-ast

—valuation of Union-Intersection

Philip Bille
Anna Pagh
Rasmus Pagh

IT University of Copenhagen

—X[Pressions

Data Structures for Intersection Queries

e Preprocess a collection of sets 51, ..., S5,, independently into a representation
that supports intersection queries of the form S; N S;,1 <1,9) < m.

e Application: Boolean AND-queries in search engines.
e For each word store the set of documents containing the word.

e To search for documents that contains words x and y compute the
iIntersection of the corresponding document sets.

e Generalizes to arbitrary expressions over set collection involving intersection,
union, and difference.

Previous Comparison-Based Results

e Query: 51N S
e Classical solution:
e Represent sets as sorted lists.
e Query by merging and reporting duplicates: O(|.S1| + |Sz2|) time.

e Special cases with faster solutions:
e When S1 < St O(]S1]log(1 + 1)) time [HL1972].

e \When S; NS> consists of few sublists from S; and S, [DLM2000, BK2002].
(adaptive algorithms).

e Generalizations to more complicated expressions involving intersections and
unions [CFM2005].

Previous Non-Comparison Based Results

* Fast solution when 51 < Sa:
e Build a hashing-based dictionary for each set.
e Lookup the elements of 51 in the dictionary for S2: O(S;) time.

e For very small universes:
* Represent sets as bitstrings.
e Compute intersections as a bitwise-AND.

Our Results

e Theorem: There is a non-comparison based linear space representation
supporting intersection queries S1 N S2 queries in expected time

1 2
O((!51|+|52\) og” w +OCC>

w

e Qutput-sensitive algorithm.
e For occ < (|S1] + |S2|)/w the algorithm runs in sublinear time.

e All previously known solutions use worst-case linear time even if the
Intersection is empty.

e \We show how to generalize the result to arbitrary union-intersection
expressions.

¢ \We give a communication complexity lower bound proving that the result is
near optimal.

Approximate Set Representation

h(S)

—

e Represent set S C {0,1}" as a set of hash function values h(S5).
e 1(S) is an approximate set representation:

o If z €5 then h(x) € h(S).

o if x &5 then h(z) € h(S) with probability close to 1.

Computing Intersections

1.Compute intersection of the approximate representations H = h(51) N h(S2).
e We do this in o(|S1|+|S2]) time.

2.Compute S ={z € S;|h(z) e H} and S5 ={x € Sy | h(z) € H}.

e With a hash table that allows us to lookup a value h(x)and retrieve all
elements with this value this takes O(|S7| + |S5]) time.

3.Compute and return S; N S5 .

e |dea: If the hash function is suitably chosen, the number of elements to be
checked in step 2 is small.

Choosing Hash Functions

e The number of bits used for the hash values should be:
e Small enough so that H = h(S1) N h(S2) can be computed quickly.

e | arge enough to get a significant reduction in the number remaining
elementsin S;={x € S;|h(z) e H}and S, ={x € Sy | h(z) € H} so
that 57 NS5 can be computed quickly.

e Optimal range of hash function depends on the size of input sets.

e \We store S at “multiple resolutions” using hash functions with different
ranges.

|, r — b bits
I —
e
| w bits
ob
>

* We store a set h,.(S) of r-bit hash values as a bucketed set for parameter b:

e Elements with the same b most significant bits are stored in the same
bucket.

e Elements in the same bucket are represented by their r — b least
significant bits as a sorted packed array.

e \We choose b to minimize total space.
e \We can store a sufficient set of resolutions of .S in total linear space.
or —b=0O(logw).

|, r — b bits
I —
e
| w bits
ob
>

* Intersection algorithm for bucketed sets:
e Convert buckets to have a common (suitable chosen) parameter b.
e Create a new array of size 2°.
* Repartition packed arrays among the new buckets.
e Modify number of bits in packed array representation.
e Compute intersection among each of the sorted packed arrays.

11727131 4[415[6]|7 18 [8[10]I1]12]12]13

keep duplicate values @
1 4 8 12

compact @

1 {48112

e Lemma: [AH1992, ATNR1995] All of the above operation can be computed in
time O(logw) per word in the packed arrays.

e Total time: O <(|Sl‘ + |52|) log w .logw)

w

Our Results

e Theorem: There is a non-comparison based linear space representation
supporting intersection queries S1 N S2 queries in expected time

1 2
O((!51|+|52\) og” w +OCC>

w

* |In the paper:
e Generalization to arbitrary union-intersection expressions
e | ower bound

e Open Problem:
e Can we extend this to set difference?

