Finding Patterns in Trees and Strings

Philip Bille

Agenda

- Background for PhD
- Tree Matching
 - Tree Inclusion Problem
- String Matching
 - Regular Expression Matching Problem
- Core Techniques and Future Research
- Short Break
- Question Session

Background For PhD

- Worked on data structures.
 - Labeling Schemes for Small Distances in Trees.
 Stephen Alstrup, Philip Bille, and Theis Rauhe.
 SIAM J. Disc. Math., 2005 and SODA 2003.
- PhD funded by EU-project "Deep Structure, Singularities, and Computer Vision" working on tree matching problems.

- A Survey on Tree Edit Distance and Related Problems. Philip Bille. Theoret. Comp. Sci., 2005.
- The Tree Inclusion Problem: In Optimal Space and Faster. Philip and Inge Li Gørtz. ICALP 2005.
- Matching Subsequences in Trees. Philip Bille and Inge Li Gørtz. CIAC 2006.
- From a 2D Shape to a String Structure using the Symmetry Set.
 Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, Philip Bille, and Mads Nielsen.
 ECCV 2004.
- Matching 2D Shapes using their Symmetry Sets.
 Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, and Philip Bille. ICPR 2006.

Basic Setup

- Trees are rooted, labeled, and ordered.
 - Rooted: A specific node is designated to be the root.
 - Labeled: Each node is assigned a label from an alphabet Σ .
 - Ordered: There is a given left-to-right ordering among siblings.
- We compare trees by deleting nodes.

Tree Inclusion

- *P* is *included* in *T* if *P* can be obtained from *T* by deleting nodes in *T*.
- *P* is *minimally included* in T if *P* is not included in any proper subtree of T.
- The *tree inclusion problem* is to decide if *P* is included in *T*, and if so, compute all subtrees of *T* which minimally include *P*.

Example

Example

Example

Application: Querying XML Data Bases

Query: "Find all books written by Muthukrishnan with a chapter that has something to do with sampling".

Application: Querying XML Data Bases

Query: "Find all books written by Muthukrishnan with a chapter that has something to do with sampling".

Results		
Time	Space	Ref
$O(n_P n_T)$	$O(n_P n_T)$	[KM92]
$O(I_P n_T)$	$O(I_P \min(d_T, I_T))$	[Che98]
$O(I_P n_T)$		
$O(n_P I_T \log \log n_T + n_T)$	$O(n_P + n_T)$	[Here]
$O\left(\frac{n_P n_T}{\log n_T} + n_T \log n_T\right)$		L 4

Practical Implications

- Significant space reduction:
 - Feasible to query large XML databases.
 - Faster query time since more computation can be kept in main memory.

Algorithm Overview

- Reduce tree inclusion to *tree embedding*.
- Compute tree embeddings using a simple general framework.
- Implement the framework in 3 different ways to get the results.

Tree Inclusion and Embeddings

• An injective function *f* from the nodes of *P* to the nodes of *T* is an *embedding* if for all nodes *v* and *w*:

1. label(v) = label(f(v)),

2. v is a proper ancestor of w if and only if f(v) is a proper ancestor of f(w),

3. *v* is to the left of *w* if and only if f(v) is to the left of f(w).

- *P* is included in T if and only if there is an embedding from *P* to *T*.
- P is minimally included in T if and only if there is an embedding from P to T and P cannot be embedded in a proper subtree of T.

Time Complexity

- At each step of the algorithm the active set "moves up".
- Each parent pointer in T is traversed a constant number of times.
- Using a simple data structure and exploiting the ordering of the nodes we get a total running time of $O(n_T)$.

Time Complexity

- Time complexity is bounded by the time used to compute embeddings for each root-to-leaf path in *P*.
- => Time: $O(I_P n_T)$

Algorithm 2

- Reconsider the case when *P* is path:
- Let firstlabel(v, l) denote the nearest ancestor of node v in T labeled l.
- At each step we "essentially" compute firstlabel(v, /) for each node v in the active set.

Algorithm 2

- Idea: Use a fast data structure supporting firstlabel queries. Known as the tree color problem.
- Theorem [Dietz1989]: For any tree T there is a data structure using O(n_T) space, O(n_T) expected preprocessing time which supports firstlabel queries in time O(log log n_T).

Time Complexity

- For each node in P we have an active set of size at most I_T and for each node in this active set we have to compute a firstlabel query.
- => Time: $O(n_P l_T \log \log n_T + n_T)$

Algorithm 3: Idea

- Divide T into O(n_T / log n_T) micro trees of size O(log n_T) which overlap in at most 2 nodes. Based on clustering technique from [AHLT1997].
- We represent each micro tree by a constant number of nodes in a *macro tree* and connect them according to the overlap of the micro trees.

Algorithm 3: Idea

- Active sets are represented compactly in O(n_T / log n_T) space as small bit strings for each micro tree.
- We preprocess micro trees using a "Four Russian Technique" such that we can update the active set in constant time for each micro tree.

• Leads to an
$$O\left(\frac{n_P n_T}{\log n_T} + n_T \log n_T\right)$$
 time algorithm.

Space Complexity

- Linear Space?
- No!

The Problem: Algorithm 1 and 2

• Storing all active sets uses $\Omega(I_T d_P)$ space.

Trick 1: Recurse to subtree with the most leaves

- The number of active sets stored does not exceed $O(\log I_P)$.
- => Total space for stored active sets is $O(I_T \log I_P)$.

Trick 2: Strengthen Analysis

- Nodes in the active set for v are roots of (disjoint) subtrees that embed P(v).
- => Each of these subtrees have at least $I_{P(v)}$ leaves.
- => The size of the active set for v is at most $O(I_T/I_{P(v)})$.

Space Complexity: Algorithm 1 and 2

- Trick 1 and 2 combined gives exponentially decreasing sizes of the stored active sets.
- => Total size of the stored active sets is $O(I_T)$.
- Space complexity is $O(n_P + n_T)$.
- Trick 2 shows that algorithm 2 in fact runs in $O(I_P I_T \log \log n_T + n_T)$ time.

Space Complexity: Algorithm 3

- Each active sets is represented in $O(n_T / \log n_T)$ space.
- Trick 1 gives us that the total space for the stored active sets is

$$O\left(\frac{n_T}{\log n_T}\log I_P\right) = O(n_T)$$

Summary

• Time:

$$\min \begin{cases} O(I_P n_T), \\ O(I_P I_T \log \log n_T + n_T), \\ O(\frac{n_P n_T}{\log n_T} + n_T \log n_T). \end{cases}$$

• Space: $O(n_P + n_T)$

String Matching

- Fast and Compact Regular Expression Matching. Philip Bille and Martin Farach-Colton, 2005, submitted.
- New Algorithms for Regular Expression Matching. Philip Bille, ICALP 2006.
- Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts. Philip Bille and, Rolf Fagerberg, and Inge Li Gørtz, CPM 2007.

Regular Expressions

- The *regular expressions* are defined recursively:
- A character $\alpha \in \Sigma$ is a regular expression.
- If S and T are regular expressions then so is
 - the concatenation *ST*,
 - the union $S \mid T$, and
 - the kleene star S^* .

Regular Expressions

- The *language* L(R) of a regular expression R is defined by:
- For any $\alpha \in \Sigma$, $L(\alpha) = \{\alpha\}$.
- For regular expressions S and T:

L(ST) = L(S)L(T)

 $L(S|T) = L(S) \cup L(T)$

 $L(S^*) = \{\epsilon\} \cup L(S) \cup L(S)^2 \cup L(S)^3 \cup \cdots$

Example

$$R = ac|a^*b$$

 $L(R) = \{ac, b, ab, aab, aaab, aaaab, \ldots\}$

Regular expression Matching

- Given a regular expression *R* and a string *Q* the *regular expression matching problem* is to decide if $Q \in L(R)$.
- Example: $R = ac | a^* b$ matches Q = aaaab.

Applications:

- Lexical analysis phase in compilers.
- Protein searching.
- Text editing and programming languages (e.g. EMACS and Perl).

Results		
Time	Space	Ref
O(nm)	<i>O</i> (<i>m</i>)	[Tho68]
$O((n+2^m)\lceil m/w\rceil)$	$O((2^m + \sigma)\lceil m/w\rceil)$	[NR04]
$O\left(\frac{nm}{\log n} + n + m\log m\right)$	<i>O</i> (<i>n</i>)	[Mye92, Here]
$\begin{cases} O(n\frac{m\log w}{w} + m\log w) & \text{if } m > w\\ O(n\log m + m\log m) & \text{if } \sqrt{w} < m \le w\\ O(\min(n + m^2, n\log m + m\log m)) & \text{if } m \le \sqrt{w}. \end{cases}$	<i>O</i> (<i>m</i>)	[Here]

Practical Implications

- Except for Thompson's algorithm all previous algorithms use large tables and perform a long series of lookups in the tables.
- => Many expensive cache misses.
- New algorithm does not require the large tables.

Algorithm Overview

- Construct non-deterministic finite automata (NFA) using Thompson's classical algorithm.
- Decompose the NFA into small subautomata.
- Simulate each subautomata using the arithmetic and logical instruction of the word RAM.
- Use the simulation of the each subautomata to simulate the entire NFA.

Thompson's Algorithm

Thompson NFA

- Thompson-NFA (TNFA) for $R = ac|a^*b$.
- N(R) accepts Q if and only if there is path from θ to ϕ that "spells" out Q.
- $Q \in L(R)$ if and only if N(R) accepts Q.

Properties of TNFAs

- Linear number of states and transitions.
- Incoming transitions to a state have the same label.
- States with an incoming transition labeled α ∈ Σ (α-states) have exactly 1 predecessor.

Simulating TNFAs

- Let A be TNFA with m states. To test acceptance we use the following operations. For a state-set S and $\alpha \in \Sigma$:
- Move(S, α): Find set of states reachable from S via a single α -transition.
- Close(S): Find set of states reachable from S via a path of ϵ -transitions.
- O(m) time for both operations.

Simulating TNFAs

- Let Q be a string of length n.
- The state-set simulation of A on Q produces state-sets S_0, S_1, \ldots, S_n as follows:

 $S_0 := \operatorname{Close}(\{\theta\})$

 $S_i := \operatorname{Close}(\operatorname{Move}(S_{i-1}, Q[i]))$

- S_i is the set of states reachable from θ through a path that spells out Q[1..i].
- $Q \in L(R)$ if and only if $\phi \in S_n$.
- O(nm) time and O(m) space.

Four-Russian Speedup

- Decompose TNFA into sub-automata with $O(\log n)$ states.
- Preprocess subautomata to get Move and Close in constant time for each. Subautomata are made "deterministic".

• =>
$$O\left(\frac{nm}{\log n} + n + m\log m\right)$$
 time and $O(n)$ space algorithm [Myers92, BFC05].

Word-Level Parallel Algorithm

- Idea: Use essentially same decomposition into subautomata.
- Simulate Move and Close using the arithmetic and logical instructions of the word RAM.

Simple Algorithm for small TNFAs

- Suppose A is a TNFA with $m = O(\sqrt{w})$ states.
- Order the states such that the (unique) predecessor of α -state *i* is *i* 1.
- Represent state-sets as a bit string.
Representation of State-Sets

	1	2	3	4	5	6	7	8
S =	0	0	1	0	1	0	0	0

Move Operation: Preprocessing

• For each $\alpha \in \Sigma$ represent α -states using a bit string:

Move Operation: Simulation

• We compute $Move(S, \alpha)$ as

$$S' := (S >> 1) \& D_{\alpha}$$

Close Operation: Preprocessing

• Encode ϵ -paths compactly:

Close Operation: Preprocessing

• 3 constant bit strings for doing word tricks:

$$I = (10^{m})^{m}$$

 $X = 1(0^{m})^{m-1}$
 $C = 1(0^{m-1})^{m-1}$

Close Operation: Simulation

• Close(S) is computed as:

$$Y := (S \times X) \& E$$

$$Z := ((Y | I) - (I >> m)) \& I$$

$$S' := ((Z \times C) << w - m(m+1)) >> w - m$$

Example:

Step 1: $Y := (S \times X) \& E$

Step 2: Z := ((Y | I) - (I >> m)) & I

Step 3: $S' := ((Z \times C) << w - m(m+1)) >> w - m$

- *Z* × *C* produces a bit string containing the test bits of *Z* as a consecutive substring.
- Shifts clears remaining bits and aligns the substring.

Complexity

- Lemma: For TNFAs with $O(\sqrt{w})$ states we can support Move and Close in constant time using O(m) space and $O(m^2)$ preprocessing.
- => For string Q and regular expression R of lengths n and $m = O(\sqrt{w})$ regular expression matching can be solved in $O(n + m^2)$ time and O(m) space.

Another Algorithm

- Main bottleneck: Need an $\Omega(m^2)$ length string to represent the transitive closure of ϵ -transitions.
- Idea: Compute a "good" separator for TNFAs and use a Divide-and-Conquer strategy.

Separator Property of TNFA

- There exists two states θ_{P_l} and ϕ_{P_l} whose removal partitions a TNFA into two subgraphs, P_l and P_O , of roughly equal size such that:
- Any path from P_O to P_I goes through θ_{P_I} .
- Any path from P_I to P_O goes through ϕ_{P_I} .

Recursive Closure Algorithm

1. Determine which of θ_{P_l} and ϕ_{P_l} are ϵ -reachable

2.Update the state-set accordingly.

3.Recurse in parallel on P_1 and P_0 .

Complexity

- Each of the $O(\log m)$ levels of recursion can be handled in parallel in constant time.
- => Lemma: For TNFAs with m = O(w) states we can support Move and Close in O(log m) time using O(m) space and O(m log m) preprocessing.
- => For string Q and regular expression R of lengths n and m = O(w), resp., regular expression matching can be solved in time O(n log m + m log m) and space O(m).

Plug and Play

• Time:

 $\begin{cases} O(n\frac{m\log w}{w} + m\log w) & \text{if } m > w \\ O(n\log m + m\log m) & \text{if } \sqrt{w} < m \le w \\ O(\min(n + m^2, n\log m + m\log m)) & \text{if } m \le \sqrt{w}. \end{cases}$

• **Space**: *O*(*m*)

Core Techniques

- Data Structures: Organize information efficiently.
 - Nearest common ancestors, firstlabel, dictionaries, dynamic perfect hashing, predecessors.
- Tree Techniques: Use combinatorial properties of trees.
 - Heavy-path decomposition, varieties of tree clusterings with or without macro trees.
- Word-Level Parallelism: Encode and simulate algorithms using arithmetic and logical instructions of the word RAM.
 - Four Russian technique, word level-parallelism.

Future Research

- Bring state-of-the-art techniques to combinatorial pattern matching and related areas. Many important problems need them!
- Use developed algorithms to improve practical applications (e.g., bioinformatics, XML data bases).
 - Word parallel regular expression matching looks promising.

Thanks!