => Lemma: For TNFAs with states we can support and
in time using space and preprocessing.

• => For string and regular expression of lengths and , resp.,
regular expression matching can be solved in time and
space .

O(logm)

Move Close

O(logm) O(m)

m = O(w)
O(m logm)

Q nR m = O(w)
O(n logm +m logm)

Plug and Play

• Time:

• Space:

�
⌅⇤

⌅⇥

O(nm logww +m logw) if m > w

O(n logm +m logm) if
⇥
w < m � w

O(min(n +m2, n logm +m logm)) if m �
⇥
w .

O(m)

Core Techniques

• Data Structures: Organize information efficiently.

• Nearest common ancestors, firstlabel, dictionaries, dynamic perfect
hashing, predecessors.

• Tree Techniques: Use combinatorial properties of trees.

• Heavy-path decomposition, varieties of tree clusterings with or without
macro trees.

• Word-Level Parallelism: Encode and simulate algorithms using arithmetic and
logical instructions of the word RAM.

• Four Russian technique, word level-parallelism.

Future Research

• Bring state-of-the-art techniques to combinatorial pattern matching and
related areas. Many important problems need them!

• Use developed algorithms to improve practical applications (e.g.,
bioinformatics, XML data bases).

• Word parallel regular expression matching looks promising.

Thanks!

