The Tree Inclusion Problem:
In Optimal Space and Faster

Philip Bille
Inge Li Gortg,

Basic setup

Trees are labeled, rooted, and ordered.

Rooted: A specific node is designated as the
root of the tree.

Labeled: Each node is assigned a /zbe/ from
some alphabet 2.

Ordered: There is a left-to-right order among
siblings.

We compare trees by deleting nodes.

Delete a node

Delete a node

Delete a node

Delete a node

Tree Inclusion

P is included in T if P can be obtained from T’
by deleting nodes in T.

P is minimally included in T if P is not included
in any subtree of T.

The tree inclusion problem. is to decide if P is
included in T, and if so, compute all subtrees
of T which minimally includes P.

@ @ @ ¢

0O @b bbb @

Example

®
® ®)
@ D @ ®

TO0® @ 60 ® B

Results

Time Space Reference
O(npnr) O(npnr) ;;KM92
O(lpnr) O(lp min(dy,lr)) LCNe98
O(lpnr)

O(nplrloglognr) O(np+ng) |This
o npnr) paper

1’()g nr

XML example

book book -xrrrreee-nen book
book // \
/ \ author apter hapter
author chapter
[name title section title
John XML
John Databases XML Queries

Query: “Find all books written by John with a chapter
that has something to do with XMI”.

XML example

book

[-

author charer

author chapter

name title section title

@ Databases Queries

Query: “Find all books written by John with a chapter
that has.something to do with XM

John XML

Practical implications

Space reduction from quadratic to linear:

Possible to query significantly larger XML
databases.

Faster query time since more computation
can be kept in main memory.

Embeddings

An injective function from the nodes of P to T is

an embedding it:

label(v) = label(f(v)),

v is ancestor of w iff f(v) is an ancestor of f(w),

v is to the left of w iff f(v) is to the left of f(w).

P is included in T iff there is an embedding from
Ptol

A simple case: P is a path

P T

A simple case: P is a path

P T

A simple case: P is a path

P T
(b)

>i T (&) @G

©[0)©) @@@‘@@@

A simple case: P is a path

P T
(b)

>i T (&) @G

©[0)©) @@@‘@@@

O =Active set

A simple case: P is a path

P T
(b)

ilj> i T (&) ‘DG

©[0)©) @@@)‘@@@

O =Active set

A simple case: P is a path

P T

i ®
\ .
- SO ODEOD®
O =Active set O =Root of min. subtree including :>

A simple case: P is a path

P 7%

>i T (&) @G

GO® @0® ®0© ©® (B®

O =Active set O =Root of min. subtree including

A simple case: P is a path

P T

L
;’> @) (c,
SO @6 ®© B B

O =Active set O =Root of min. subtree including :{>

A simple case: P is a path

P T
(b)

()

ﬁi ‘@ C

SO @6 ®© B B

O =Active set O =Root of min. subtree including :{>

A simple case: P is a path

P T
(b)

()

ﬂi P @ @

SO @6 ®© B B

O =Active set O =Root of min. subtree including :{>

A simple case: P is a path

P T
(b)

()

3! 2 &

SO @6 ®© B B

O =Active set O =Root of min. subtree including :{>

@)

A simple case: P is a path

P T

@)

ﬁi @ @
SO @6 ®© B B

O =Active set O =Root of min. subtree including :{>

A simple case: P is a path

P 7%

>i T (&) @G

GO® @0® ®0© ©® (B®

O =Active set O =Root of min. subtree including

A simple case: P is a path

P 7%

i ®
> ey

GO® @0® ®0© ©® (B®

O =Active set O =Root of min. subtree including

A simple case: P is a path

P 7%

>i T (&) @G

GO® @0® ®0© ©® (B®

O =Active set O =Root of min. subtree including

A simple case: P is a path

P 7%

)
C
(&) (C)

GO® @0® ®0© ©® (B®

O =Active set O =Root of min. subtree including

A simple case: P is a path

P T

)
C
(&) (C)

SO @6 ®© B B

O =Active set <> =Root of min. subtree including L _

A simple case: P is a path

P T
(b)

i O
C @ L

SO @6 ®© B B
O =Active set <> =Root of min. subtree including

A simple case: P is a path

P

i ()
C @ L

SO @6 ®© B B
O =Active set <> =Root of min. subtree including

~

A simple case: P is a path

P T
(b)

i ©
C @ L

SO @6 ®© B B
O =Active set <> =Root of min. subtree including

A simple case: P is a path

P T

)
C
(&) (C)

SO @6 ®© B B

O =Active set <> =Root of min. subtree including L _

A simple case: P is a path

P T

O)
()
@) (C,

SO @6 ®© B B
O =Active set <> =Root of min. subtree including

A simple case: P is a path

P T

)
C
(&) (C)

SO @6 ®© B B

O =Active set <> =Root of min. subtree including L _

A simple case: P is a path

P

)
C
(&) (C)

SO @6 ®© B B
O =Active set <> =Root of min. subtree including

A simple case: P is a path

P T

)
C
(&) (C)

SO @6 ®© B B

O =Active set <> =Root of min. subtree including L _

Complexity

At each step of the algorithm the active set
“moves up”.

Each parent pointer in T is traversed a
constant number of times.

Using a simple data structure and exploiting
the ordering of the nodes we get a total
running time of O(nr).

When P is not a path:

P T

When P is not a path:

When P is not a path:

When P is not a path:

When P is not a path:

When P is not a path:

P T
(b)
=5 ®
(©)
b @ @) (C)
o

When P is not a path:

P T
(b)
:{> ®)
(O
b @ @) (C)
2

When P is not a path:

2 T
(b)
:{> ®)
(O
b @ 6 (C)
Vi

. 0@ @0O0® ®

When P is not a path:

P 47
(b)
:{> ®)
C
b @ (@ C)
o

. 0@ @0O0® ®

Wh |
en P is not a path

B -

=5
®

G O
@)

When P is not a path:

P 47
(b)
:{> ®)
C
b @ (@ C)
o

. 0@ @0O0® ®

Complexity

Let A denote the set of all /eaf-to-root. paths in
P.

Running time is by bounded by the time used
to solve the tree inclusion problem on each
path in A. In total:

Z O nT lpnT)

Space is O(np + nr).

Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,)) denote the nearest ancestor
of the node v in T with label /

At each step we “essentially” compute
firstlabel(v,]) for each v in the active set.

Alternative algorithm

Idea: Use a fast data structure supporting
furstlabel queries. Known as the tree color

problem.

Lemma {Dietz89] For any tree T there is a
data structure using O(nr)space, O(nt)
expected preprocessing time which supports
firstlabel(v,) in O(loglog nr)time.

Complexity

For each node in P there is an active set and
for each node in this active set we have to
compute a firstlabel query.

Size of active set is at most [7. Total time:
O(nplT log log TLT)

Space is still O(np + nr).

Improving the worst-case

Divide T into O (nT/ log nT) micro trees of
size O(log n7) which overlap in at most 2
nodes using a clustering technique from

[AHT971.

Each micro tree is represented by a constant
number of nodes in a macro tree and
connected according to the overlap in the
micro trees.

‘Use a “Four Russian trick” to handle subsets

Clustering

Preprocessing micro trees.

Consider firstlabel(M,V, [), where Vis a subset

of nodes in a micro tree M.

For all possible. M and V precompute the
following:

ancestor(M, V): All ancestors of V in M.

deep(M, V): Subset of V obtained by

removing nodes that are ancestors of
._another node in V.

Preprocessing micro trees.

Number of different micro trees M of size x is
less than 2%% . (Ignoring labels)

Number of different subsets V is less than 2% .
Choosing appropiate £ = ©(logny) we can

compute and tabulate ancestor and deep tor all
inputs for in linear time and space.

Preprocessing micro trees.

For each micro tree M (not all possible) store
a dictionary (indexed by labels) containing:

mask(l): The set of nodes in M with label 1.

With perfect hashing this gives total linear
space, linear expected preprocessing time, and
constant lookup time.

firstlabel(M,V.b)

firstlabel(M,V.b)

firstlabel(M,V.b)

firstlabel(M,V.b)

firstlabel(M,V.b)

Firstlabel not in M?

(General idea:

Compute firstlabel on each micro trees.

This gives a firstlabel query on the macro tree
which is solved in linear time (in the number
of nodes of the macro tree).

Complexity

Time for firstlabel becomes O(nr/ log nr).

Same bound for all other needed
manipulation of node sets.

npnT)

Total time becomes O(l .
OgNr

Space is still O(np + nr).

Conclusion

Theorem 1 For tree P and T the tree inclusion

problem can be solved in time
npnrt

)

O(min(lpny,nply loglog nr,
log np

and space O(np + nr).

