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Background For PhD

• Worked on data structures. 

• Labeling Schemes for Small Distances in Trees.
Stephen Alstrup, Philip Bille, and Theis Rauhe. 
SIAM J. Disc. Math., 2005 and SODA 2003.

• PhD funded by EU-project “Deep Structure, Singularities, and Computer 
Vision” working on tree matching problems.



• A Survey on Tree Edit Distance and Related Problems. Philip Bille.
Theoret. Comp. Sci., 2005. 

• The Tree Inclusion Problem: In Optimal Space and Faster. Philip and Inge Li 
Gørtz. ICALP 2005.

• Matching Subsequences in Trees. Philip Bille and Inge Li Gørtz. CIAC 2006.

• From a 2D Shape to a String Structure using the Symmetry Set.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, Philip Bille, and Mads Nielsen. 
ECCV 2004.

• Matching 2D Shapes using their Symmetry Sets.
Arjan Kuijper, Ole Fogh Olsen, Peter Giblin, and Philip Bille. ICPR 2006.



• Trees are rooted, labeled, and ordered.

• Rooted: A specific node is designated to be the root.

• Labeled: Each node is assigned a label from an alphabet    .

• Ordered: There is a given left-to-right ordering among siblings.

• We compare trees by deleting nodes.

Basic Setup

�
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Tree Inclusion

•    is included in    if    can be obtained from    by deleting nodes in   . 

•    is minimally included in    if    is not included in any proper subtree of   .

• The tree inclusion problem is to decide if    is included in  , and if so, compute 
all subtrees of    which minimally include  .
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catalog

book

chapterauthor

Muthukrishnan

book

title

Basic Math
Ideas

chapter

name section

Sampling

title

New Directions

book

book

chapterauthor

Muthukrishnan Sampling

Query: “Find all books written by Muthukrishnan with 
a chapter that has something to do with sampling”.

Application: Querying XML Data Bases
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Practical Implications

• Significant space reduction:

• Feasible to query large XML databases.

• Faster query time since more computation can be kept in main memory.



Algorithm Overview

• Reduce tree inclusion to tree embedding. 

• Compute tree embeddings using a simple general framework.

• Implement the framework in 3 different ways to get the results.



• An injective function    from the nodes of    to the nodes of    is an embedding 
if for all nodes   and    :

1.                                  ,

2.    is a proper ancestor of    if and only if        is a proper ancestor of        ,

3.    is to the left of     if and only if        is to the left of         .

•     is included in    if and only if there is an embedding from    to   . 

•     is minimally included in    if and only if there is an embedding from     to   
and     cannot be embedded in a proper subtree of   . 

Tree Inclusion and Embeddings

label(v) = label(f (v))

v w f (v) f (w)

v w f (v) f (w)
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Computing Embeddings: P is a Path
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Time Complexity

• At each step of the algorithm the active set “moves up”. 

• Each parent pointer in    is traversed a constant number of times.

• Using a simple data structure and exploiting the ordering of the nodes we get 
a total running time of           .  O(nT )

T



Computing Embeddings: P is not a Path
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Time Complexity

• Time complexity is bounded by the time used to compute embeddings for 
each root-to-leaf path in   .  

• => Time:                O(lP nT )

P



Algorithm 2

• Reconsider the case when    is path:

• Let                       denote the nearest ancestor of node    in    labeled  . 

• At each step we “essentially” compute                       for each node    in the 
active set.

firstlabel(v , l) v T l

P

firstlabel(v , l) v



• Idea: Use a fast data structure supporting               queries. Known as the tree 
color problem.

• Theorem [Dietz1989]: For any tree    there is a data structure using            
space,           expected preprocessing time which supports               queries in                       
time                     . 

Algorithm 2

O(nT )
O(nT )
O(log log nT )

firstlabel

firstlabel
T



• For each node in     we have an active set of size at most     and for each 
node in this active set we have to compute a               query. 

• => Time:  

Time Complexity

lT

O(nP lT log log nT + nT )

firstlabel
P



Algorithm 3: Idea

• Divide T into                       micro trees of size                 which overlap in at 
most 2 nodes. Based on clustering technique from [AHLT1997].

• We represent each micro tree by a constant number of nodes in a macro tree 
and connect them according to the overlap of the micro trees.

O(log nT )O(nT / log nT )



Algorithm 3: Idea

• Active sets are represented compactly in                       space as small bit 
strings for each micro tree.

• We preprocess micro trees using a “Four Russian Technique” such that we 
can update the active set in constant time for each micro tree.

• Leads to an                                        time algorithm.  O

�
nP nT
log nT

+ nT log nT

⇥

O(nT / log nT )



Space Complexity

• Linear Space?

• No!



lT

lT

lT

lT

lT

lT lT

dP

P

The Problem: Algorithm 1 and 2

• Storing all active sets uses                space.  �(lT dP )



lT

lT

lT

P

lT

Trick 1: Recurse to subtree with the most leaves

• The number of active sets stored does not exceed               . 

• => Total space for stored active sets is                   .

O(log lP )

O(lT log lP )



Trick 2: Strengthen Analysis

• Nodes in the active set for    are roots of (disjoint) subtrees that embed        .

• => Each of these subtrees have at least        leaves. 

• => The size of the active set for    is at most                  .
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v O(lT /lP (v))

P (v)v



Space Complexity: Algorithm 1 and 2

• Trick 1 and 2 combined gives exponentially decreasing sizes of the stored 
active sets.

• => Total size of the stored active sets is          .

• Space complexity is                    .

• Trick 2 shows that algorithm 2 in fact runs in                                     time.  

O(nP + nT )

O(lP lT log log nT + nT )

O(lT )



Space Complexity: Algorithm 3

• Each active sets is represented in                        space. 

• Trick 1 gives us that the total space for the stored active sets is

O(nT / log nT )

O

�
nT
log nT

log lP

⇥
= O(nT )



Summary

• Time: 

• Space:                    

min

�
⌅⇤

⌅⇥

O(lP nT ),

O(lP lT log log nT + nT ),

O( nP nTlog nT
+ nT log nT ).

O(nP + nT )



String Matching

• Fast and Compact Regular Expression Matching. Philip Bille and Martin 
Farach-Colton, 2005, submitted. 

• New Algorithms for Regular Expression Matching. Philip Bille, ICALP 2006. 

• Improved Approximate String Matching and Regular Expression Matching on 
Ziv-Lempel Compressed Texts. Philip Bille and, Rolf Fagerberg, and Inge Li 
Gørtz, CPM 2007.



Regular Expressions

• The regular expressions are defined recursively: 

• A character            is a regular expression.

• If    and     are regular expressions then so is 

• the concatenation      , 

• the union          , and 

• the kleene star    .

� � �

S T

ST

S�

S | T



Regular Expressions

• The language         of a regular expression      is defined by:

• For any            ,                   .

• For regular expressions    and   : 

L(R) R

L(�) = {�}� � �

L(ST ) = L(S)L(T )

L(S|T ) = L(S) � L(T )

L(S�) = {�} ⇥ L(S) ⇥ L(S)2 ⇥ L(S)3 ⇥ · · ·

S T



L(R) = {ac, b, ab, aab, aaab, aaaab, . . .}

Example

R = ac |a�b



Regular expression Matching

• Given a regular expression    and a string    the regular expression matching 
problem is to decide if                 .

• Example:                    matches                   .

Q � L(R)

R = ac |a�b Q = aaaab

R Q



Applications:

• Lexical analysis phase in compilers.

• Protein searching.

• Text editing and programming languages (e.g. EMACS and Perl).



[Tho68]

[NR04]

[Mye92, 
Here] 

[Here]

Time

�
⌅⇤

⌅⇥
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Space Ref

O(m)



Practical Implications

• Except for Thompson’s algorithm all previous algorithms use large tables and 
perform a long series of lookups in the tables.

• => Many expensive cache misses.

• New algorithm does not require the large tables. 



Algorithm Overview

• Construct non-deterministic finite automata (NFA) using Thompson’s classical 
algorithm.  

• Decompose the NFA into small subautomata.

• Simulate each subautomata using the arithmetic and logical instruction of the 
word RAM.

• Use the simulation of the each subautomata to simulate the entire NFA.



Thompson’s Algorithm

α
N(T )ε ε ε
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Thompson NFA
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• Thompson-NFA (TNFA) for                    .                      

•           accepts      if and only if there is path from     to     that “spells” out     .

•                  if and only if           accepts    . 

R = ac |a�b

N(R) Q � � Q

Q � L(R) N(R) Q



Properties of TNFAs

• Linear number of states and transitions.

• Incoming transitions to a state have the same label.

• States with an incoming transition labeled              (  -states) have exactly 1 
predecessor.

� � � �



Simulating TNFAs

• Let      be TNFA with      states. To test acceptance we use the following 
operations. For a state-set      and           :     

•                    : Find set of states reachable from    via a single    -transition.

•                : Find set of states reachable from     via a path of   -transitions.

•             time for both operations.

A m
S � � �

Move(S,�)

Close(S)

S �

�S

O(m)



Simulating TNFAs

• Let     be a string of length   .

• The state-set simulation of     on     produces state-sets                        as 
follows:

•     is the set of states reachable from    through a path that spells out           . 

•                 if and only if            .

•             time and          space.

Q n

A Q S0, S1, . . . , Sn

S0 := Close({�})

Si := Close(Move(Si�1, Q[i ]))

Si � Q[1..i ]

Q � L(R) � � Sn

O(nm) O(m)



Four-Russian Speedup

b
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A1 A3

a cε ε
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ε
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ε β

β

• Decompose TNFA into sub-automata with               states.

• Preprocess subautomata to get           and           in constant time for each. 
Subautomata are made “deterministic”.

•  =>                                        time and         space algorithm [Myers92, BFC05].

O(log n)

Move Close

O

�
nm

log n
+ n +m logm

⇥
O(n)



Word-Level Parallel Algorithm
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• Idea: Use essentially same decomposition into subautomata. 

• Simulate           and            using the arithmetic and logical instructions of the  
word RAM. 

Move Close



Simple Algorithm for small TNFAs

• Suppose     is a TNFA with                     states.

• Order the states such that the (unique) predecessor of    -state    is         .

• Represent state-sets as a bit string. 

A m = O(
�
w)

� i i � 1



0 0 1 0 1 0 0 0S =
1 2 3 4 5 6 7 8

Representation of State-Sets
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• For each            represent    -states using a bit string:

Move Operation: Preprocessing
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Move Operation: Simulation
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• We compute                    as Move(S,�)

S� := (S >> 1) &D�



• Compute                    where                                           : 
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• Compute                    where                                           : 
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• Encode   -paths compactly: 

Close Operation: Preprocessing
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Close Operation: Preprocessing

• 3 constant bit strings for doing word tricks:

I = (10m)m

X = 1(0m)m�1

C = 1(0m�1)m�1



Close Operation: Simulation

•                  is computed as:Close(S)

Y := (S �X) & E

Z := ((Y | I)� (I >> m)) & I
S� := ((Z ⇥ C) << w �m(m + 1)) >> w �m



• Compute                 where                                          . S =Close(S)
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Step 1: Y := (S �X) & E

0 0 0 0 0 0 0 0S S S S S S S S
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Y1 Y4 Y5 Y6 Y7 Y81 1 1 1 1 1 1 1Y2 Y3
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Z := ((Y | I)� (I >> m)) & I

Y | I =
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Step 3: 

•           produces a bit string containing the test bits of    as a consecutive 
substring. 

• Shifts clears remaining bits and aligns the substring. 

S� := ((Z ⇥ C) << w �m(m + 1)) >> w �m

Z � C Z



Complexity

• Lemma: For TNFAs with               states we can support            and          in 
constant time using            space and            preprocessing.

• =>  For string     and regular expression    of lengths     and                       
regular expression matching can be solved in                    time and           
space.

O(
�
w) Move Close

O(m) O(m2)

Q R n m = O(
�
w)

O(n +m2) O(m)



Another Algorithm

• Main bottleneck: Need an             length string to represent the transitive 
closure of   -transitions.

• Idea: Compute a “good” separator for TNFAs and use a Divide-and-Conquer 
strategy.

�(m2)
�



• There exists two states       and        whose removal partitions a TNFA into two 
subgraphs,      and       , of roughly equal size such that:

• Any path from      to       goes through      .

• Any path from      to       goes through      .

�PO �PI �PI �PO

PO

PI

PI PO

�PI �PI

Separator Property of TNFA

PIPO

POPI �PI

�PI



1.Determine which of       and        are   -reachable

2.Update the state-set accordingly.

3.Recurse in parallel on      and      .  

Recursive Closure Algorithm

�PI�PI �

PI PO



O(m)

Complexity

• Each of the                 levels of recursion can be handled in parallel in 
constant time.

• => Lemma: For TNFAs with                   states we can support          and          
in                time using           space and                    preprocessing.

• => For string     and regular expression    of lengths     and                  , resp., 
regular expression matching can be solved in time                                   and 
space          .                 

O(logm)

Move Close

O(logm) O(m)

m = O(w)
O(m logm)

Q nR m = O(w)
O(n logm +m logm)



Plug and Play

• Time:

• Space: 

�
⌅⇤

⌅⇥

O(nm logww +m logw) if m > w

O(n logm +m logm) if
⇥
w < m � w

O(min(n +m2, n logm +m logm)) if m �
⇥
w .

O(m)



Core Techniques

• Data Structures: Organize information efficiently.

• Nearest common ancestors, firstlabel, dictionaries, dynamic perfect 
hashing, predecessors. 

• Tree Techniques: Use combinatorial properties of trees.

• Heavy-path decomposition, varieties of tree clusterings with or without 
macro trees. 

• Word-Level Parallelism: Encode and simulate algorithms using arithmetic and 
logical instructions of the word RAM.

• Four Russian technique, word level-parallelism.



Future Research

• Bring state-of-the-art techniques to combinatorial pattern matching and 
related areas. Many important problems need them!

• Use developed algorithms to improve practical applications (e.g., 
bioinformatics, XML data bases). 

• Word parallel regular expression matching looks promising.



Thanks!


