
Fast Evaluation of Union-Intersection Expressions

Philip Bille
Anna Pagh
Rasmus Pagh

IT University of Copenhagen

Data Structures for Intersection Queries

• Preprocess a collection of sets independently into a representation
that supports intersection queries of the form , .

• Application: Boolean AND-queries in search engines.
• For each word store the set of documents containing the word.
• To search for documents that contains words x and y compute the

intersection of the corresponding document sets.

• Generalizes to arbitrary expressions over set collection involving intersection,
union, and difference.

S1, . . . , Sm

Si � Sj 1 � i, j � m

Previous Comparison-Based Results

• Query:
• Classical solution:

• Represent sets as sorted lists.
• Query by merging and reporting duplicates: time.

• Special cases with faster solutions:
• When : time [HL1972].
• When consists of few sublists from and [DLM2000, BK2002].

(adaptive algorithms).

• Generalizations to more complicated expressions involving intersections and
unions [CFM2005].

O(|S1| + |S2|)

S1 � S2

S1 � S2 O(|S1| log(1 + S1
S2

))
S1 � S2 S1 S2

Previous Non-Comparison Based Results

• Fast solution when :
• Build a hashing-based dictionary for each set.
• Lookup the elements of in the dictionary for : time.

• For very small universes:
• Represent sets as bitstrings.
• Compute intersections as a bitwise-AND.

S1 � S2

S1 S2 O(S1)

Our Results

• Theorem: There is a non-comparison based linear space representation
supporting intersection queries queries in expected time

• Output-sensitive algorithm.
• For the algorithm runs in sublinear time.
• All previously known solutions use worst-case linear time even if the

intersection is empty.
• We show how to generalize the result to arbitrary union-intersection

expressions.
• We give a communication complexity lower bound proving that the result is

near optimal.

S1 � S2

O

�
(|S1| + |S2|) log2 w

w
+ occ

⇥

occ < (|S1| + |S2|)/w

• Represent set as a set of hash function values .
• is an approximate set representation:

• If then .
• if then with probability close to 1.

Approximate Set Representation

S � {0, 1}w h(S)

x1 h(x1)
x2

x3

h(x3)

h(x2)

S
h(S)

h(S)
x � S

x ⇥� S h(x) ⇥� h(S)

h(x) � h(S)

Computing Intersections

1.Compute intersection of the approximate representations .
• We do this in time.

2.Compute and .
• With a hash table that allows us to lookup a value and retrieve all

elements with this value this takes time.

3.Compute and return .

• Idea: If the hash function is suitably chosen, the number of elements to be
checked in step 2 is small.

H = h(S1) � h(S2)

o(|S1| + |S2|)

S�
1 = {x � S1 | h(x) � H} S�

2 = {x � S2 | h(x) � H}

O(|S�
1| + |S�

2|)
h(x)

S�
1 � S�

2

Choosing Hash Functions

• The number of bits used for the hash values should be:
• Small enough so that can be computed quickly.
• Large enough to get a significant reduction in the number remaining

elements in and so
that can be computed quickly.

• Optimal range of hash function depends on the size of input sets.
• We store at “multiple resolutions” using hash functions with different

ranges.

H = h(S1) � h(S2)

S�
1 = {x � S1 | h(x) � H} S�

2 = {x � S2 | h(x) � H}
S�

1 � S�
2

S

• We store a set of -bit hash values as a bucketed set for parameter :
• Elements with the same most significant bits are stored in the same

bucket.
• Elements in the same bucket are represented by their least

significant bits as a sorted packed array.

• We choose to minimize total space.
• We can store a sufficient set of resolutions of in total linear space.
• .

2b ...

w bits

r � b bits

. . .

rhr(S) b

b

r � b

r � b = O(log w)

S

b

• Intersection algorithm for bucketed sets:
• Convert buckets to have a common (suitable chosen) parameter .

• Create a new array of size .
• Repartition packed arrays among the new buckets.
• Modify number of bits in packed array representation.

• Compute intersection among each of the sorted packed arrays.

2b ...

w bits

r � b bits

. . .

b

2b

• Lemma: [AH1992, ATNR1995] All of the above operation can be computed in
time per word in the packed arrays.

• Total time: O
�

(|S1| + |S2|) log w

w
· log w

⇥

O(log w)

1 2 4 5 7 8 10 12 3 6 11 131 4 8 12

1 2 4 5 7 8 10 123 6 11 131 4 8 12

1 4 8 12

1 4 8 12

merge

keep duplicate values

compact

Our Results

• Theorem: There is a non-comparison based linear space representation
supporting intersection queries queries in expected time

• In the paper:
• Generalization to arbitrary union-intersection expressions
• Lower bound

• Open Problem:
• Can we extend this to set difference?

S1 � S2

O

�
(|S1| + |S2|) log2 w

w
+ occ

⇥

