The Tree Inclusion Problem: In Optimal Space and Faster

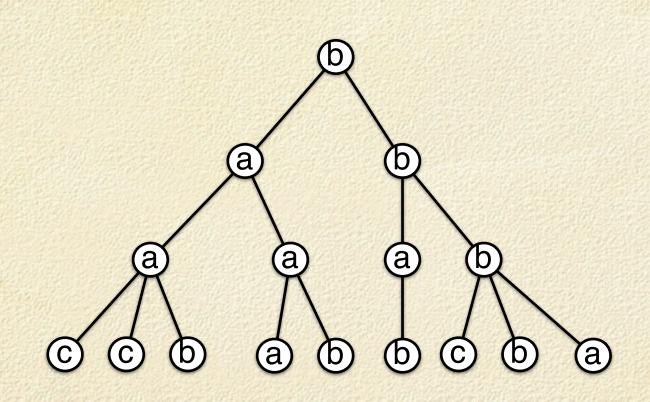
Philip Bille Inge Li Gørtz

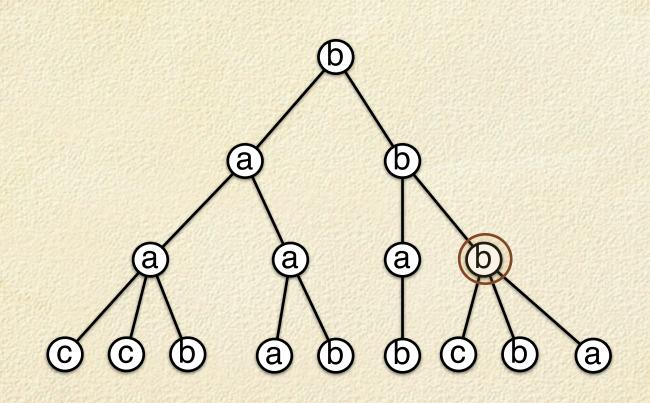
Basic setup

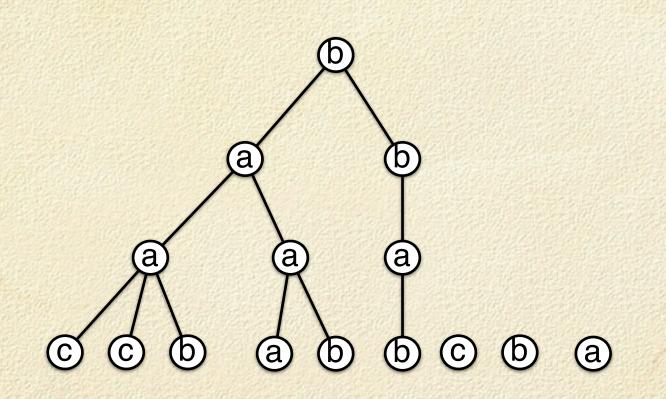
Trees are labeled, rooted, and ordered.

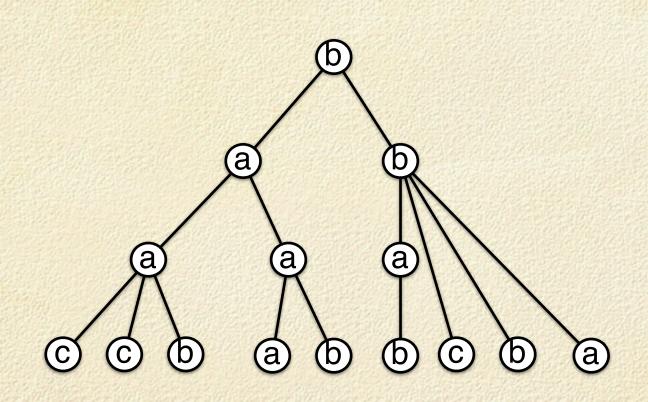
- Rooted: A specific node is designated as the root of the tree.
- □ **Labeled**: Each node is assigned a *label* from some alphabet Σ .
- Ordered: There is a left-to-right order among siblings.

We compare trees by deleting nodes.



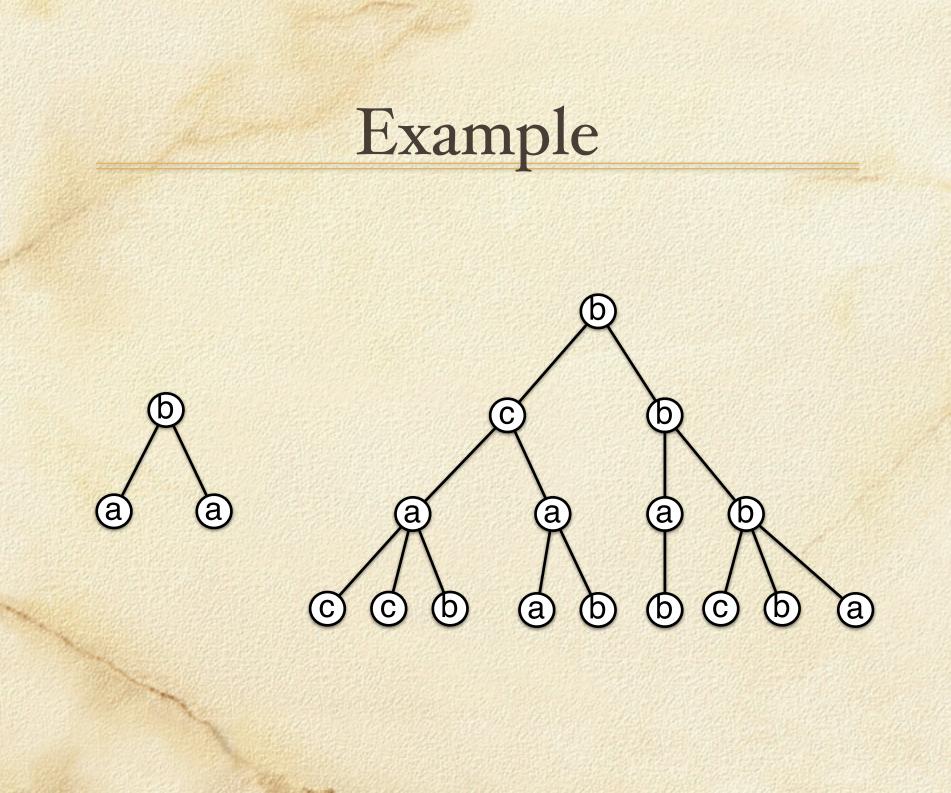


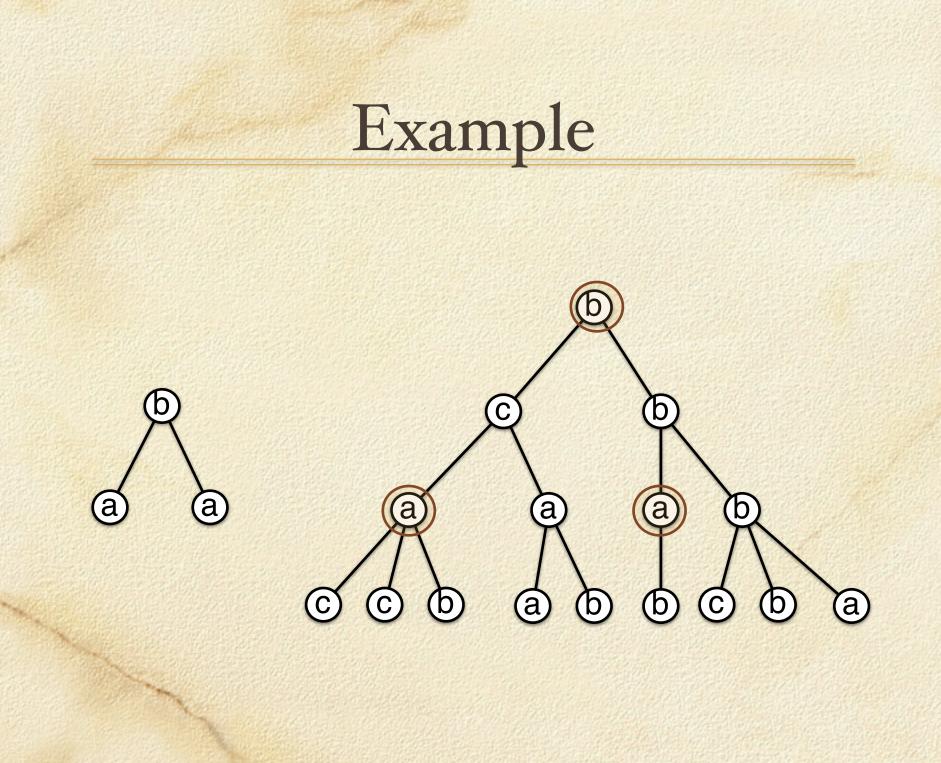


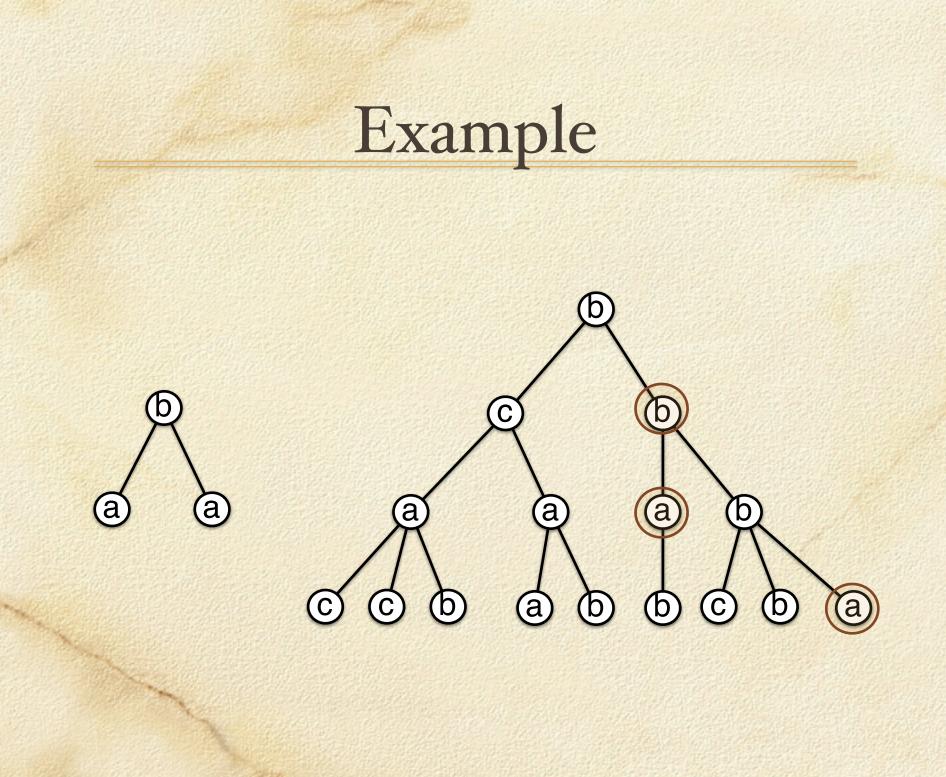


Tree Inclusion

- P is *included* in T if P can be obtained from T by deleting nodes in T.
- P is *minimally included* in T if P is not included in any subtree of T.
- The tree inclusion problem. is to decide if P is included in T, and if so, compute all subtrees of T which minimally includes P.

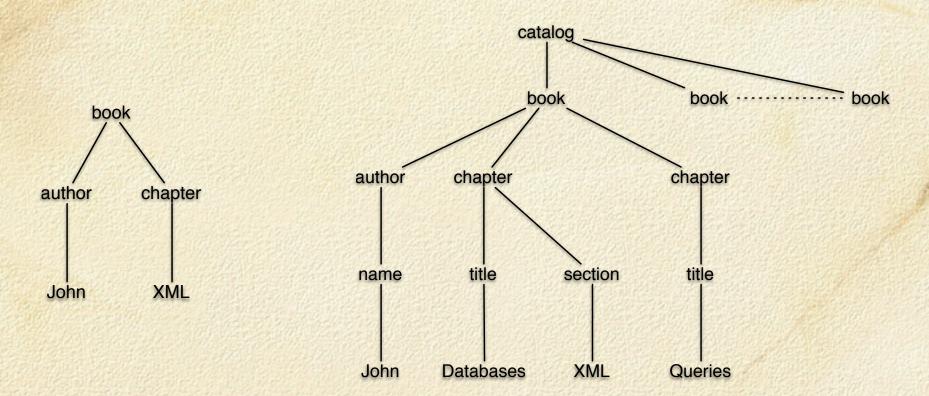






Results		
Time	Space	Reference
$O(n_P n_T)$	$O(n_P n_T)$	[KM92]
$O(l_P n_T)$	$O(l_P \min(d_T, l_T))$	[Che98]
$O(l_P n_T)$ $O(n_P l_T \log \log n_T)$ $O(\frac{n_P n_T}{O(\frac{n_P n_T}{\log n_T})}$	$O(n_P + n_T)$	This paper

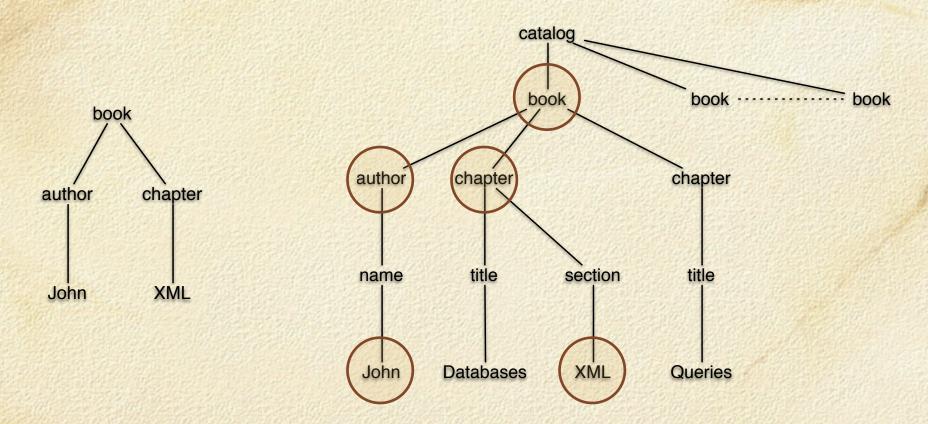
XML example



Query: "Find all books written by John with a chapter that has something to do with XML".

2 . A State of the

XML example



Query: "Find all books written by John with a chapter that has something to do with XML".

Contraction of the

Practical implications

Space reduction from quadratic to linear:
Possible to query significantly larger XML databases.

Faster query time since more computation can be kept in main memory.

Embeddings

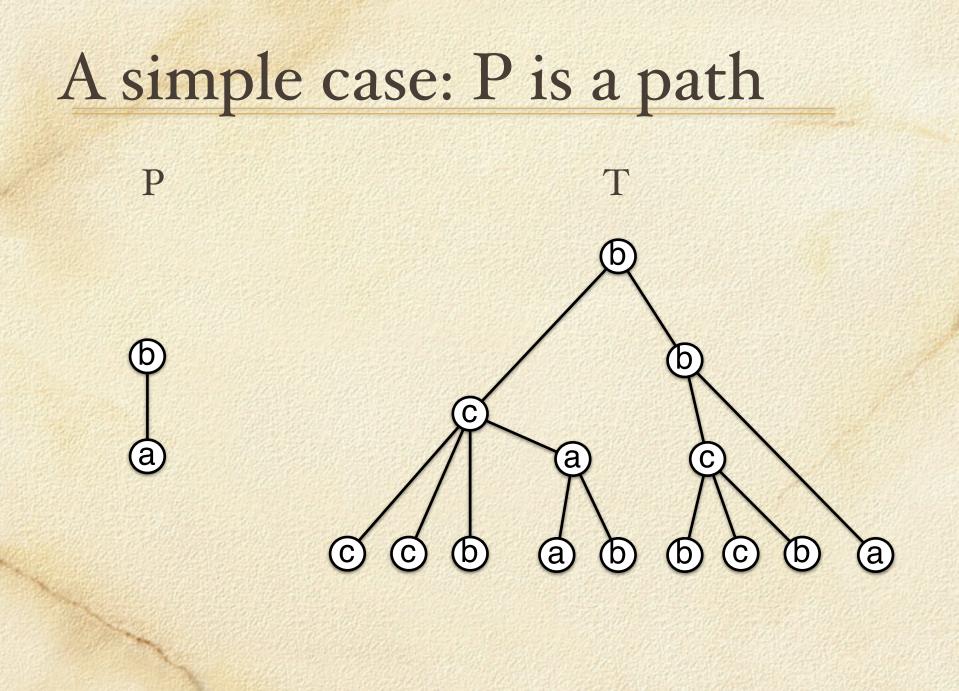
An injective function from the nodes of P to T is an *embedding* if:

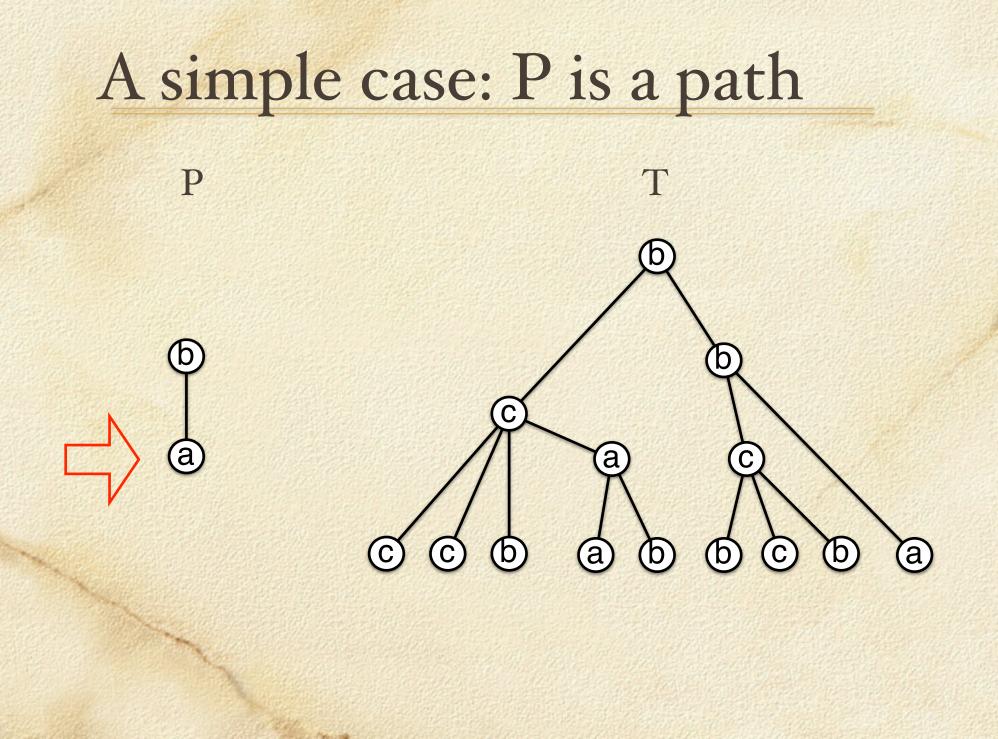
 \square label(v) = label(f(v)),

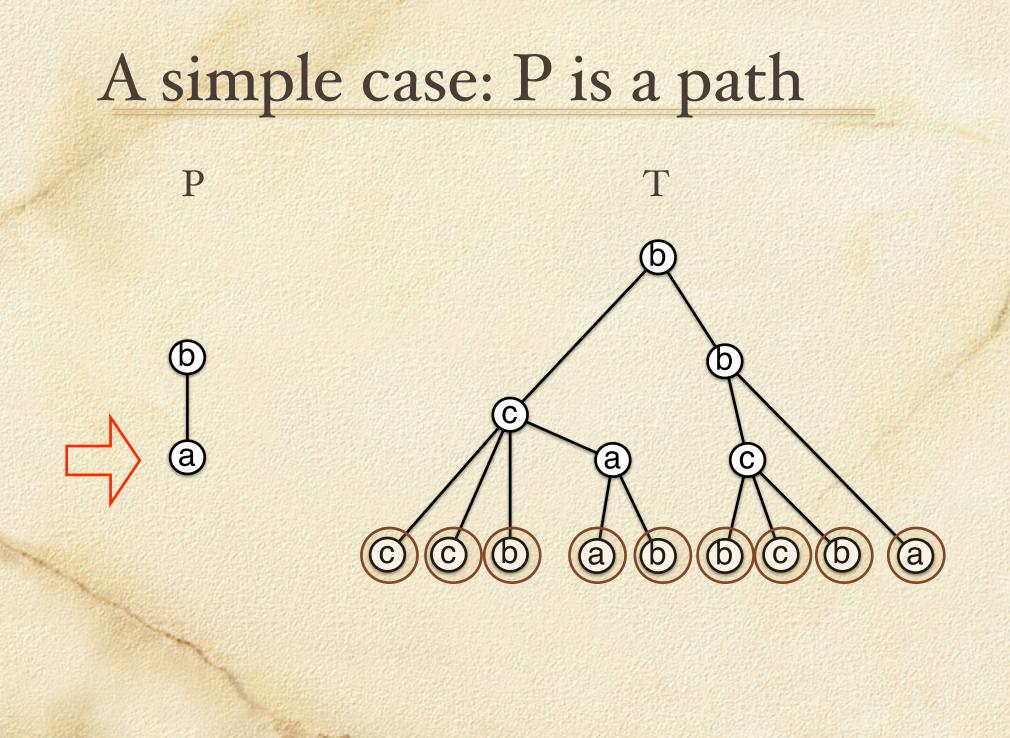
 \Box v is ancestor of w iff f(v) is an ancestor of f(w),

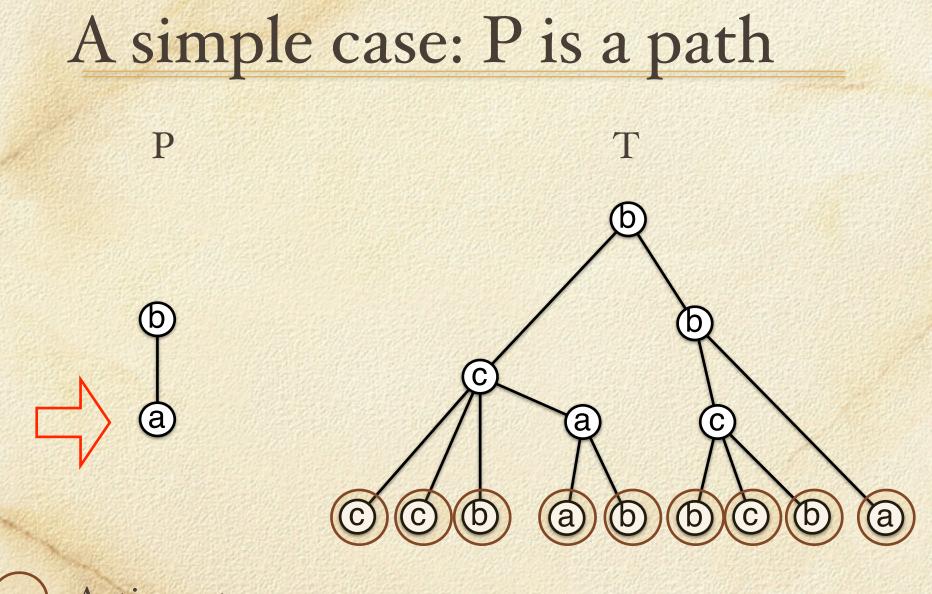
 \Box v is to the left of w iff f(v) is to the left of f(w).

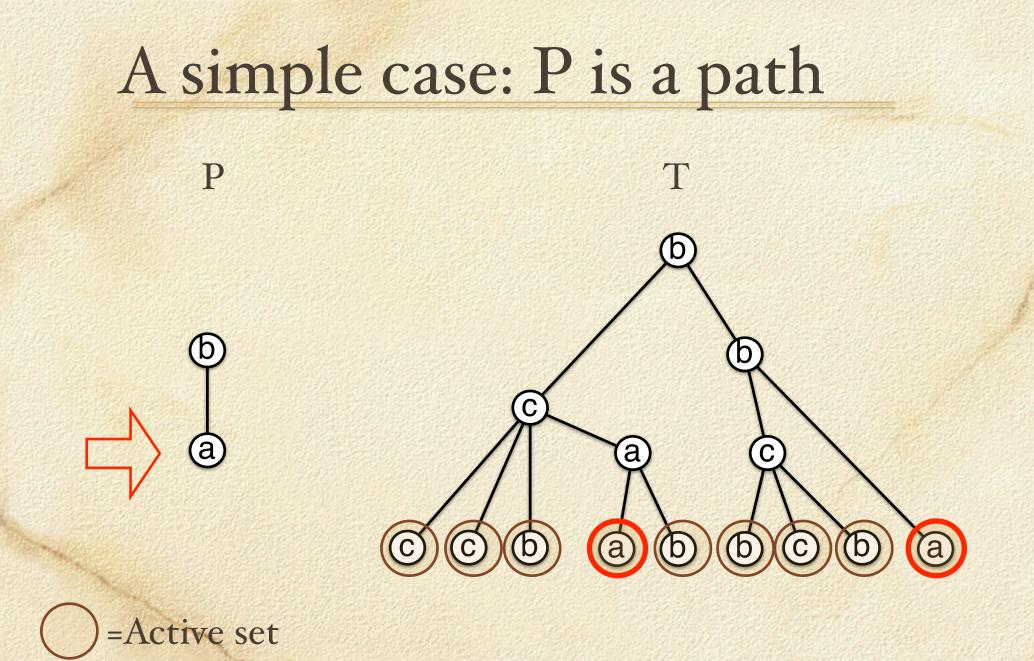
P is included in T iff there is an embedding from P to T.

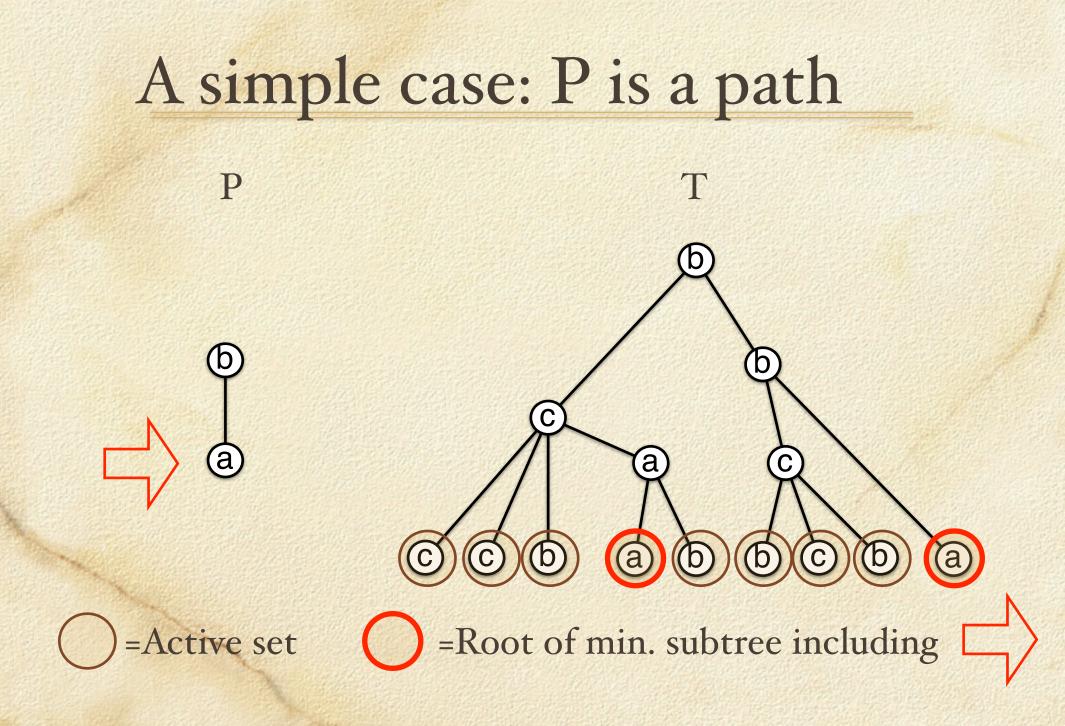


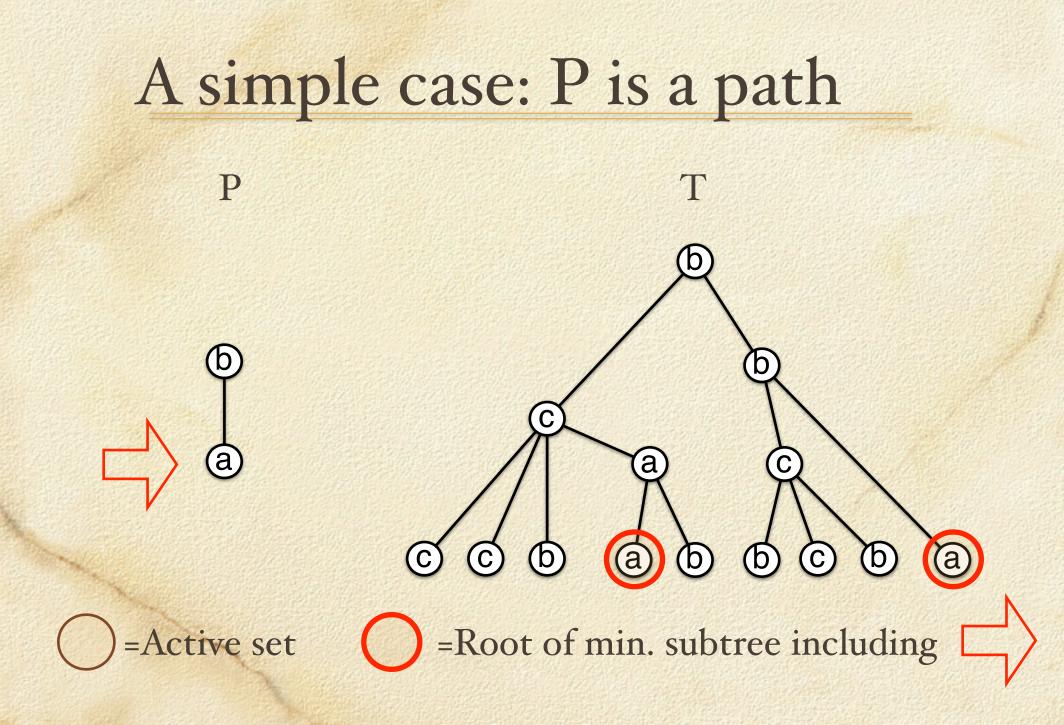


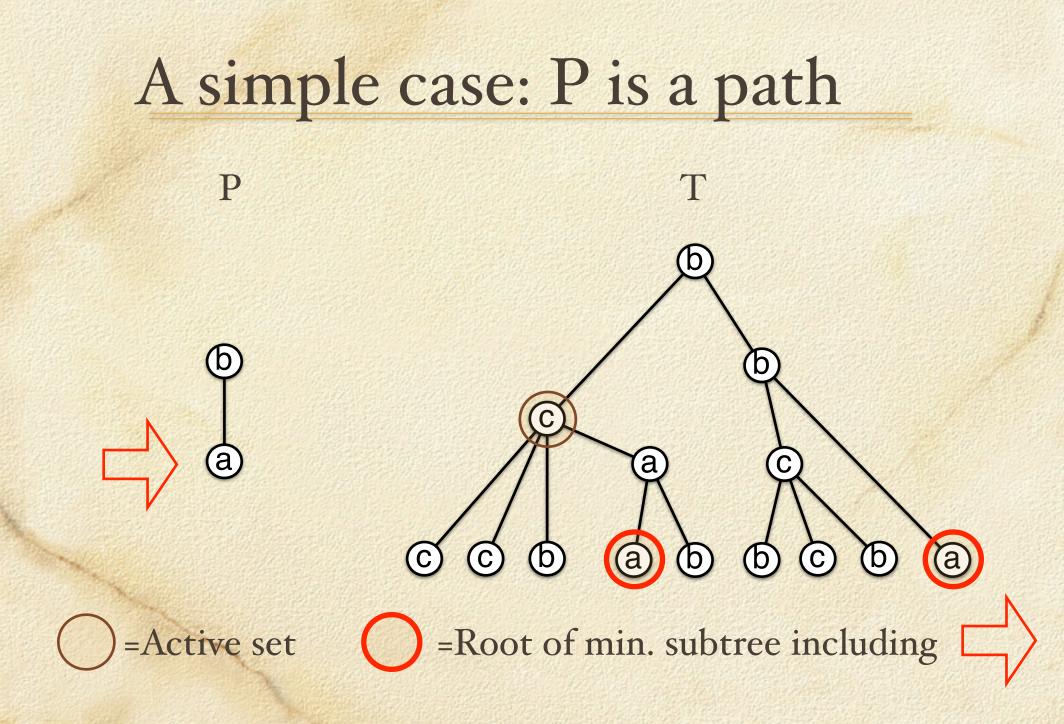


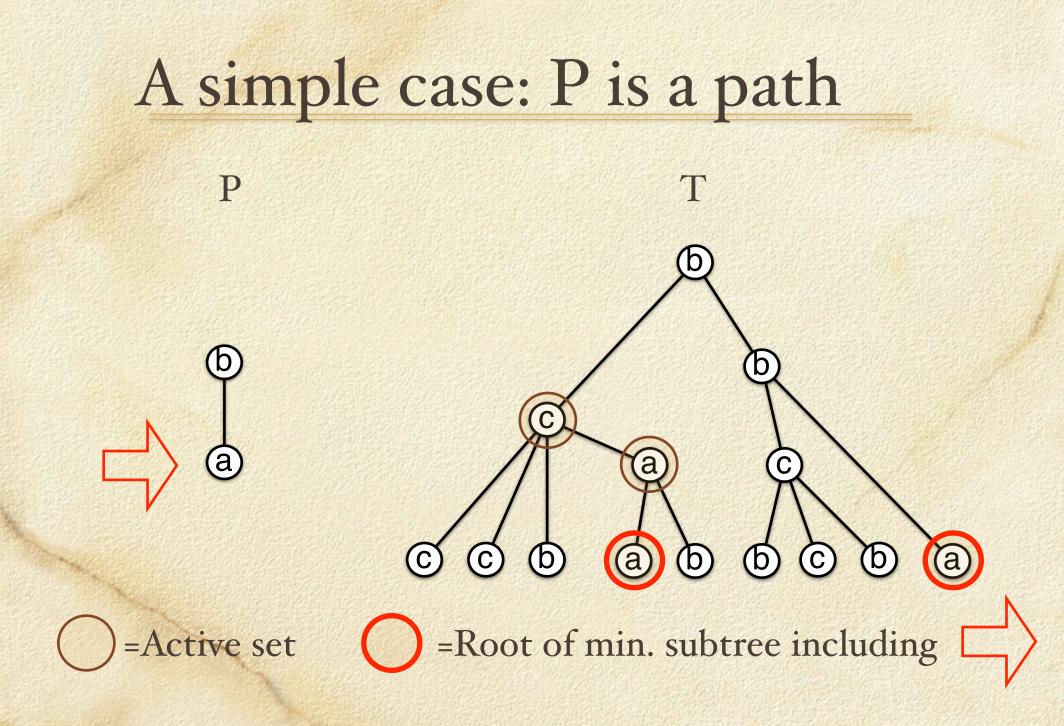


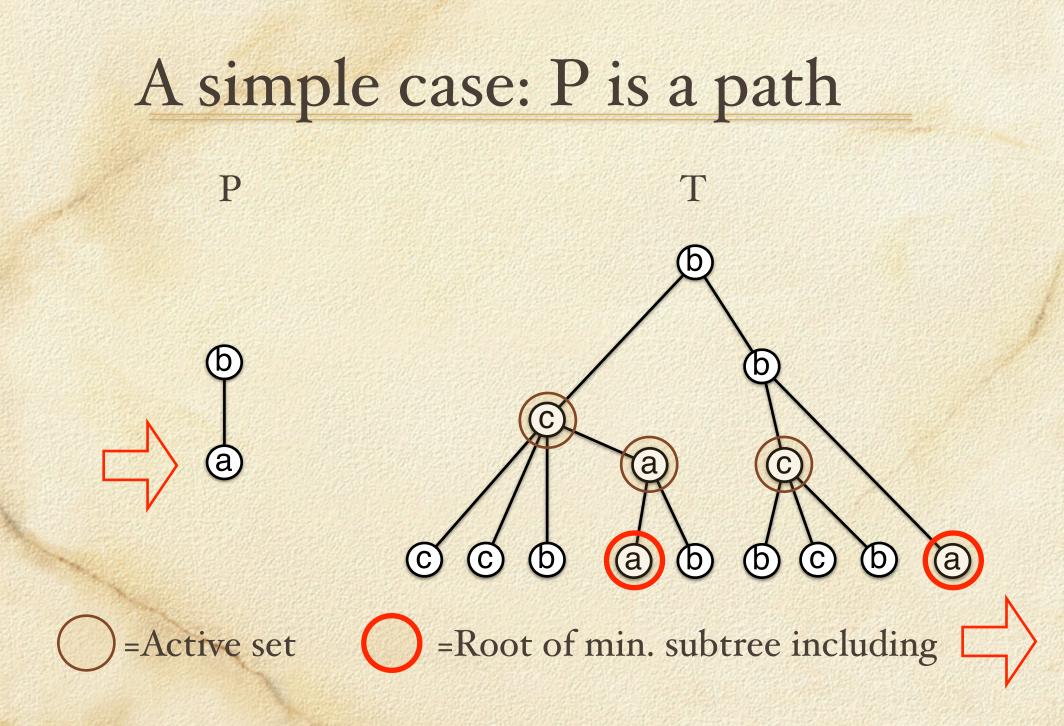


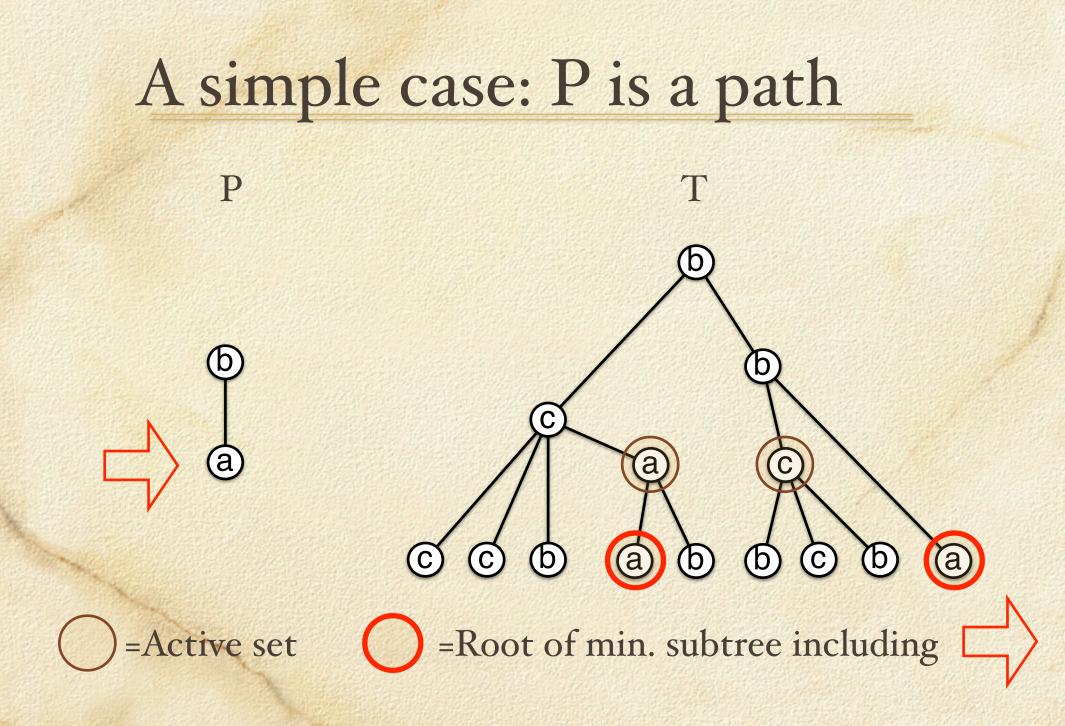


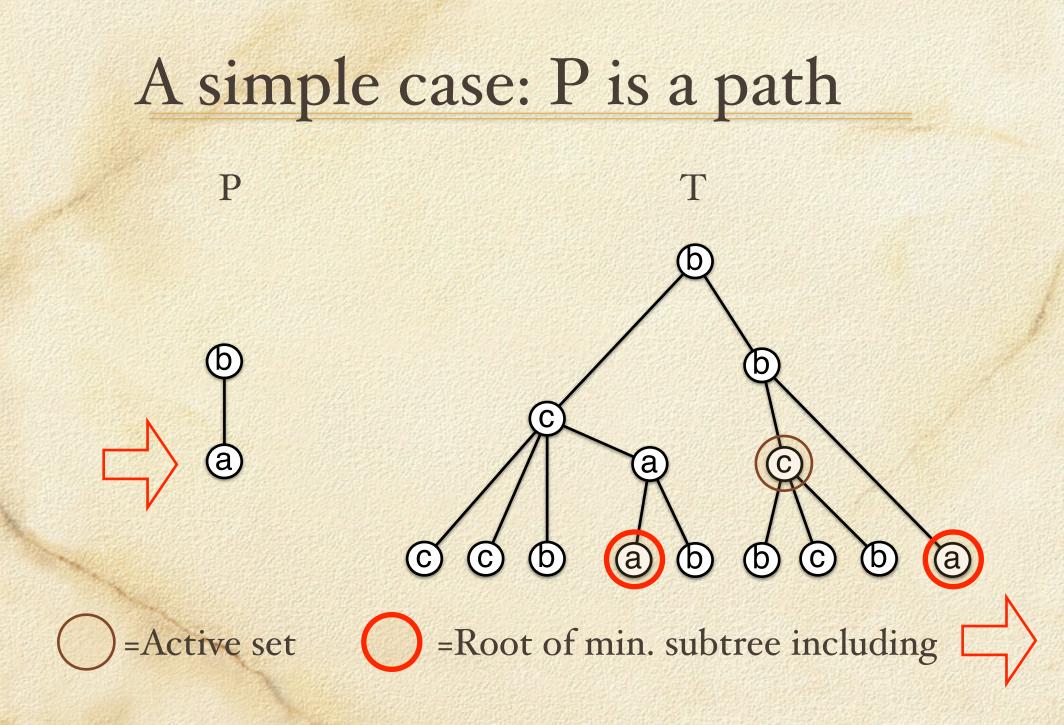


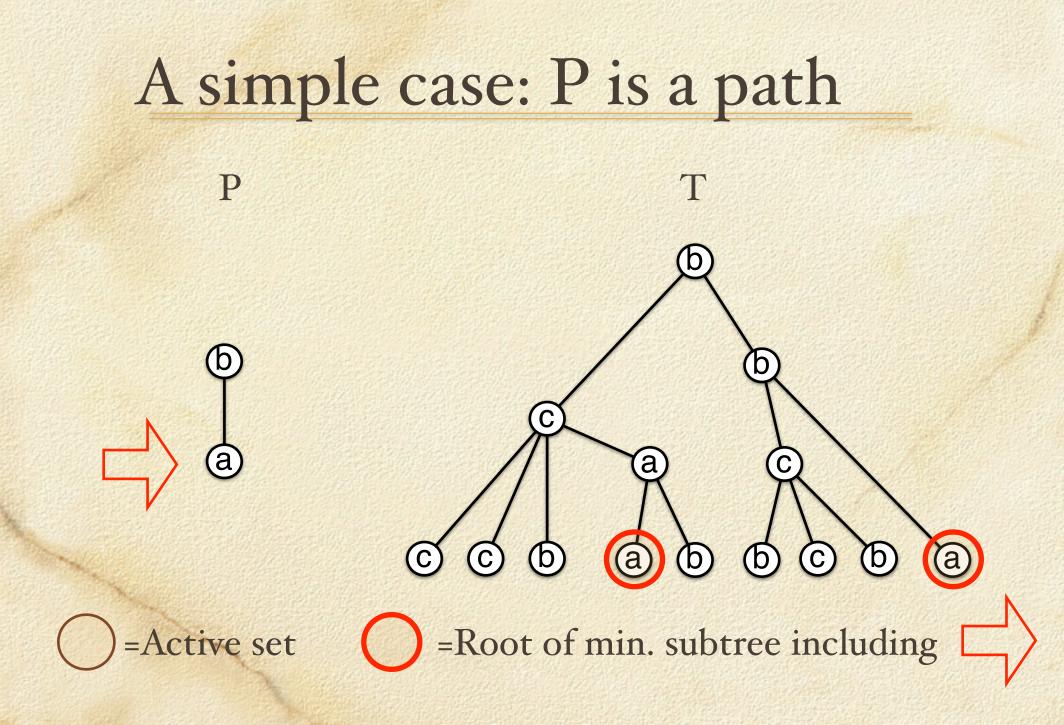


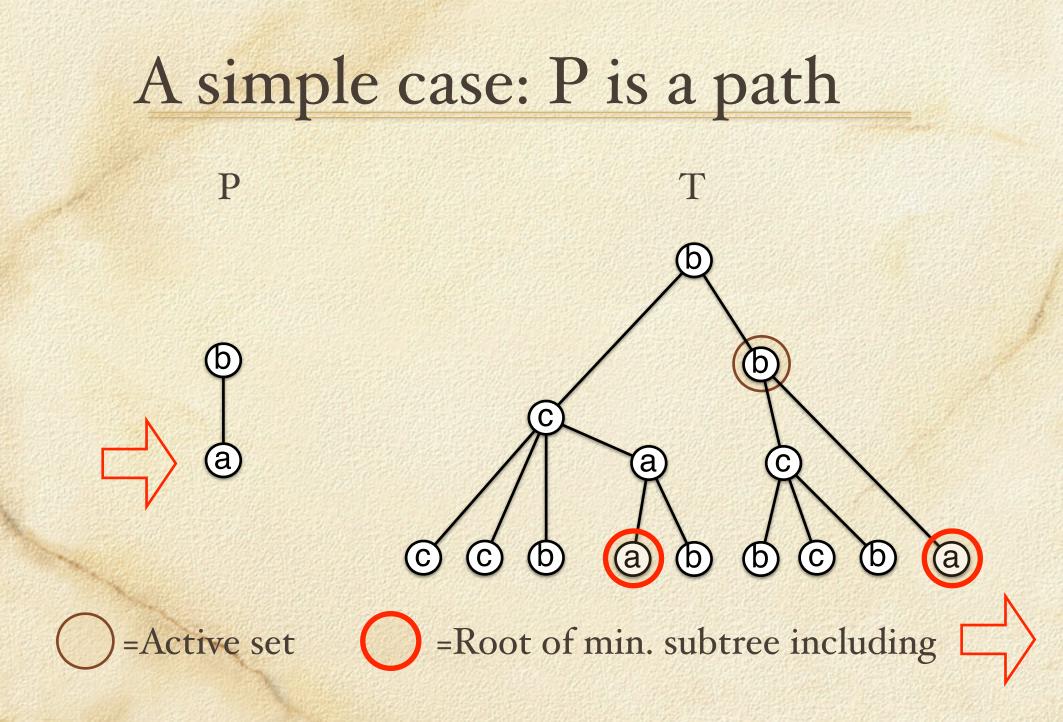


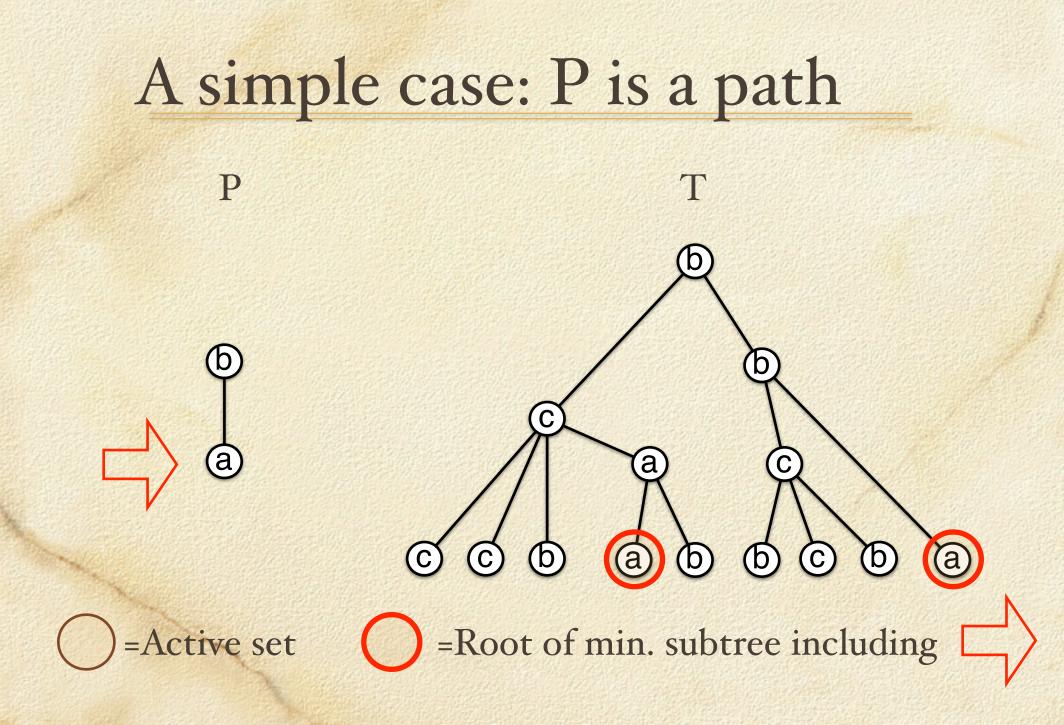


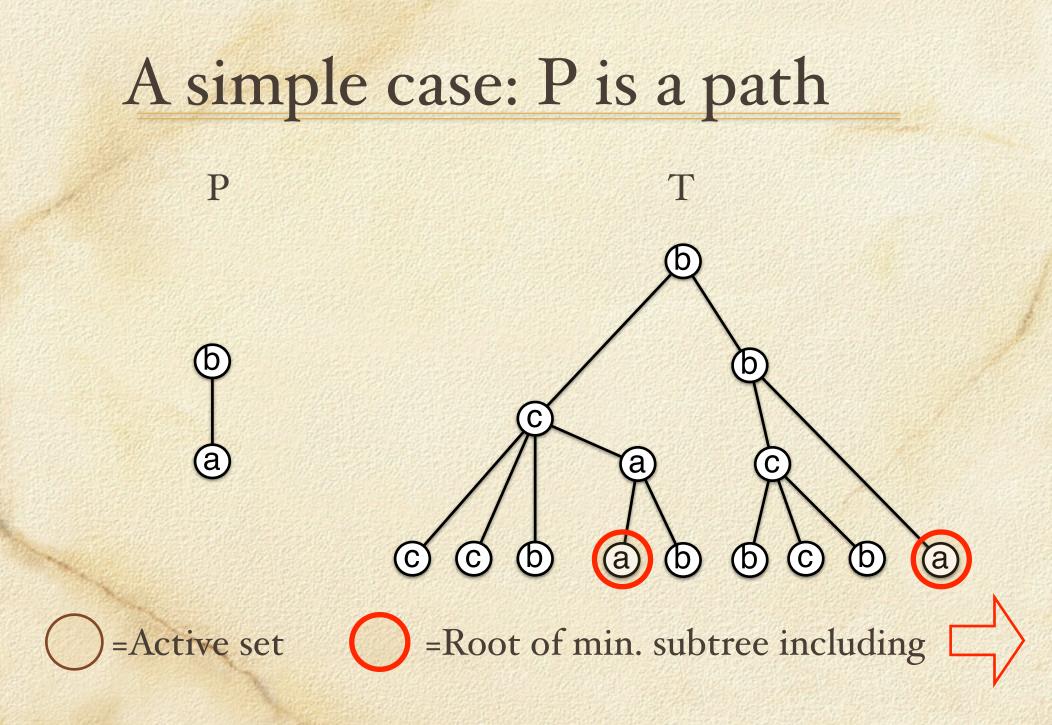


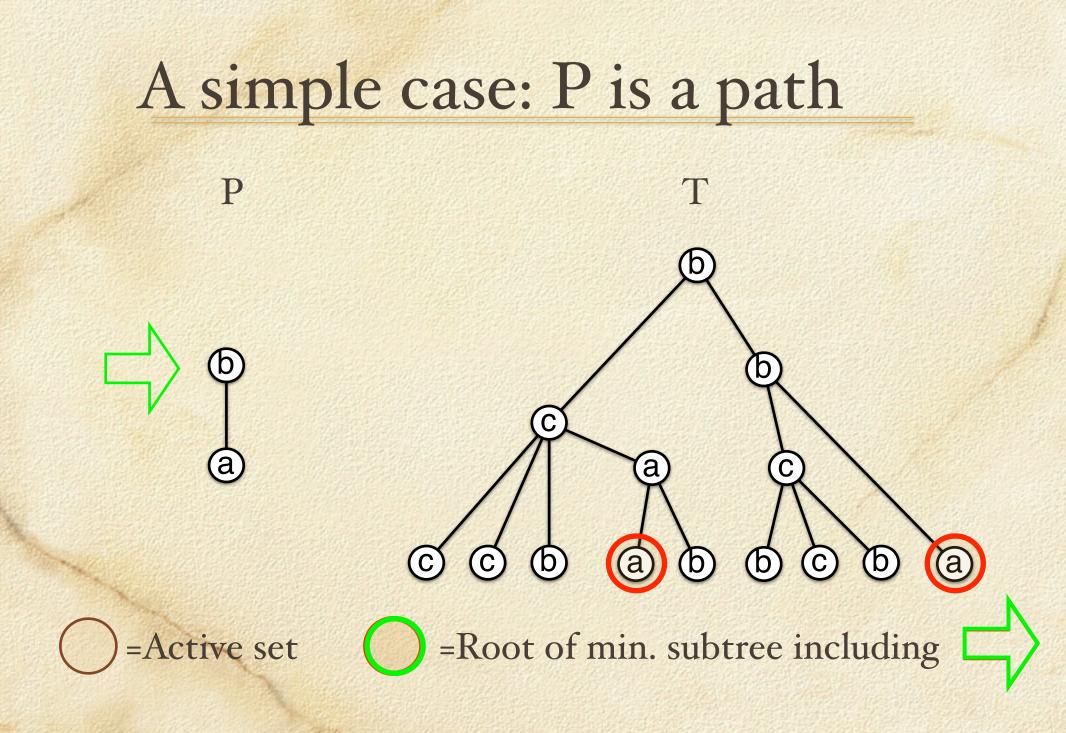


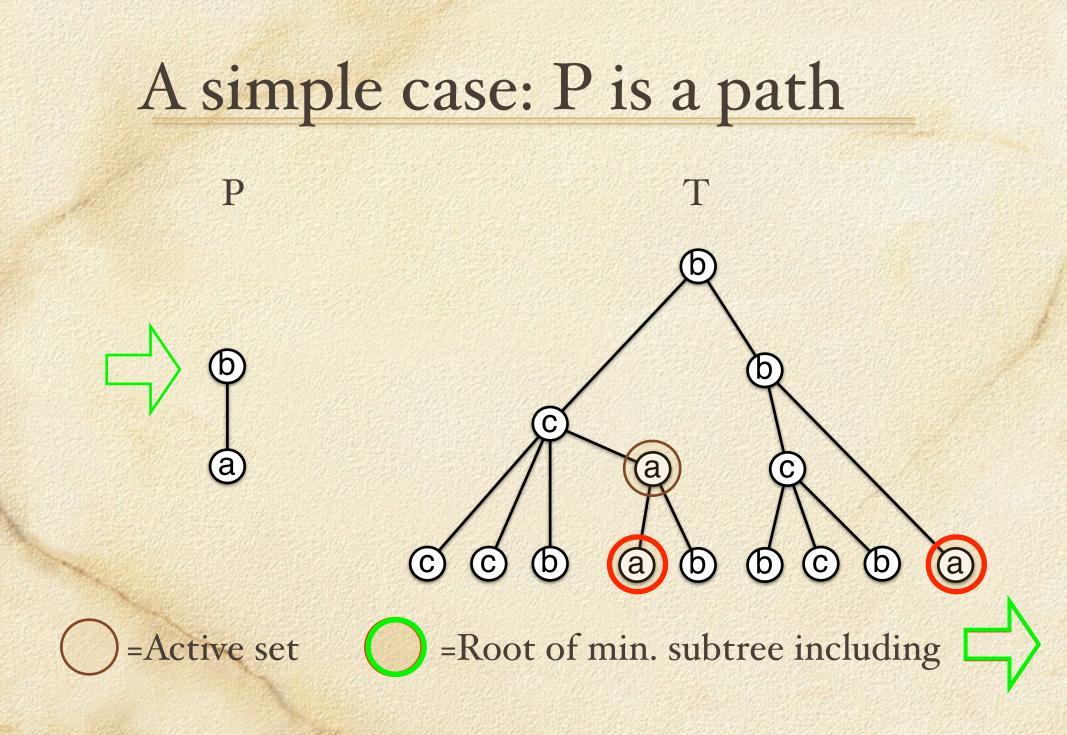


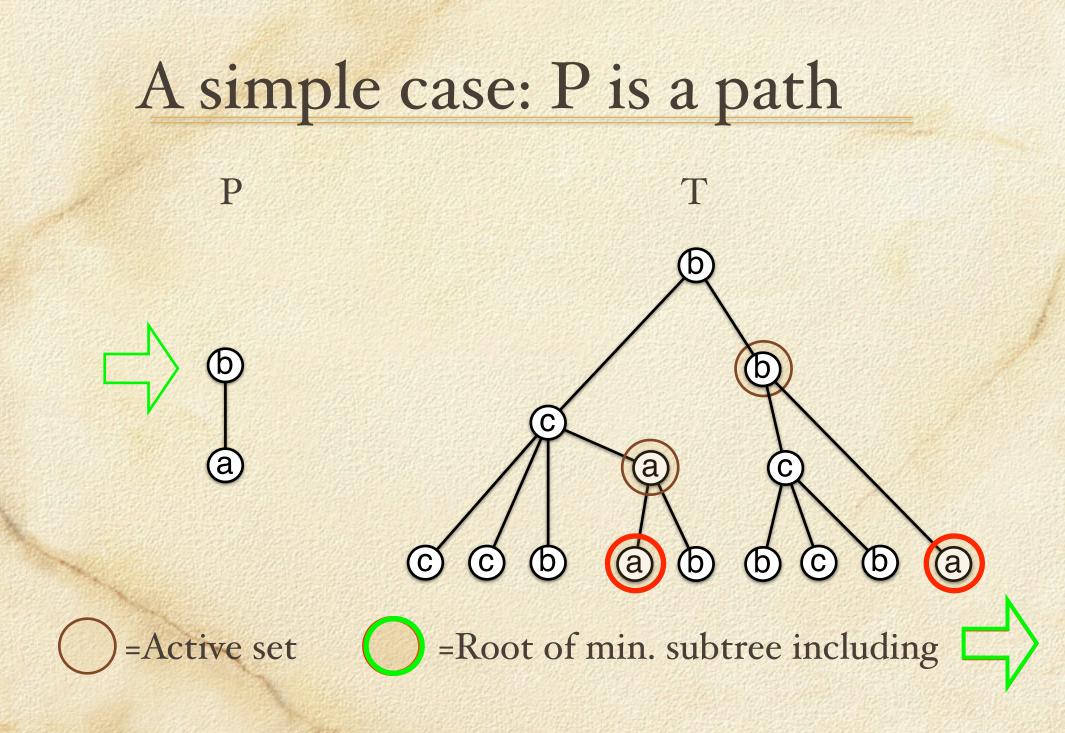


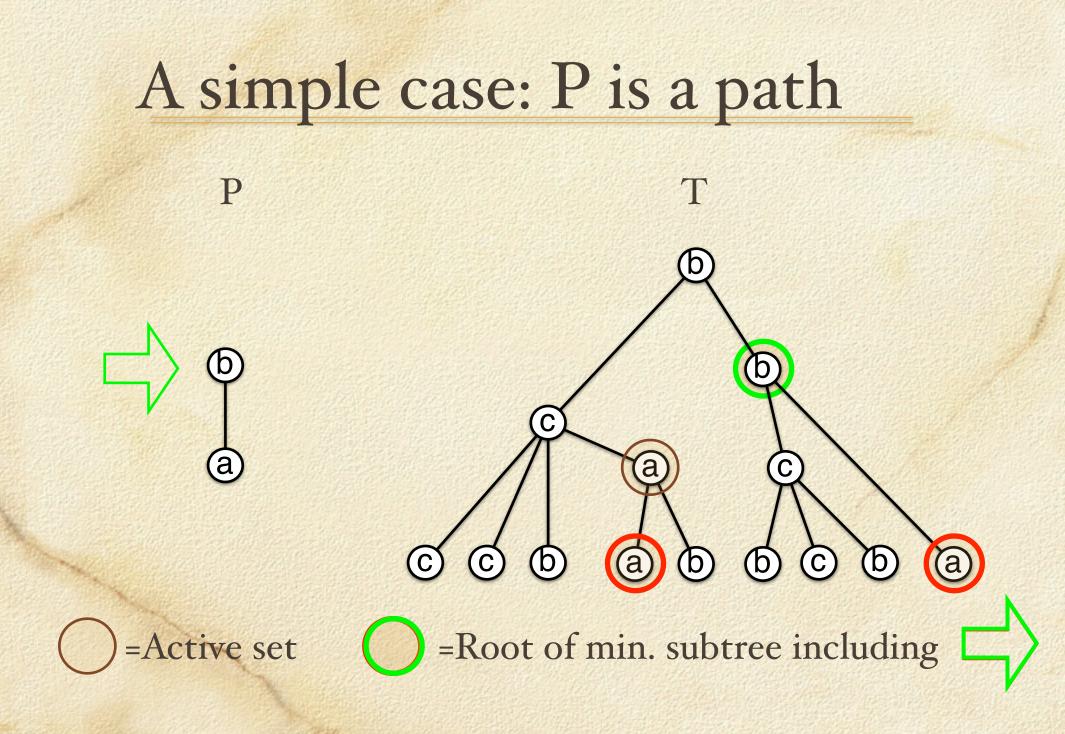


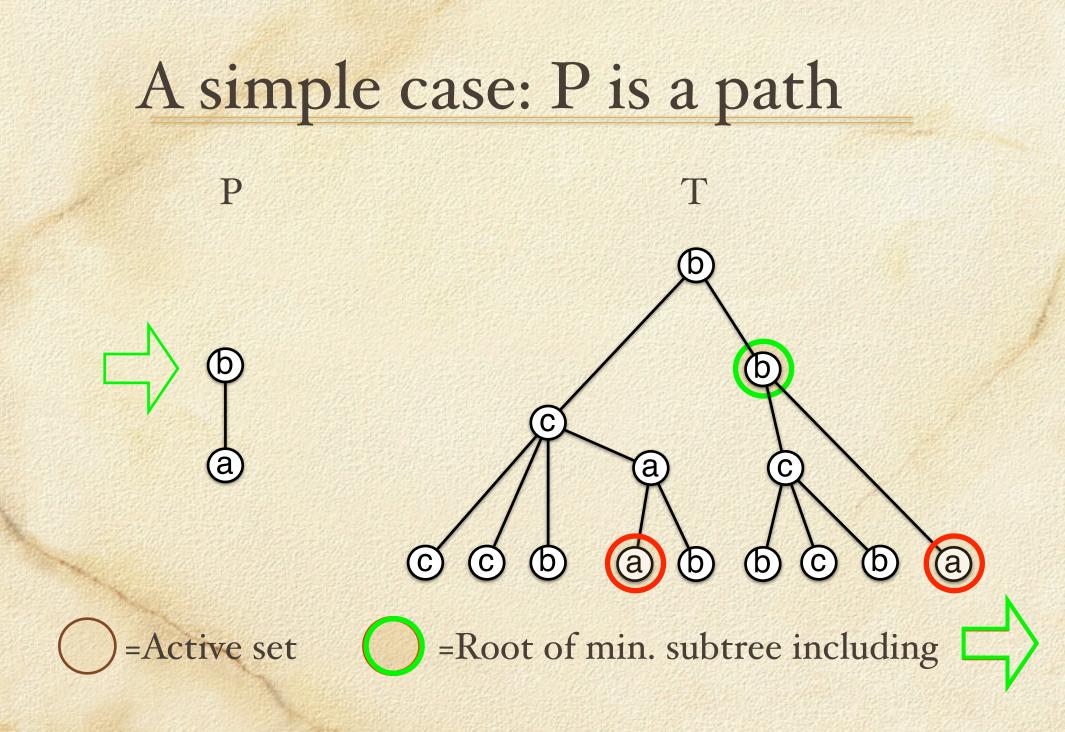


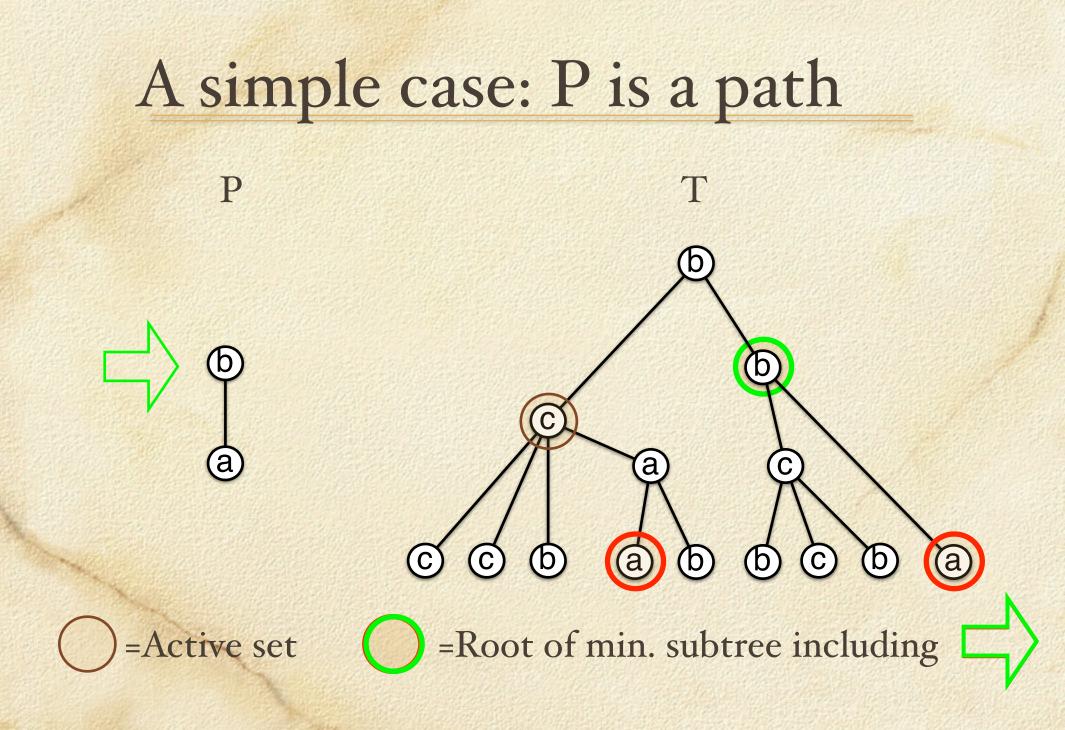


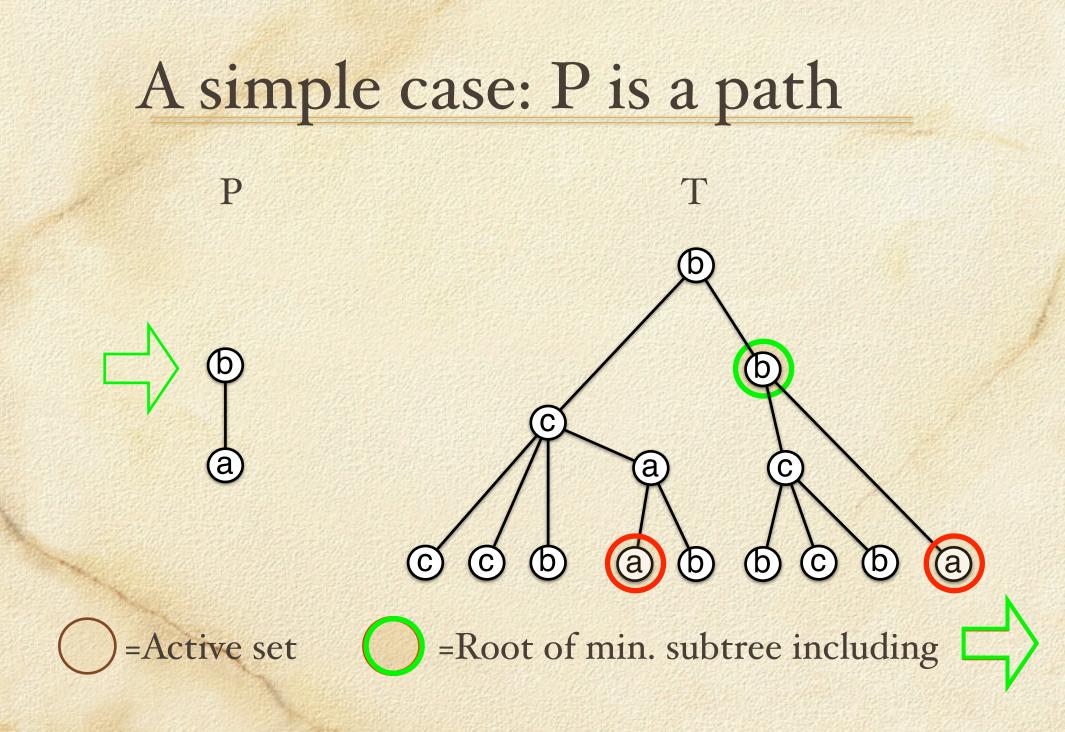


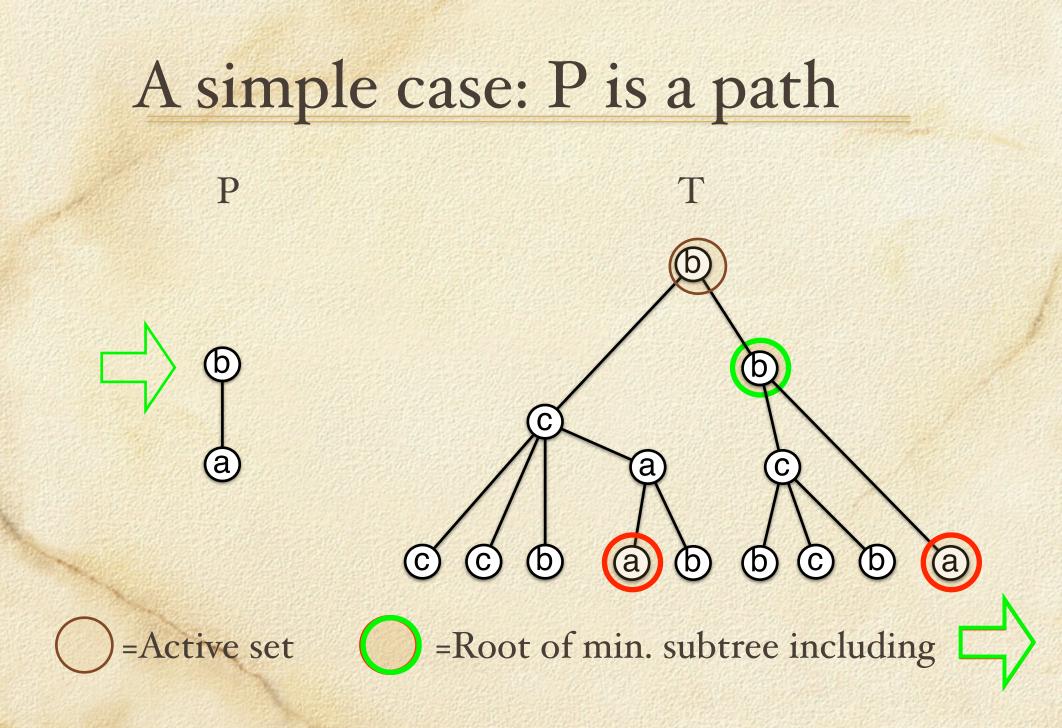


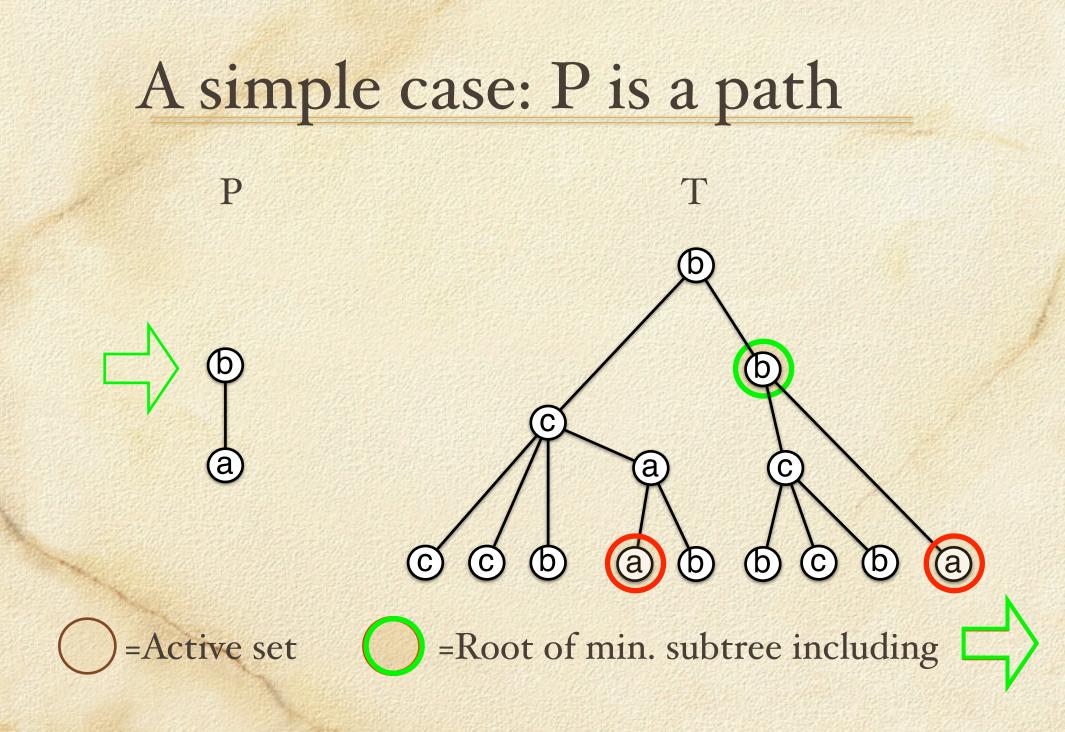






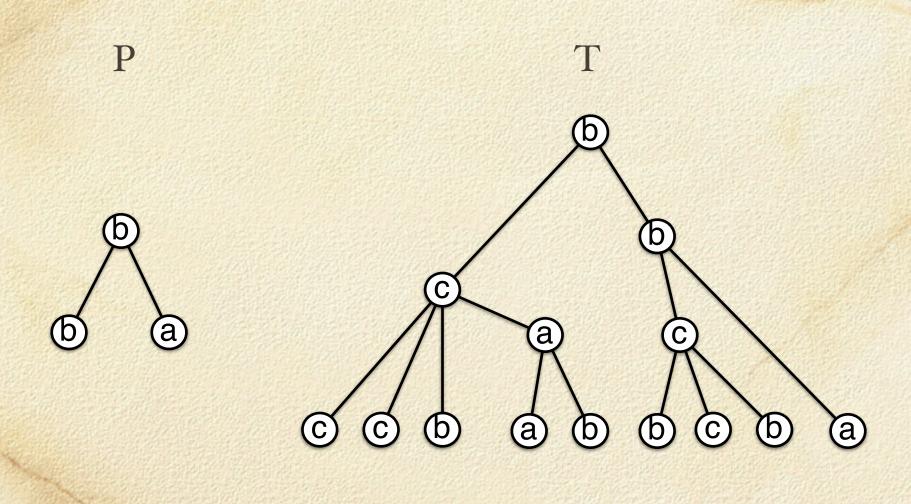


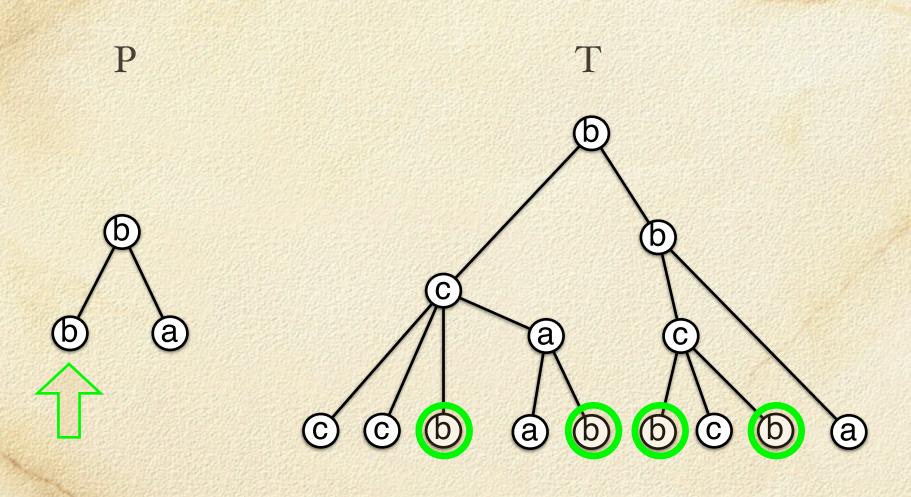


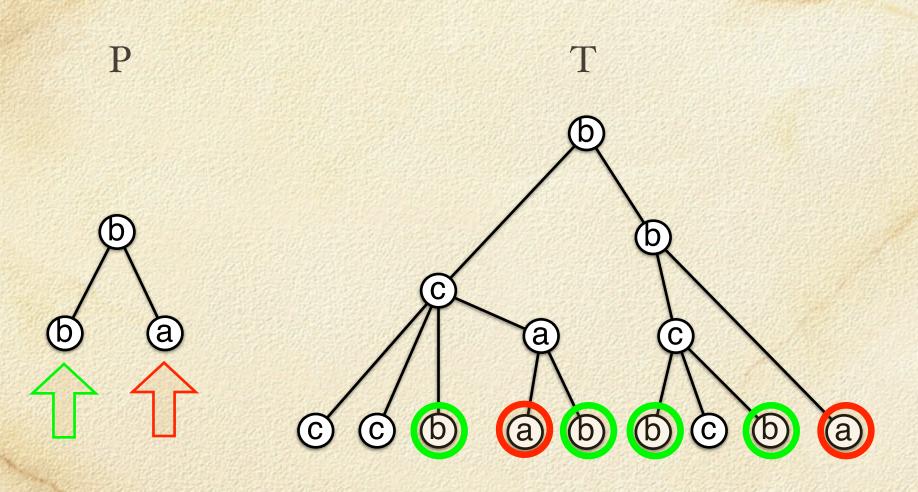


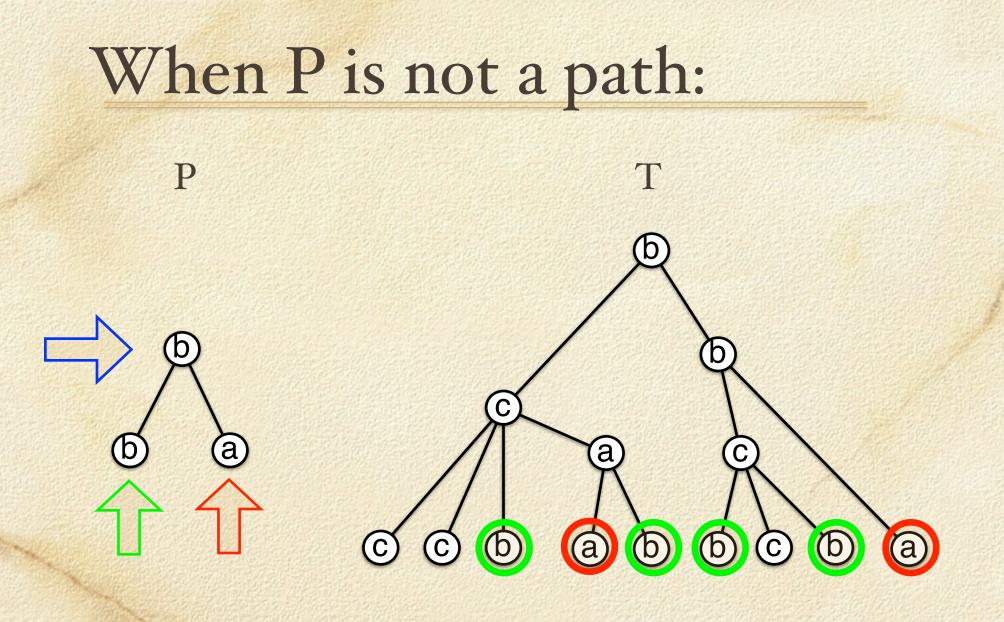
Complexity

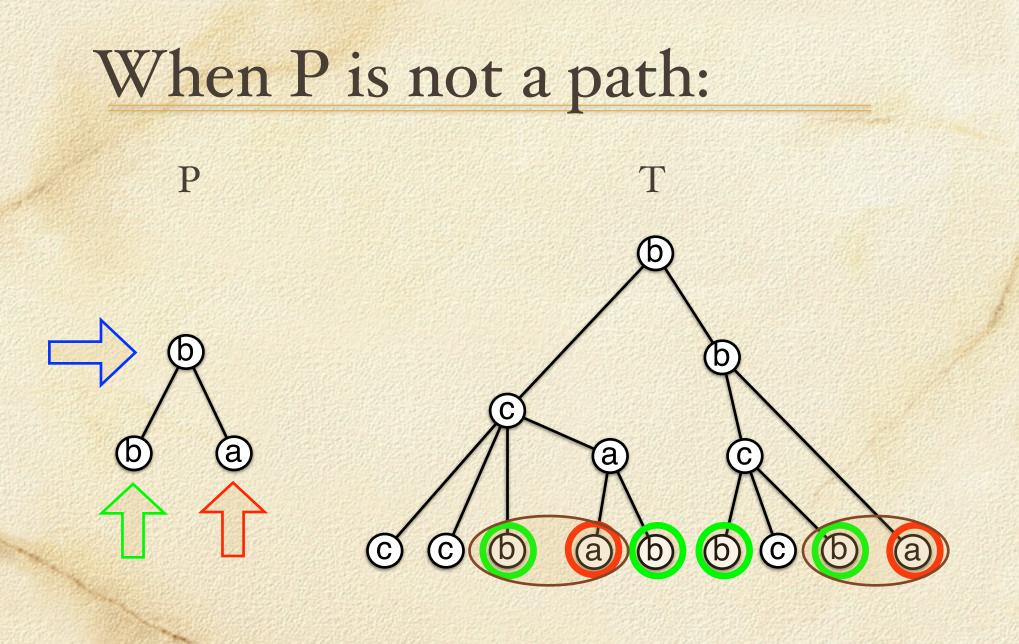
- At each step of the algorithm the active set "moves up".
- Each parent pointer in T is traversed a constant number of times.
- Using a simple data structure and exploiting the ordering of the nodes we get a total running time of O(n_T).

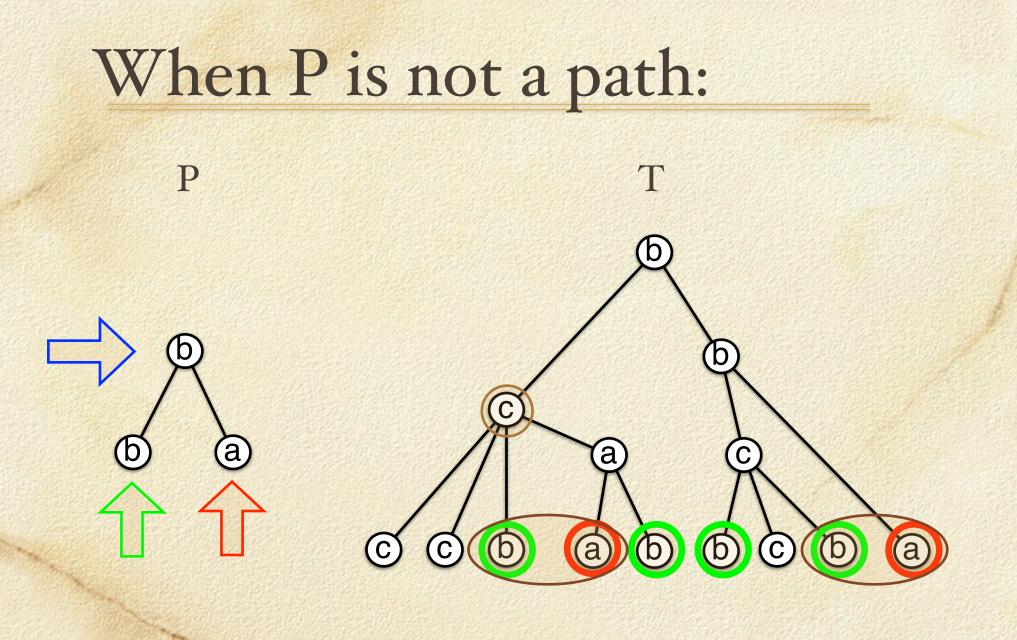


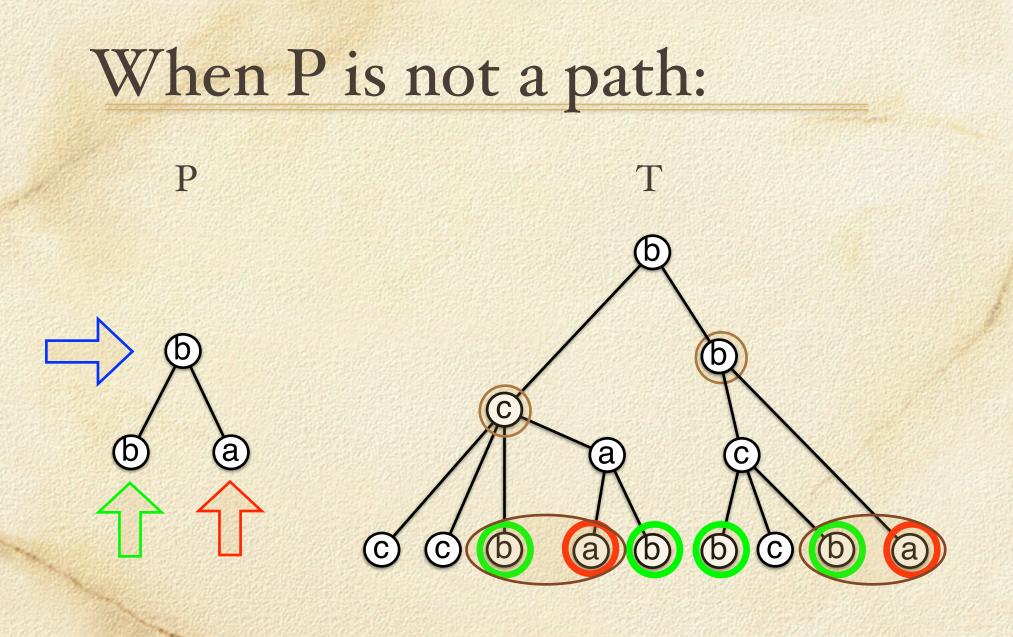


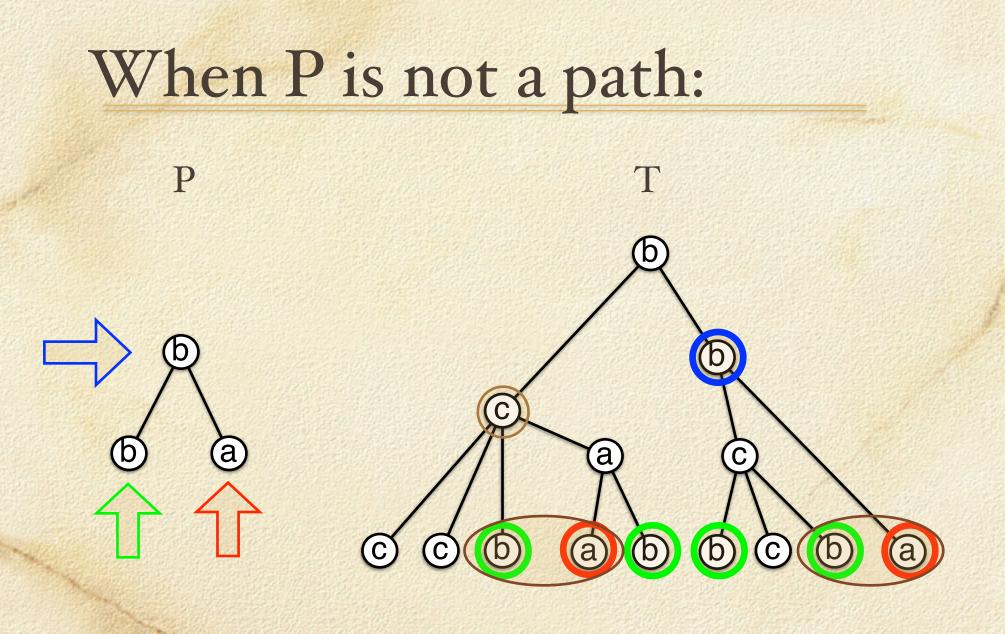


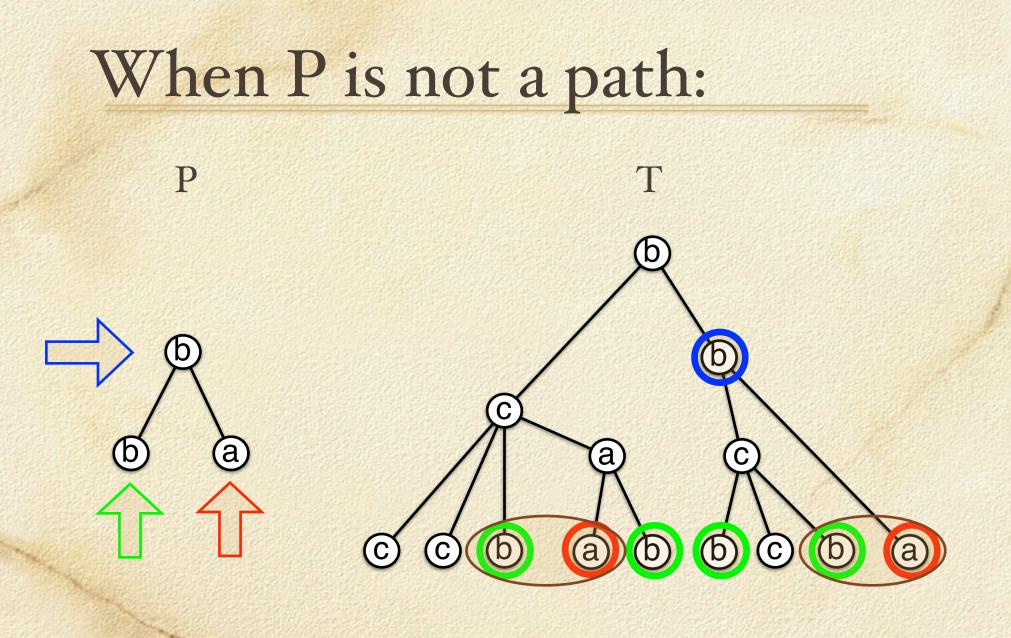


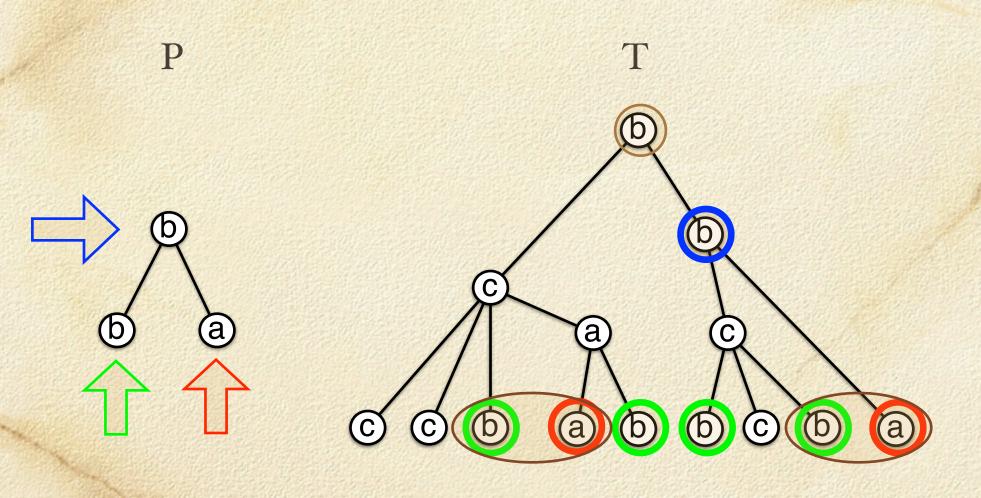


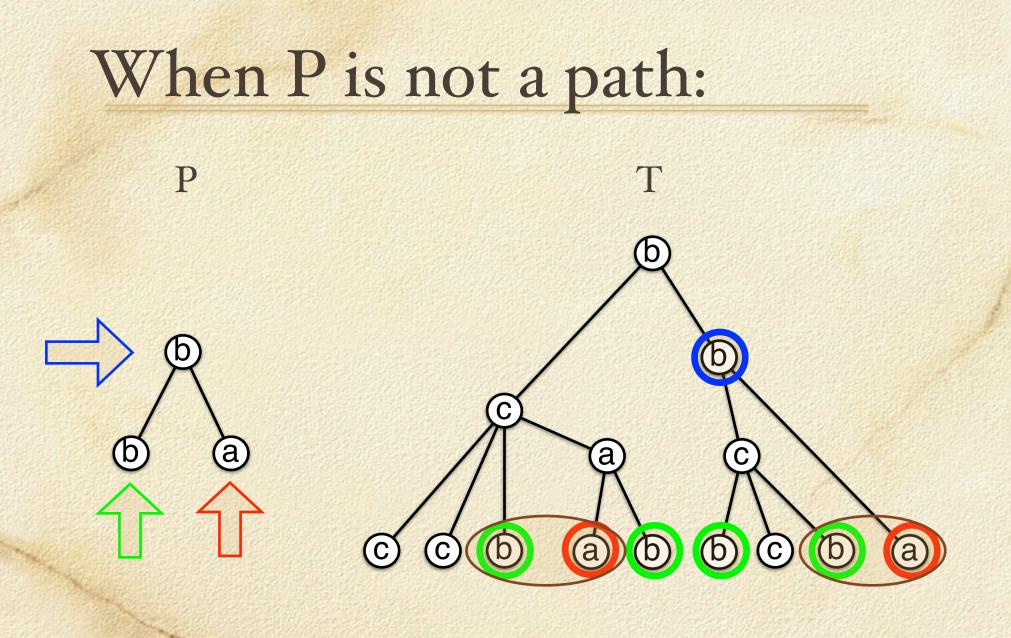












Complexity

- Let Δ denote the set of all *leaf-to-root*, paths in P.
- Running time is by bounded by the time used to solve the tree inclusion problem on each path in Δ. In total:

$$\sum_{\delta \in \Delta} O(n_T) = O(l_P n_T)$$

Space is $O(n_P + n_T)$.

Alternative algorithm.

Reconsider the case when P is path:

Let firstlabel(v,l) denote the nearest ancestor of the node v in T with label l.

At each step we "essentially" compute firstlabel(v, l) for each v in the active set.

Alternative algorithm

Idea: Use a fast data structure supporting firstlabel queries. Known as the tree color problem.

Lemma [Dietz89] For any tree T there is a data structure using $O(n_T)$ space, $O(n_T)$ expected preprocessing time which supports *firstlabel(v,l)* in $O(\log \log n_T)$ time.

Complexity

For each node in P there is an active set and for each node in this active set we have to compute a *firstlabel* query.

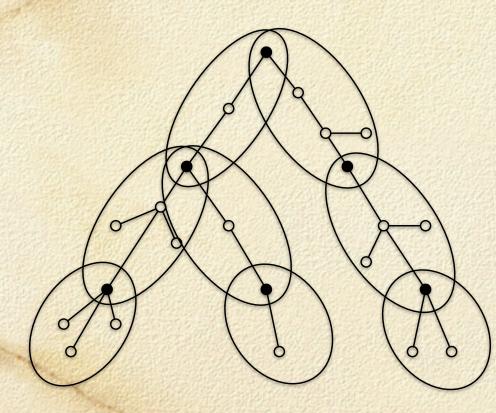
 \square Size of active set is at most l_T . Total time:

 $O(n_P l_T \log \log n_T)$

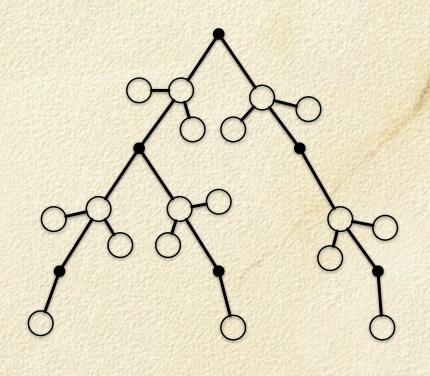
 \Box Space is still $O(n_P + n_T)$.

Improving the worst-case

- Divide T into O(n_T/log n_T) micro trees of size O(log n_T) which overlap in at most 2 nodes using a clustering technique from [AHT97].
- Each micro tree is represented by a constant number of nodes in a *macro tree* and connected according to the overlap in the micro trees.
- Use a "Four Russian trick" to handle subsets



A Secondary



Preprocessing micro trees.

Consider *firstlabel(M,V,l)*, where V is a subset of nodes in a micro tree M.

For all possible. M and V precompute the following:

 \square ancestor(M, V): All ancestors of V in M.

deep(M, V): Subset of V obtained by removing nodes that are ancestors of another node in V.

Preprocessing micro trees.

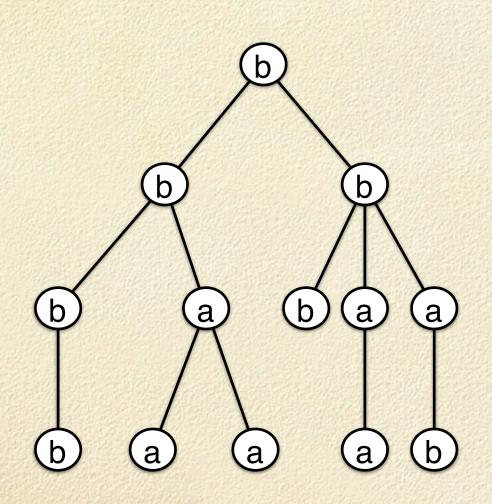
- □ Number of different micro trees M of size x is less than 2^{2x} . (Ignoring labels)
- \square Number of different subsets V is less than 2^x .
- Choosing appropriate $x = \Theta(\log n_T)$ we can compute and tabulate *ancestor* and *deep* for all inputs for in linear time and space.

Preprocessing micro trees.

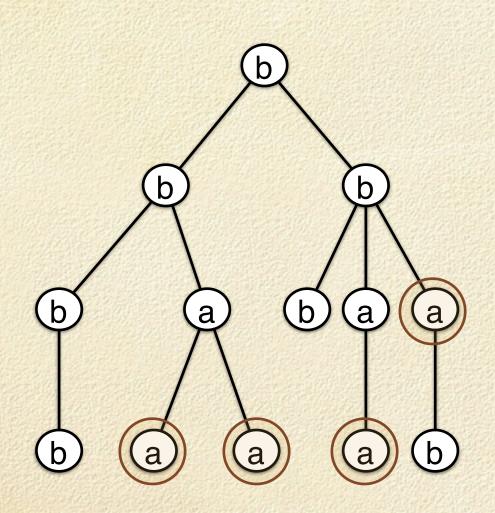
□ For each micro tree M (not all possible) store a dictionary (indexed by labels) containing:

 \square mask(l): The set of nodes in M with label l.

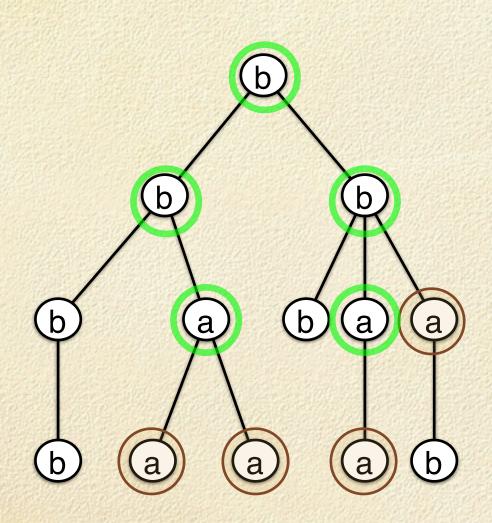
With perfect hashing this gives total linear space, linear expected preprocessing time, and constant lookup time.



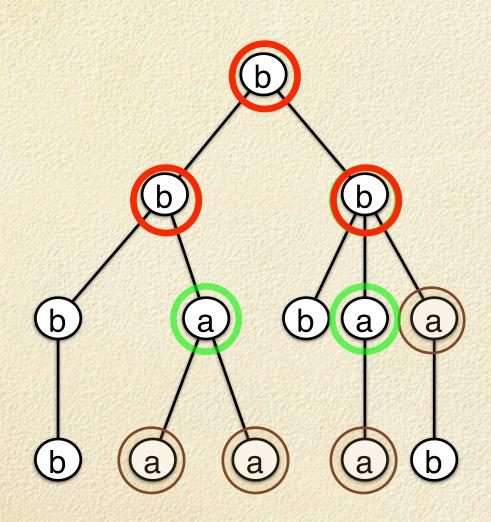
A Secondary



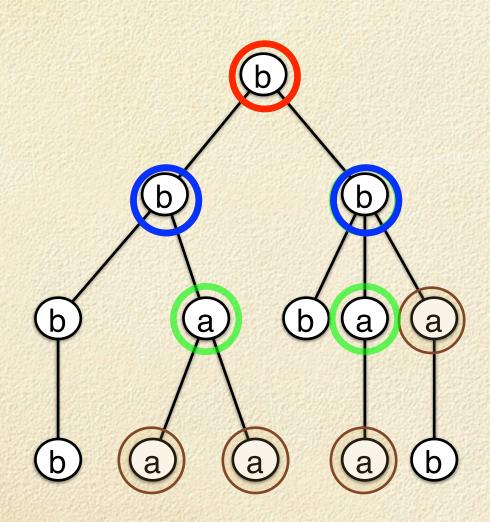
Sugar and



a start where

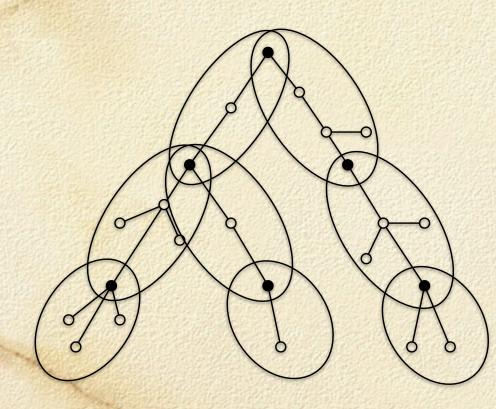


States and

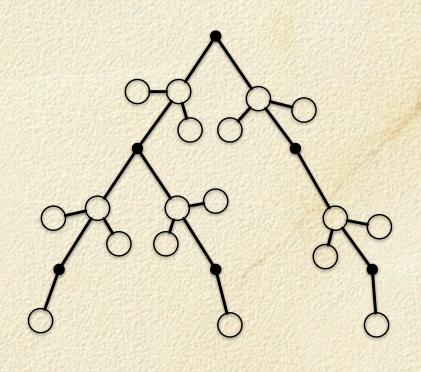


a start where

Firstlabel not in M?



Color States



General idea:

Compute *firstlabel* on each micro trees.

This gives a *firstlabel* query on the macro tree which is solved in linear time (in the number of nodes of the macro tree).

Complexity

 \Box Time for *firstlabel* becomes $O(n_T / \log n_T)$.

Same bound for all other needed manipulation of node sets.

Total time becomes O(^{n_Pn_T}/_{log n_T}).
Space is still O(n_P + n_T).

Conclusion

Theorem 1 For tree P and T the tree inclusion problem can be solved in time $O(\min(l_P n_T, n_P l_T \log \log n_T, \frac{n_P n_T}{\log n_T}))$

and space $O(n_P + n_T)$.