
Fast Practical Compression of Deterministic
Finite Automata󰂏

Philip Bille1[0000−0002−1120−5154], Inge Li Gørtz1[0000−0002−8322−4952], and Max
Rishøj Pedersen[0000−0002−8850−6422]

Technical University of Denmark {phbi,inge}@dtu.dk

Abstract. We revisit the popular delayed deterministic finite automa-
ton (D2FA) compression algorithm introduced by Kumar et al. [SIG-
COMM 2006] for compressing deterministic finite automata (DFAs) used
in intrusion detection systems. This compression scheme exploits simi-
larities in the outgoing sets of transitions among states to achieve strong
compression while maintaining high throughput for matching.
Unfortunately, the D2FA algorithm and later variants of it require at
least quadratic compression time since they compare all pairs of states
to compute an optimal compression. This is too slow and, in some cases,
even infeasible for collections of regular expression in modern intrusion
detection systems that produce DFAs of millions of states.
Our main result is a simple, general framework for constructing D2FA
based on locality-sensitive hashing that constructs an approximation of
the optimal D2FA in near-linear time. We apply our approach to the orig-
inal D2FA compression algorithm and two important variants, and we
experimentally evaluate our algorithms on DFAs from widely used mod-
ern intrusion detection systems. Overall, our new algorithms compress
up to an order of magnitude faster than existing solutions with either
no or little loss of compression size. Consequently, our algorithms are
significantly more scalable and can handle larger collections of regular
expressions than previous solutions.

Keywords: Finite Automata · Algorithms · Data Compression.

1 Introduction

Signature-based deep packet inspection is a key component of modern intrusion
detection and prevention systems. The basic idea is to maintain a collection
of regular expressions, called signatures, that correspond to malicious content,
violations of security policies, etc., and then match the collection of signatures
against the input. In the typical scenario of high-throughput network traffic, the
matching must be fast enough to process the input at the network’s speed.

A natural approach to solve this is to construct a deterministic finite au-
tomaton (DFA) of the collection of signatures and then simulate it on the input.
󰂏 Partially supported by the Independent Research Fund Denmark (DFF-9131-00069B

and 10.46540/3105-00302B).

2 P. Bille, I.L. Gørtz, and M. Pedersen

The DFA matches each character of the input with a single constant time state
transition and requires only a single memory access. Unfortunately, DFAs for
the collections of signatures used in modern intrusion detection systems are pro-
hibitively large and not feasible for practical implementation [6,51]. To overcome
this space issue while still maintaining fast matching, significant work has been
done on compressing DFAs [3–5,7–9,15,20–22,25,29–32,34,35,37, 42, 45, 48].

In this paper, we revisit the elegant and powerful delayed DFA compres-
sion technique introduced by Kumar et al. [29] and applied in many subsequent
solutions [7, 9, 22, 30–35, 37]. The basic observation is that many states in the
DFAs for real-world regular expression collections have similar sets of outgoing
transitions, and we can take advantage of this to reduce the space significantly.
Specifically, if two states s and s′ share many such transitions, we can replace
these in s with a special default transition to the other state s′.

Kumar et al. [29] proposed an algorithm to compute an optimal set of default
transitions to compress any DFA. The key idea is to compute the similarity of
all pairs of states, i.e., the number of shared outgoing transitions. We store these
in a complete graph, called the space reduction graph (SRG), on the states with
edges weighted by similarity. Finally, we compute a maximum spanning tree
on the SRG and use each edge in the tree as a default transition leading to a
compressed version of the original DFA called the delayed deterministic finite
automaton (D2FA).

To implement matching, we traverse the D2FA similar to the Aho-Corasick
algorithm for multi-string matching [2]. When we are at a state s and want to
match a character α, we first inspect the outgoing transitions at s for a match of
α. If we find a match, we continue to that state and process the next character
in the input, and if not, we follow the default transition to state s′ and repeat
the process from s′ with character α.

Compared to a standard DFA solution, Kumar et al. [29] showed that the
D2FA dramatically reduces space by more than 90% on real-world collections of
regular expressions while still achieving fast matching performance.

Processing a character D2FA during matching may require following multiple
default transitions, thus incurring (as the name suggests) a delay. Minimizing the
delay is essential in high-throughput applications, and two important variants
of D2FAs that address this problem have been proposed. Kumar et al. [29] gave
a modified D2FA construction that, given an integer parameter L, limits the
maximum path of default transitions to L. We refer to this as the longest delay
variant of the problem. Alternatively, Becchi and Crowley [7,9] gave a modified
D2FA construction that limits the maximum total number of default transitions
traversed on any input string S by |S|. We refer to this as the matching delay
variant.

The main bottleneck in the above algorithms is computing the similarity of
all pairs of states to construct the SRG. If the input DFA contains n states,
this requires at least Ω(n2) time and space. This is too slow and, in some cases,
even infeasible for collections of regular expression in modern intrusion detection
systems that produce DFAs of millions of states.

Fast Practical Compression of Deterministic Finite Automata 3

Contributions We present a simple, general framework for fast compression of
DFAs with default transitions based on locality-sensitive hashing. We apply our
approach to general D2FA compression and the longest delay and matching de-
lay variant and experimentally evaluate our algorithms on collections of regular
expressions used in the popular Snort [43], Zeek [38], and Suricata [1] intrusion
detection systems (see also www.snort.org, zeek.org, and suricata.io). Over-
all, we obtain new algorithms that compress up to an order of magnitude faster
than existing solutions with either no or little loss of compression size. Con-
sequently, our algorithms are significantly more scalable and can handle larger
collections of regular expressions than previous solutions.

Technically, our main idea is to use locality-sensitive hashing to identify
approximately similar states quickly. We then add edges between these states
weighted by their similarity, producing the sparse space reduction graph (SSRG).
We then compute the maximum spanning tree on the SSRG and then the D2FA.
The SSRG contains significantly fewer edges, leading to a significant improve-
ment in compression time. While the SSRG approximates the SRG by discarding
edges, which may lead to worse compression size, we observe that this loss is
negligible experimentally. For the longest delay variant, the previous solution by
Kumar et al. [29] also uses a costly heuristic to maintain a bounded diameter
maximum spanning forest. If we directly apply our sparsification technique, this
heuristic dominates the running time, and we do not experimentally observe a
significant speed-up in compression time. Instead, we develop an efficient alter-
native heuristic that first constructs a maximum spanning tree and then cuts
edges to achieve the desired maximum spanning forest with bounded diameter.
We show that combining our sparsification with the new heuristic leads to im-
provements in compression time similar to our other variants with little or no
loss of compression size.

Related Work Substantial work has been done on compression DFAs. For an
overview, see surveys [41, 50]. A popular approach is compressing the set of
transitions [3–5, 7, 9, 20, 21, 29–32, 34, 35, 37, 42, 45, 48]. This approach includes
the popular D2FA algorithm we focus on in this paper. Another approach is to
compress the alphabet to reduce the size of the transition table [8, 9, 15, 25, 47].
The main idea is that, if some sets of characters (almost) always cause the
same transitions throughout the DFA, they can be replaced by a single charac-
ter [8, 9, 15, 25]. Alternatively, we can also compress the alphabet by replacing
infrequent characters with sequences of frequent characters [47]. Finally, we can
also compress the set of states as proposed by Becchi and Cambadi [5]. They
showed how states with similar sets of outgoing transitions could be merged into
one, thus compressing the set of states.

Using locality-sensitive hashing for fast compression of collections of sets has
been used widely in many other contexts [11,17,18,26,28,36,39,46,49]. Our work
naturally extends this work to fast DFA compression.

www.snort.org
zeek.org
suricata.io

4 P. Bille, I.L. Gørtz, and M. Pedersen

2 Preliminaries

Deterministic Finite Automata A deterministic finite automaton (DFA) is a
5-tuple D = (Q,Σ, δ, q0, A) where Q is a set of states, Σ is an alphabet, δ :
Q × Σ → Q is a transition function, q0 ∈ Q is the initial state and A ⊆ Q is a
set of accepting states. We let n = |Q| denote the number of states. A DFA can
be thought of as a labeled directed graph where Q is the set of nodes and each
transition δ(u, c) = v is a labeled, directed edge, denoted (u, v)c. See Figure 1.
For simplicity, we assume every state has exactly one labeled transition for each
character in the alphabet, i.e., δ is total, as in previous work.

Given a string S and a path p in D we say that p matches S if the con-
catenation of the labels of p equals S. A path that starts in q0 and ends in A is
accepting and D accepts a string S if there exists an accepting path that matches
S. The language of D is the set of strings it accepts.

Locality-Sensitive Hashing A family of hash functions is locality-sensitive, for
some similarity measure, if the probability of two objects hashing to the same
value is high (lower-bounded for some parameter) when they are similar (simi-
larity above some threshold) and, conversely, low when they are dissimilar (see
e.g. [23] for formal details). There are different families of locality-sensitive hash
functions for different distance or similarity measures, with some of the most
popular being simhash [16], MinHash [14] and sdhash [44]. For example, the
MinHash of a set is the minimum element according to a uniformly random
permutation. The probability that two sets A and B hash to the same value is
precisely their Jaccard similarity (|A ∩B|)/(|A ∪B|).

3 Delayed Deterministic Finite Automata

A delayed deterministic finite automaton (D2FA) [29] is a deterministic finite
automaton that is augmented with unlabeled default transitions. Formally a
D2FA is a 6-tuple D2 = (Q,Σ, δ, q0, A, F). As for DFAs, Q is the set of states,
Σ is the alphabet, δ is the transition functions, q0 ∈ Q is the initial state, and
A ⊆ Q is the set of accepting states. The final component F : Q → Q is the
default transition function. Viewed as a graph, default transitions are 󰂃-labeled
directed edges, where 󰂃 is the empty string, and each state has at most one
outgoing default transition. See Figure 1.

To transition from a state u according to a character c, we follow a c-labeled
transition if it exists or otherwise follow the default transition:

δ(u, c) =

󰀫
v if (u, v)c is a edge.
δ(F (u), c) otherwise

Note that for δ to be well-defined, reaching a state from u with a c-labeled tran-
sition must always be possible. This implies that any cycle of default transitions
must have an outgoing c-labeled transition for any character c. To transition from

Fast Practical Compression of Deterministic Finite Automata 5

q0 c

c

c

c

c

cc

a

b

b

c
c

d

d

d

d

e

d

b

d

a
from q1, . . . , q8

from q3, . . . , q8
b

q2

q3

q5q4

q6 q7

q8

q1

q0

q2

q3

q5q4

q6 q7

q8

q1

3

3

5

3

4

4

4

4
4

4

4

4
4

4

4

4

q0

b

cc

d
d

e

d

b

d

q2

q3

q5q4

q6 q7

q8

q1

b

a

e

d

Fig. 1. Example from [29]. DFA D for regular expression .*((ab+c+)|(cd+)|(bd+e)).
Edges to q0 are omitted (left). Space reduction graph for D with edges annotated
with similarity. Edges with similarity less than 4 omitted, except those connecting q2
to avoid disconnecting the graph (middle). D2FA equivalent to D. All transitions are
shown, default transitions are dashed (right).

a state u according a string S = c1 . . . cm we recursively transition according to
each character:

δ(u, c1c2 . . . cm) = δ(δ(u, c1), c2 . . . cm).

Given a character c and a path p = u1, . . . , uk we say p matches c if δ(u1, c) = uk

and all but the last transition is default, i.e., F (ui) = ui+1 for 1 ≤ i < k. Note
that the concatenation of the labels of p equals c. Given a string S = c1 . . . cm
and a path p we say p matches S if p is the concatenation of paths matching
the individual characters c1, . . . , cm. Note that the concatenation of the labels of
p is S. We define acceptance as before. Two D2FAs are equivalent if they have
the same language, and two transitions are equivalent if they have the same
destination and label.

Given a DFA, we can compress it by replacing sets of equivalent transitions
with single default transitions to obtain an equivalent D2FA with fewer total
transitions. We define the similarity of two states u and v, denoted sim(u, v), to
be their number of equivalent transitions, that is, sim(u, v) = |{c ∈ Σ | δ(u, c) =
δ(v, c)}|. See Figure 1. Inserting a default transition (u, v) and removing the
equivalent transitions from u does not affect the language but saves sim(u, v)−1
transitions. Each transition we can remove without affecting the language we
say is redundant.

Following a default transition does not consume an input character, which
introduces a delay when matching. We define the longest delay of D2 to be
maximum number of default transitions in any path matching a single character,
i.e., the longest delay is the maximum number of default transitions in D2 to
match any single character. Given a string S, we define the matching delay of
S in D2 to be the number of default transitions in the path starting in q0 and
matching S.

6 P. Bille, I.L. Gørtz, and M. Pedersen

4 Compressing DFAs with Default Transitions

We now review the algorithm of Kumar et al. [29] that compress a DFA D into
an equivalent D2FA. Let D2 be an initially empty D2FA with the same set of
states as D. We proceed as follows.

Step 1: Space Reduction Graph Construct a complete, undirected graph on
the states of D, and to each edge (u, v) assign weight sim(u, v). This is the
space reduction graph (SRG). See Figure 1.

Step 2: Maximum Spanning Tree Build a maximum spanning tree over the
SRG. Root the spanning tree in a central node, i.e., a node of minimal radius,
and direct all edges towards the root to obtain a directed spanning tree.

Step 3: Transitions For each edge (u, v) in the tree insert the default transi-
tion (u, v) into D2. Copy every labeled transition from D into D2 that is not
redundant in D2.

Since the SRG weighs the edges by similarity, computing the maximum spanning
tree maximizes the overall compression.

Step 1 uses O(n2|Σ|) to compare all states and construct the SRG. Step 2 con-
structs the maximum spanning tree with Kruskal’s algorithm [27] in O(n2 log n)
time, and step 3 takes O(n|Σ|) time. In total, the running time is O(n2 log n+
n2|Σ|))1.

5 Fast Compression

We now show how to speed up the DFA compression algorithm using locality-
sensitive hashing to sparsify the SRG construction in step 1.

Let D be the input DFA and let r and k be two constant, positive integer
parameters. We initialize an undirected graph G = (Q,E) where Q is the set of
states in D and E = {(q0, u) | u ∕= q0}, i.e., we have a edge between the initial
state and all other states. We then add edges to the graph in r rounds, where
each round proceeds as follows:

First, pick k unique random characters c1, . . . , ck ∈ Σ. Then, for each state
v ∈ Q we construct the sequence of k states V = δ(v, c1), . . . , δ(v, ck). We hash V
into a single hash value h(v) using a standard hashing scheme of Black et al. [12].
We insert v into a table with key h(v). For each unique hash value hi, consider
the set of states Ci that hash to hi. For each state u ∈ Ci, we pick another state
v ∈ Ci uniformly at random and insert (u, v) into E if it does not already exist.

After r rounds, the algorithm terminates, and we assign weights to each edge
of G equal to the similarity of the endpoint states. The resulting graph G is the
sparse space reduction graph (SSRG).

The above scheme is inspired by Har-Peled et al. [23] hashing bitstrings w.r.t.
Hamming distance. Their solution samples positions from the input bitstrings.
1 The running time is not explicitly stated in the paper, but follows from the descrip-

tion.

Fast Practical Compression of Deterministic Finite Automata 7

In our solution, the sampled positions correspond to the sampled characters from
Σ.

Hashing a state takes O(k) time, and sampling an edge takes constant time.
Thus, a round takes O(kn) time and we use O(rkn) time for all rounds. Each
round inserts at most n edges and hence the SSRG G has O(rn) edges at the
end. We compute the similarity between two states in O(|Σ|) time, and hence
the final algorithm uses O(rkn+ rn|Σ|) = O(n|Σ|) time.

We plug in the modified Step 1 in the algorithm from Section 4. Step 1 takes
O(n|Σ|) time and since G has O(n) edges, Step 2 takes O(n log n) time. Step 3
takes O(n|Σ|) time as before. In total, we use O(n log n+ n|Σ|) time.

6 Compression with Bounded Longest Delay

We now consider the bounded longest delay variant of D2FA, that is, given a
DFA D and an integer parameter L, construct a D2FA D2 equivalent to D, such
that the longest delay of D2 is at most L. Recall that the longest delay of a
D2FA is the length of the longest path of default transitions in D2.

Bounded Longest Delay by Constructing Small Trees We first review the algo-
rithm by Kumar et al. [29]. The algorithm is based on a simple modification
to the maximum spanning tree construction in Step 2 of the algorithm from
Section 4.

Let L be a parameter. We modify Step 2 by constructing a maximum span-
ning forest with the constraint that each tree in the forest has a diameter of
at most ∆ = 2L. To do so, we run Kruskal’s algorithm but simply ignore any
edges that would cause a tree diameter to exceed ∆. Also, among the edges with
maximum similarity, we select one that causes a minimum increase to any tree
diameter. After constructing the forest, we root each tree in a central node and
direct edges toward each root.

Since each tree has diameter at most ∆ and is rooted in a central node, the
final D2FA has a longest delay of at most ⌈∆/2⌉ = L. To implement the modified
Step 2, Kumar et al. [29] maintains the radius of the tree for each node during
the maximum spanning forest construction. When we add an edge, we need to
merge two trees and potentially update the radius for each node in the resulting
tree. Hence, we may need to update Ω(n2) radii in total during the maximum
spanning forest construction.

We note that new Step 2 uses Ω(n2) time, whether or not we run it on a sparse
or a dense space reduction graph. Hence, we cannot directly apply our sparsifi-
cation technique from Section 5 to obtain an efficient algorithm. We present a
new algorithm in the next section that efficiently combines with sparsification.

Fast Compression with Bounded Longest Delay We now present a new algorithm
that uses sparsification to efficiently construct D2FAs with bounded longest de-
lay. The idea is to construct a single large maximum spanning tree and then cut
edges until each tree in the resulting forest has small diameter.

Given a DFA D and an integer parameter L, we proceed as follows.

8 P. Bille, I.L. Gørtz, and M. Pedersen

Step 1: Construct SSRG Construct a sparse space reduction graph G for D
as in Section 5.

Step 2: Construct MST Construct a maximum spanning tree T0 over G us-
ing Kruskal’s algorithm. Pick a central node v0 in T0 and then discard T0.
Construct a new maximum spanning tree T using Prim’s algorithm [40]
with v0 as the initial node. When we queue a new edge (u, v), where u is
the node already in T , assign weight w′

u,v = sim(u, v)− 2dv where dv is the
distance from v0 to v in T .

Step 3: Cut Edges Cut a minimum number of edges in T to obtain a forest
with each tree diameter at most ∆ = 2L. We do so using the algorithm of
Farley et al. [19] that cuts the necessary edges in a bottom-up traversal of
T . Then, direct the edges of each tree towards the root.

Step 4: Construct Transitions As in Step 3 in Section 4, create default tran-
sitions along edges in the trees and then copy in every labeled transition from
D that is not redundant in D2.

After cutting, each tree has a diameter of at most ∆ = 2L. Since we direct edges
toward each root, the longest delay is at most ⌈∆/2⌉ = L. Step 1 and 4 uses
O(n|Σ|) time as before. Step 2 uses O(n log n) time, and Step 3 uses O(n) time.
In total, we use O(n log n+ n|Σ|) time.

Each edge (u, v) we cut results in sim(u, v) − 1 more labeled transitions in
D2, as that default transition is then not constructed. Intuitively, the lower
the diameter of T , the fewer edges we cut to get each tree below the bound.
Therefore, we use an edge weight that trades similarity for lower diameter, as
we observed that the fewer cuts outweighed the lost similarity.

We found the simple heuristic of the modified weight w′ performed well in
practice. A similar idea was used by Kumar et al [29] in their solution.

Because T is not a maximum spanning tree w.r.t. similarity, the choice of ini-
tial node v0 affects the total similarity of the final tree. We found that picking v0
to be a central node in a MST w.r.t. similarity (T0) yielded the best compression
in practice.

Note that we cut the minimum number of edges to uphold the diameter
constraint. Alternatively, we could cut edges of minimum total similarity, which
might result in better compression. However, our approach is simple and fast
in practice, and because each edge in the SRG has near-maximum weight, the
difference in compression is negligible.

7 Compression with Bounded Matching Delay

We now consider the bounded matching delay variant of D2FA, that is, given a
DFA D, construct a D2FA D2 equivalent to D, such that the matching delay of
D2 is at most |S| on any input string S.

Bounded Matching Delay by the A-DFA Algorithm We first review A-DFA algo-
rithm by Becchi and Crowley [7, 9]. Let D be an input DFA. For a state v ∈ Q,
define the depth of v, denoted d(v), to be the length of the shortest path from

Fast Practical Compression of Deterministic Finite Automata 9

the initial state q0 to v. The key idea is only to add default transitions from
state v to state u if d(u) < d(v). This implies that the matching delay is at most
|S| on any input string S (see, e.g., Aho and Corasick [2]).

Initialize a D2FA D2 with no default transitions. We proceed as follows.

Step 1: Calculate Depth Calculate the depth d(v) of each state v ∈ Q by a
breadth-first traversal of D.

Step 2: Construct Default Transitions For each state u ∈ Q add default
transition (u, v) to D2, where v is the state such that sim(u, v) is maximum
and d(v) < d(u).

Step 3: Construct Labeled Transitions Copy every labeled transition from
D that is not redundant in D2.

Step 1 and 3 uses O(n|Σ|) time to traverse D. Step 2 uses O(n2|Σ|) to compute
the similarity of each pair of states. In total, we use O(n2|Σ|) time.

Fast Compression with Bounded Matching Delay We now speed up the A-DFA
algorithm using sparsification. Let D be the input DFA and let r and k be two
constant, positive integer parameters. We initialize a D2FA D2 with no default
transitions, i.e., we set F (u) = u for each u ∈ Q. The algorithm runs in r rounds,
where each round proceeds as follows.

First, pick k unique random characters c1, . . . , ck ∈ Σ. Then, for each state
v ∈ Q we construct the sequence V = δ(v, c1), . . . , δ(v, ck), and hash V into a
single hash value h(v). We insert v into a table with key h(v). For each unique
hash value hi, we consider the set of states Ci that hash to that value. For
each state u ∈ Ci we pick another state v ∈ Ci uniformly at random. If v has
lower depth and the default transition (u, v) compresses better than the current
default transition of u, i.e., d(v) < d(u) and sim(u, v) > sim(u, F (u)), we update
the default transition of u to point to v in D2, otherwise, we continue. After r
rounds, the algorithm terminates and returns the resulting D2FA D2.

Hashing a state and computing the similarity of the potential new default
transition uses O(k|Σ|) time. Hence, the full algorithm uses O(rkn + rn|Σ|) =
O(n|Σ|) time.

8 Experimental Evaluation

We implemented our methods described in the previous section and measured
their performance on regular expressions extracted from widely used intrusion
detection systems. The implementation is available at https://github.com/
MaxRishoj/fcomp-dfa.

Datasets We extracted our datasets from regular expressions used in the popular
Snort [43], Zeek(formerly Bro) [38], and Suricata [1] intrusion detection systems
(see current homepages for these systems at www.snort.org, zeek.org, and
suricata.io). The Snort and Zeek datasets are extracted from current versions
of the datasets used in most of the previous work.

https://github.com/MaxRishoj/fcomp-dfa
www.snort.org
zeek.org
suricata.io

10 P. Bille, I.L. Gørtz, and M. Pedersen

For each dataset, we extracted prefixes of the rules to generate DFAs of differ-
ent sizes to explore the scalability of our algorithms on DFAs that have between
roughly 1k to 1M states. The details are in the full version of the paper [10]. As
in previous work, we have filtered out some rules that used advanced features.
All regular expressions use an ASCII alphabet size of 256.

Algorithms Tested We evaluate the following algorithms.

D2FA. The algorithm of [29], described in Section 4.
D2FA-Ld. The algorithm of [29] for bounded longest delay, described in Sec-

tion 6 with parameter L = 2.
D2FA-Ld-Cut. The algorithm in Section 6 for bounded longest delay using the

SRG instead of the SSRG.
D2FA-Md. The algorithm of [7, 9] for bounded matching delay, described in

Section 7.
Sparse-D2FA. The algorithm in Section 5.
Sparse-D2FA-Ld. As D2FA-Ld using the SSRG instead of the SRG.
Sparse-D2FA-Ld-Cut. The algorithm in Section 6 for bounded longest delay.
Sparse-D2FA-Md. The algorithm in Section 7 for bounded matching delay.

We use the locality-sensitive hashing scheme from Section 5 without replace-
ment and parameters k = 8 and r = 512. We evaluated several locality-sensitive
hashing schemes, including the one in Section 5 with replacement and min-
hash [13] over the set of outgoing transitions with one or k random permuta-
tions of the universe. We also evaluated several combinations of r and k and
found that k = 8 gave the best compression size. Increasing r results in better
compression size but increases the compression time linearly. Our chosen variant
achieved the best combination of compression size and compression time.

In our longest delay variant, we report results for parameter L = 2. We have
experimented with other values of L but did not observe significant differences
in the relative performances of the algorithm for this variant. We note that the
bounded matching delay variant also appears in a more general version, where
we can tune the overhead of the default transitions (see the journal version of
the result [9]). The version tested here is the simplest version and leads to the
best compression size.

Setup Experiments were run on a machine with an Intel Xeon Gold 6226R
2.9GHz processor and 128GB of memory. The operating system was Scientific
Linux 7.9 kernel version 3.10.0-1160.80.1.el7.x86_64. Source code was compiled
with g++ version 9.4 with options -Wall -O4. The input to each algorithm is a
DFA constructed from a set of regular expressions. We measured the time for
constructing an equivalent D2FA for the input DFA, using the clock function
of the C standard library.

Results We compare the algorithms across the datasets and measure compres-
sion time and compression size (number of states in D2FA as a percent of the

Fast Practical Compression of Deterministic Finite Automata 11

103 104 105 106

Number of states in DFA

10°1

100

101

102

103

S
ec

on
ds

Time

103 104 105 106

Number of states in DFA

0

1

2

3

4

C
om

pr
es

se
d

si
ze

(%
)

Compression
D2FA Sparse-D2FA

103 104 105 106

Number of states in DFA

10°1

100

101

102

103

104

S
ec

on
ds

Time

103 104 105 106

Number of states in DFA

0

2

4

6

8

10

12

C
om

pr
es

se
d

si
ze

(%
)

Compression
D2FA-LD

Sparse-D2FA-LD

D2FA-LD-Cut

Sparse-D2FA-LD-Cut

103 104 105 106

Number of states in DFA

10°1

100

101

102

103

104

S
ec

on
ds

Time

103 104 105 106

Number of states in DFA

0

2

4

6

8

10

12

C
om

pr
es

se
d

si
ze

(%
)

Compression
Sparse-D2FA-MD D2FA-MD

Fig. 2. Results for the Snort dataset on the algorithms for general compression (top),
bounded longest delay (middle), and bounded longest matching delay (bottom). On
the left, we show compression time in seconds vs. the number of states in the input
DFA. On the right, we show the number of transitions in the D2FA as a percent of the
number of transitions in the input DFA.

number of states in the input DFA) for each of the variants (general compres-
sion, longest delay, and bounded matching delay). The relative performance of
our algorithms is similar across the datasets, so we focus on the results for the
Snort dataset shown in Figure 2. The corresponding results for the Suricata and
Zeek datasets are in the full version of the paper [10]. We point out whenever
there are significant differences between observed results across datasets. We
note that the absolute compression size varies significantly across the datasets
and variants. Most instances are highly compressible to around 10% of the orig-
inal DFA (many even in the low single-digit percentages). At the same time, a
single one (bounded matching delay on the Zeek dataset) compresses to around
50 percent on the largest DFAs.

12 P. Bille, I.L. Gørtz, and M. Pedersen

General Compression We compare the D2FA and Sparse-D2FA general com-
pression algorithms. We observe that Sparse-D2FA compresses up to an order
of magnitude faster than D2FA with either no or little loss of compression size.
For DFAs with around 1k states, the compression time is comparable and in-
creases gradually to roughly an order of magnitude for the largest DFAs.

Compression with Bounded Longest Delay We compare the D2FA-Ld, Sparse-
D2FA-Ld, D2FA-Ld-Cut and Sparse-D2FA-Ld-Cut compression algorithms
with bounded longest delay. We observe that D2FA-Ld and Sparse-D2FA-Ld
achieve similar compression times as expected. The compression size achieved
by Sparse-D2FA-Ld is around 10-15% worse in the Snort dataset, roughly
comparable in the Zeek dataset, and around 100% worse in the Suricata dataset.
We believe that the bounded diameter approach in Kumar et al. [29] is highly
sensitive to the greedy choice of edges at each step, leading to the observed
differences in the compression size across the different datasets.

More importantly, we observe that Sparse-D2FA-Ld-Cut compresses up
to an order of magnitude faster than all other algorithms. Sparse-D2FA-Ld-
Cut also achieves a substantially better compression size than D2FA-Ld and
Sparse-D2FA-Ld (except for the Zeek dataset, where the compression size is
comparable). Compared to the dense version D2FA-Ld-Cut, Sparse-D2FA-
Ld-Cut has either no or little loss of compression size.

Compression with Bounded Matching Delay We compare the compression al-
gorithms D2FA-Md and Sparse-D2FA-Md with bounded matching delay. We
observe that Sparse-D2FA-Md compresses up to an order of magnitude faster
than D2FA-Md. The compression size varies depending on the dataset. For
the Snort dataset, Sparse-D2FA-Md achieves 10-15% worse compression size
for DFAs with more than 10k states, for the Zeek dataset, Sparse-D2FA-Md
is comparable, and for the Suricata dataset, Sparse-D2FA-Md achieves 100%
worse compression size for DFAs with more than 10k states. We note that the
absolute compression size varies significantly, which may explain this difference
in relative compression size.

9 Conclusion and Acknowledgements

We presented a simple, practical framework for constructing D2FA based on
locality-sensitive hashing. On DFAs from widely used modern intrusion detec-
tion systems, we achieved compression times of up to an order of magnitude
faster than existing solutions with either no or little loss of compression size.
An interesting open problem is to explore if our new framework can be com-
bined with other DFA compression techniques, such as the ones mentioned in
Section 1.

This paper is inspired by earlier work in an MSc. thesis [24] supervised by
two of the authors. We thank the anonymous reviewers of earlier drafts of this
article for many valuable comments that improved the quality of the work.

Fast Practical Compression of Deterministic Finite Automata 13

References

1. www.suricata.io
2. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.

Commun. ACM 18(6), 333–340 (1975). https://doi.org/http://doi.acm.org/
10.1145/360825.360855

3. Antonello, R., Fernandes, S.F.L., Sadok, D., Kelner, J., Szabó, G.: Determinis-
tic finite automaton for scalable traffic identification: The power of compressing
by range. In: NOMS 2012. pp. 155–162 (2012). https://doi.org/10.1109/NOMS.
2012.6211894

4. Antonello, R., Fernandes, S.F.L., Sadok, D.F.H., Kelner, J., Szabó, G.: Design and
optimizations for efficient regular expression matching in DPI systems. Comput.
Commun. 61, 103–120 (2015). https://doi.org/10.1016/j.comcom.2014.12.011

5. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state
merging. In: Proc. 26th INFOCOM. pp. 1064–1072 (2007). https://doi.org/10.
1109/INFCOM.2007.128

6. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet in-
spection. In: Proc. 3rd CoNEXT conference. pp. 1–12 (2007)

7. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression
evaluation. In: Proc. ANCS 2007. pp. 145–154 (2007). https://doi.org/10.1145/
1323548.1323573

8. Becchi, M., Crowley, P.: Efficient regular expression evaluation: theory to prac-
tice. In: Proc. ANCS 2008. pp. 50–59 (2008). https://doi.org/10.1145/1477942.
1477950

9. Becchi, M., Crowley, P.: A-DFA: A time- and space-efficient DFA compression
algorithm for fast regular expression evaluation. ACM Trans. Archit. Code Optim.
10(1), 4:1–4:26 (2013). https://doi.org/10.1145/2445572.2445576

10. Bille, P., Gørtz, I.L., Pedersen, M.R.: Fast practical compression of deterministic
finite automata. arXiv:2306.12771 (2024)

11. Bille, P., Gørtz, I.L., Puglisi, S.J., Tarnow, S.R.: Hierarchical relative lempel-ziv
compression. In: Proc. 21st SEA (2023)

12. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Proc. 19th CRYPTO. vol. 1666, pp. 216–233
(1999). https://doi.org/10.1007/3-540-48405-1_14

13. Broder, A.Z.: On the resemblance and containment of documents. In: Proc. SE-
QUENCES. pp. 21–29 (1997)

14. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000). https://doi.org/10.
1006/jcss.1999.1690

15. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. In: Proc. 33rd ISCA. pp. 191–202
(2006). https://doi.org/10.1109/ISCA.2006.7

16. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proc.
34th STOC. pp. 380–388 (2002). https://doi.org/10.1145/509907.509965

17. Ding, S., Attenberg, J., Suel, T.: Scalable techniques for document identifier as-
signment in inverted indexes. In: Proc. 19th WWW. pp. 311–320 (2010)

18. Douglis, F., Iyengar, A.: Application-specific delta-encoding via resemblance de-
tection. In: Proc. USENIX ATC, General Track 2003. pp. 113–126 (2003), http:
//www.usenix.org/events/usenix03/tech/douglis.html

https://doi.org/http://doi.acm.org/10.1145/360825.360855
https://doi.org/http://doi.acm.org/10.1145/360825.360855
https://doi.org/10.1109/NOMS.2012.6211894
https://doi.org/10.1109/NOMS.2012.6211894
https://doi.org/10.1016/j.comcom.2014.12.011
https://doi.org/10.1016/j.comcom.2014.12.011
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.1145/1323548.1323573
https://doi.org/10.1145/1323548.1323573
https://doi.org/10.1145/1477942.1477950
https://doi.org/10.1145/1477942.1477950
https://doi.org/10.1145/2445572.2445576
https://doi.org/10.1145/2445572.2445576
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1006/jcss.1999.1690
https://doi.org/10.1006/jcss.1999.1690
https://doi.org/10.1109/ISCA.2006.7
https://doi.org/10.1109/ISCA.2006.7
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
http://www.usenix.org/events/usenix03/tech/douglis.html

14 P. Bille, I.L. Gørtz, and M. Pedersen

19. Farley, A.M., Hedetniemi, S.T., Proskurowski, A.: Partitioning trees: Matching,
domination, and maximum diameter. Int. J. Parallel Program. 10(1), 55–61 (1981).
https://doi.org/10.1007/BF00978378

20. Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., Pietro, A.D.: An im-
proved DFA for fast regular expression matching. Comput. Commun. Rev. 38(5),
29–40 (2008). https://doi.org/10.1145/1452335.1452339

21. Ficara, D., Pietro, A.D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G.: Dif-
ferential encoding of dfas for fast regular expression matching. IEEE/ACM Trans.
Netw. 19(3), 683–694 (2011). https://doi.org/10.1109/TNET.2010.2089639

22. Gong, L., Wang, C., Xia, H., Chen, X., Li, X., Zhou, X.: Enabling fast and memory-
efficient acceleration for pattern matching workloads: The lightweight automata
processing engine. IEEE Trans. Computers 72(4), 1011–1025 (2023). https://
doi.org/10.1109/TC.2022.3187338

23. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012).
https://doi.org/10.4086/toc.2012.v008a014

24. Hemmingsen, M., Lam, B.W.: Fast Compression of DFAs for Intrusion Detection
Systems. Master’s thesis, Tech. Uni. Denmark. (2021)

25. Kong, S., Smith, R., Estan, C.: Efficient signature matching with multiple alphabet
compression tables. In: Proc. 4th SECURECOMM. p. 1 (2008). https://doi.org/
10.1145/1460877.1460879

26. Krcál, L., Holub, J.: Incremental locality and clustering-based compression. In:
DCC 2015. pp. 203–212 (2015). https://doi.org/10.1109/DCC.2015.23

27. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Amer. Math. Soc. 7(1), 48–50 (1956)

28. Kulkarni, P., Douglis, F., LaVoie, J.D., Tracey, J.M.: Redundancy elimination
within large collections of files. In: Proc. USENIX ATC, General Track 2004. pp.
59–72 (2004)

29. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.S.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In:
Proc. SIGCOMM 2006. pp. 339–350 (2006). https://doi.org/10.1145/1159913.
1159952

30. Kumar, S., Turner, J.S., Williams, J.: Advanced algorithms for fast and scalable
deep packet inspection. In: Proc. ANCS 2006. pp. 81–92 (2006). https://doi.org/
10.1145/1185347.1185359

31. Liu, A.X., Torng, E.: An overlay automata approach to regular expression match-
ing. In: Proc. 33rd INFOCOM. pp. 952–960 (2014). https://doi.org/10.1109/
INFOCOM.2014.6848024

32. Liu, S., Su, S., Liu, D., Huang, Z., Xiao, M.: Efficient compression algorithm for
ternary content addressable memory-based regular expression matching. Electron-
ics Letters 53(3), 152–154 (2017)

33. Matousek, D., Kubis, J., Matousek, J., Korenek, J.: Regular expression matching
with pipelined delayed input dfas for high-speed networks. In: Proc. ANCS 2018.
pp. 104–110 (2018). https://doi.org/10.1145/3230718.3230730

34. Matousek, D., Matousek, J., Korenek, J.: High-speed regular expression matching
with pipelined memory-based automata. In: Proc. 26th FCCM. p. 214 (2018).
https://doi.org/10.1109/FCCM.2018.00048

35. Meiners, C.R., Patel, J., Norige, E., Torng, E., Liu, A.X.: Fast regular expres-
sion matching using small tcams for network intrusion detection and prevention
systems. In: 19th USENIX Security. pp. 111–126 (2010)

https://doi.org/10.1007/BF00978378
https://doi.org/10.1007/BF00978378
https://doi.org/10.1145/1452335.1452339
https://doi.org/10.1145/1452335.1452339
https://doi.org/10.1109/TNET.2010.2089639
https://doi.org/10.1109/TNET.2010.2089639
https://doi.org/10.1109/TC.2022.3187338
https://doi.org/10.1109/TC.2022.3187338
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1145/1460877.1460879
https://doi.org/10.1145/1460877.1460879
https://doi.org/10.1109/DCC.2015.23
https://doi.org/10.1109/DCC.2015.23
https://doi.org/10.1145/1159913.1159952
https://doi.org/10.1145/1159913.1159952
https://doi.org/10.1145/1185347.1185359
https://doi.org/10.1145/1185347.1185359
https://doi.org/10.1109/INFOCOM.2014.6848024
https://doi.org/10.1109/INFOCOM.2014.6848024
https://doi.org/10.1145/3230718.3230730
https://doi.org/10.1145/3230718.3230730
https://doi.org/10.1109/FCCM.2018.00048
https://doi.org/10.1109/FCCM.2018.00048

Fast Practical Compression of Deterministic Finite Automata 15

36. Ouyang, Z., Memon, N.D., Suel, T., Trendafilov, D.: Cluster-based delta com-
pression of a collection of files. In: Proc. 3rd WISE. pp. 257–268 (2002). https:
//doi.org/10.1109/WISE.2002.1181662

37. Patel, J., Liu, A.X., Torng, E.: Bypassing space explosion in high-speed regular
expression matching. IEEE/ACM Trans. Netw. 22(6), 1701–1714 (2014). https:
//doi.org/10.1109/TNET.2014.2309014

38. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Networks 31(23-24), 2435–2463 (1999)

39. Peel, A., Wirth, A., Zobel, J.: Collection-based compression using discovered long
matching strings. In: Proc. 20th CIKM. pp. 2361–2364 (2011). https://doi.org/
10.1145/2063576.2063967

40. Prim, R.C.: Shortest connection networks and some generalizations. The Bell Sys-
tem Technical Journal 36(6), 1389–1401 (1957)

41. Prithi, S., Sumathi, S.: A survey on recent dfa compression techniques for deep
packet inspection in network intrusion detection system. Journal of Electrical En-
gineering 17(3), 14–14 (2017)

42. Qi, Y., Wang, K., Fong, J., Xue, Y., Li, J., Jiang, W., Prasanna, V.K.: FEACAN:
front-end acceleration for content-aware network processing. In: Proc. 30th INFO-
COM. pp. 2114–2122 (2011). https://doi.org/10.1109/INFCOM.2011.5935021

43. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proc. 13th
LISA. pp. 229–238 (1999)

44. Roussev, V.: Data fingerprinting with similarity digests. In: IFIP Int. Conf. Dig-
ital Forensics 2010. vol. 337, pp. 207–226 (2010). https://doi.org/10.1007/
978-3-642-15506-2_15

45. Shankar, S.S., Lin, P., Herkersdorf, A., Wild, T.: A divide and conquer state group-
ing method for bitmap based transition compression. In: Proc. 18th PDCAT. pp.
400–406 (2017). https://doi.org/10.1109/PDCAT.2017.00071

46. Shilane, P., Huang, M., Wallace, G., Hsu, W.: Wan-optimized replication of backup
datasets using stream-informed delta compression. ACM Trans. Storage 8(4), 13:1–
13:26 (2012). https://doi.org/10.1145/2385603.2385606

47. Tang, Q., Jiang, L., Dai, Q., Su, M., Xie, H., Fang, B.: RICS-DFA: a space and time-
efficient signature matching algorithm with reduced input character set. Concurr.
Comput. Pract. Exp. 29(20) (2017). https://doi.org/10.1002/cpe.3940

48. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient
string matching algorithms for intrusion detection. In: Proc. 23rd INFOCOM. pp.
2628–2639 (2004). https://doi.org/10.1109/INFCOM.2004.1354682

49. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: A similarity-locality based near-exact
deduplication scheme with low RAM overhead and high throughput. In: USENIX
ATC 2011 (2011)

50. Xu, C., Chen, S., Su, J., Yiu, S., Hui, L.C.K.: A survey on regular expres-
sion matching for deep packet inspection: Applications, algorithms, and hard-
ware platforms. IEEE Commun. Surv. Tutorials 18(4), 2991–3029 (2016). https:
//doi.org/10.1109/COMST.2016.2566669

51. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient
regular expression matching for deep packet inspection. In: Proc. ANCS 2006. pp.
93–102 (2006). https://doi.org/10.1145/1185347.1185360

https://doi.org/10.1109/WISE.2002.1181662
https://doi.org/10.1109/WISE.2002.1181662
https://doi.org/10.1109/TNET.2014.2309014
https://doi.org/10.1109/TNET.2014.2309014
https://doi.org/10.1145/2063576.2063967
https://doi.org/10.1145/2063576.2063967
https://doi.org/10.1109/INFCOM.2011.5935021
https://doi.org/10.1109/INFCOM.2011.5935021
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1109/PDCAT.2017.00071
https://doi.org/10.1109/PDCAT.2017.00071
https://doi.org/10.1145/2385603.2385606
https://doi.org/10.1145/2385603.2385606
https://doi.org/10.1002/cpe.3940
https://doi.org/10.1002/cpe.3940
https://doi.org/10.1109/INFCOM.2004.1354682
https://doi.org/10.1109/INFCOM.2004.1354682
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1145/1185347.1185360
https://doi.org/10.1145/1185347.1185360

