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Data Structures for Intersection Queries

• Preprocess a collection of sets                   independently into a representation 
that supports intersection queries of the form             ,                    .

• Application: Boolean AND-queries in search engines.
• For each word store the set of documents containing the word.
• To search for documents that contains words x and y compute the 

intersection of the corresponding document sets. 

• Generalizes to arbitrary expressions over set collection involving intersection, 
union, and difference. 
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Previous Comparison-Based Results 

• Query: 
• Classical solution: 

• Represent sets as sorted lists.
• Query by merging and reporting  duplicates:                        time.

• Special cases with faster solutions:
• When              :                                 time [HL1972].
• When              consists of few sublists from     and      [DLM2000, BK2002]. 

(adaptive algorithms).

• Generalizations to more complicated expressions involving intersections and 
unions [CFM2005].

O(|S1| + |S2|)

S1 � S2

S1 � S2 O(|S1| log(1 + S1
S2

))
S1 � S2 S1 S2



Previous Non-Comparison Based Results 

• Fast solution when              :
• Build a hashing-based dictionary for each set.
• Lookup the elements of      in the dictionary for     :           time.      

• For very small universes:
• Represent sets as bitstrings.
• Compute intersections as a bitwise-AND.
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Our Results

• Theorem: There is a non-comparison based linear space representation 
supporting intersection queries              queries in expected time                                                

• Output-sensitive algorithm.
• For                                    the algorithm runs in sublinear time.
• All previously known solutions use worst-case linear time even if the 

intersection is empty.
• We show how to generalize the result to arbitrary union-intersection 

expressions.
• We give a communication complexity lower bound proving that the result is 

near optimal.
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• Represent set                     as a set of hash function values         . 
•         is an approximate set representation:

• If            then                    .
• if            then                     with probability close to 1.

Approximate Set Representation
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Computing Intersections

1.Compute intersection of the approximate representations                              .
• We do this in                        time.

2.Compute                                           and                                         .   
• With a hash table that allows us to lookup a value         and retrieve all 

elements with this value this takes                        time.

3.Compute and return             .

• Idea: If the hash function is suitably chosen, the number of elements to be 
checked in step 2 is small. 
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Choosing Hash Functions

• The number of bits used for the hash values should be: 
• Small enough so that                                can be computed quickly. 
• Large enough to get a significant reduction in the number remaining 

elements in                                          and                                           so 
that              can be computed quickly.  

• Optimal range of hash function depends on the size of input sets. 
• We store     at  “multiple resolutions” using hash functions with different 

ranges. 
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• We store a set            of   -bit hash values as a bucketed set for parameter   :
• Elements with the same    most significant bits are stored in the same 

bucket.
• Elements in the same bucket are represented by their          least 

significant bits as a sorted packed array.

• We choose    to minimize total space.
• We can store a sufficient set of resolutions of     in total linear space.
•                           .
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• Intersection algorithm for bucketed sets:
• Convert buckets to have a common (suitable chosen) parameter   . 

• Create a new array of size    .
• Repartition packed arrays among the new buckets.
• Modify number of bits in packed array representation.

• Compute intersection among each of the sorted packed arrays.
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• Lemma: [AH1992, ATNR1995]  All of the above operation can be computed in 
time               per word in the packed arrays.
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Our Results

• Theorem: There is a non-comparison based linear space representation 
supporting intersection queries              queries in expected time                                                

• In the paper: 
• Generalization to arbitrary union-intersection expressions
• Lower bound

• Open Problem:
• Can we extend this to set difference?
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