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Basic setup

Trees are labeled, rooted, and ordered.

Rooted: A specific node is designated as the
root of the tree.

Labeled: Each node is assigned a /zbe/ from
some alphabet 2.

Ordered: There is a left-to-right order among
siblings.

We compare trees by deleting nodes.
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Tree Inclusion

P is included in T if P can be obtained from T’
by deleting nodes in T.

P is minimally included in T if P is not included
in any subtree of T.

The tree inclusion problem. is to decide if P is
included in T, and if so, compute all subtrees
of T which minimally includes P.
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XML example

book book -xrrrreee-nen book
book // \
/ \ author apter hapter
author chapter
[ name title section title
John XML
John Databases XML Queries

Query: “Find all books written by John with a chapter
that has something to do with XMI”.
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name title section title

@ Databases Queries

Query: “Find all books written by John with a chapter
that has.something to do with XM

John XML




Practical implications

Space reduction from quadratic to linear:

Possible to query significantly larger XML
databases.

Faster query time since more computation
can be kept in main memory.



Embeddings

An injective function from the nodes of P to T is

an embedding it:

label(v) = label(f(v)),

v is ancestor of w iff f(v) is an ancestor of f(w),

v is to the left of w iff f(v) is to the left of f(w).

P is included in T iff there is an embedding from
Ptol
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Complexity

At each step of the algorithm the active set
“moves up”.

Each parent pointer in T is traversed a
constant number of times.

Using a simple data structure and exploiting
the ordering of the nodes we get a total
running time of O(nr).
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Complexity

Let A denote the set of all /eaf-to-root. paths in
P.

Running time is by bounded by the time used
to solve the tree inclusion problem on each
path in A. In total:

Z O nT lpnT)

Space is O(np + nr).



Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,)) denote the nearest ancestor
of the node v in T with label /

At each step we “essentially” compute
firstlabel(v, ]) for each v in the active set.



Alternative algorithm

Idea: Use a fast data structure supporting
furstlabel queries. Known as the tree color

problem.

Lemma {Dietz89] For any tree T there is a
data structure using O(nr)space, O(nt)
expected preprocessing time which supports
firstlabel(v,) in O(loglog nr)time.



Complexity

For each node in P there is an active set and
for each node in this active set we have to
compute a firstlabel query.

Size of active set is at most [7. Total time:
O(nplT log log TLT)

Space is still O(np + nr).



Improving the worst-case

Divide T into O (nT/ log nT) micro trees of
size O(log n7) which overlap in at most 2
nodes using a clustering technique from

[AHT971.

Each micro tree is represented by a constant
number of nodes in a macro tree and
connected according to the overlap in the
micro trees.

‘Use a “Four Russian trick” to handle subsets
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Preprocessing micro trees.

Consider firstlabel(M,V, [), where Vis a subset

of nodes in a micro tree M.

For all possible. M and V precompute the
following:

ancestor(M, V): All ancestors of V in M.

deep(M, V): Subset of V obtained by

removing nodes that are ancestors of
._another node in V.



Preprocessing micro trees.

Number of different micro trees M of size x is
less than 2%% . (Ignoring labels)

Number of different subsets V is less than 2% .
Choosing appropiate £ = ©(logny) we can

compute and tabulate ancestor and deep tor all
inputs for in linear time and space.



Preprocessing micro trees.

For each micro tree M (not all possible) store
a dictionary (indexed by labels) containing:

mask(l): The set of nodes in M with label 1.

With perfect hashing this gives total linear
space, linear expected preprocessing time, and
constant lookup time.
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Firstlabel not in M?




(General idea:

Compute firstlabel on each micro trees.

This gives a firstlabel query on the macro tree
which is solved in linear time (in the number
of nodes of the macro tree).



Complexity

Time for firstlabel becomes O(nr/ log nr).

Same bound for all other needed
manipulation of node sets.

npnT)

Total time becomes O(l .
OgNr

Space is still O(np + nr).



Conclusion

Theorem 1 For tree P and T the tree inclusion

problem can be solved in time
npnrt

)

O(min(lpny,nply loglog nr,
log np

and space O(np + nr).



