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Basic setup
Trees are labeled, rooted, and ordered.

Rooted: A specific node is designated as the 
root of the tree.

Labeled: Each node is assigned a label from 
some alphabet    . 

Ordered: There is a left-to-right order among 
siblings.

We compare trees by deleting nodes. 
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Tree Inclusion

P is included in T if P can be obtained from T 
by deleting nodes in T. 

P is minima!y included in T if P is not included 
in any subtree of T.

The tree inclusion problem is to decide if P is 
included in T, and if so, compute all subtrees 
of T which minimally includes P.
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Practical implications

Space reduction from quadratic to linear:

Possible to query significantly larger XML 
databases.

Faster query time since more computation 
can be kept in main memory.



Embeddings

label(v) = label(f(v)),

v is ancestor of w iff f(v) is an ancestor of f(w),

v is to the left of w iff f(v) is to the left of f(w).

An injective function from the nodes of P to T is
an embedding if:

P is included in T iff there is an embedding from 
P to T.
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Complexity

At each step of the algorithm the active set 
“moves up”. 

Each parent pointer in T is traversed a 
constant number of times.

Using a simple data structure and exploiting 
the ordering of the nodes we get a total 
running time of           .  O(nT )
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Complexity

Let ∆ denote the set of all leaf-to-root paths in 
P.

Running time is by bounded by the time used  
to solve the tree inclusion problem on each 
path in ∆. In total: 

Space is                       .O(nP + nT )

∑

δ∈∆

O(nT ) = O(lP nT )



Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,l) denote the nearest ancestor 
of the node v in T with label l. 

At each step we “essentially” compute 
firstlabel(v, l) for each v in the active set.



Idea: Use a fast data structure supporting 
firstlabel queries. Known as the tree color 
problem.

Lemma [Dietz89] For any tree T there is a 
data structure using            space,           
expected preprocessing time which supports 
firstlabel(v,l) in                       time. 

Alternative algorithm

O(nT ) O(nT )

O(log log nT )



For each node in P there is an active set and 
for each node in this active set we have to 
compute a firstlabel query.

Size of active set is at most     . Total time:  

Space is still                       .

Complexity

O(nP lT log log nT )

O(nP + nT )

lT



Improving the worst-case
Divide T into                             micro trees of 
size                    which overlap in at most 2 
nodes using a clustering technique from 
[AHT97]. 

Each micro tree is represented by a constant 
number of nodes in a macro tree and 
connected according to the overlap in the 
micro trees.

Use a “Four Russian trick” to handle subsets 

O(nT / log nT )
O(log nT )



Clustering



Preprocessing micro trees.
Consider firstlabel(M,V, l), where V is a subset 
of nodes in a micro tree M.  

For a! possible M and V precompute the 
following: 

ancestor(M, V): All ancestors of V in M.  

deep(M, V): Subset of V obtained by 
removing nodes that are ancestors of 
another node in V. 



Preprocessing micro trees.

Number of different micro trees M of size x is 
less than       . (Ignoring labels)

Number of different subsets V is less than      . 

Choosing appropiate                              we can 
compute and tabulate ancestor and deep for all 
inputs for in linear time and space. 

2
2x

2
x

x = Θ(log nT )



Preprocessing micro trees.

For each micro tree M (not all possible) store 
a dictionary (indexed by labels) containing: 

mask(l): The set of nodes in M with label l.

With perfect hashing this gives total linear 
space, linear expected preprocessing time, and  
constant lookup time.
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General idea:

 Compute firstlabel on each micro trees. 

This gives a firstlabel query on the macro tree 
which is solved in linear time (in the number 
of nodes of the macro tree).



Complexity

Time for firstlabel becomes                            . 

Same bound for all other needed 
manipulation of node sets. 

Total time becomes                     .  

Space is still                       . 

O(
nP nT

log nT

)

O(nP + nT )

O(nT / log nT )



Conclusion

Theorem 1 For tree P and T the tree inclusion 
problem can be solved in time

and space                        . 

O(min(lP nT , nP lT log log nT ,
nP nT

log nT

))

O(nP + nT )


