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Sparse Regular Expression Matching*

Philip Billef Inge Li Ggrtz*

Abstract

A regular expression specifies a set of strings formed by single characters combined with concatenation,
union, and Kleene star operators. Given a regular expression R and a string @, the regular expression matching
problem is to decide if @ matches any of the strings specified by R. Regular expressions are a fundamental
concept in formal languages and regular expression matching is a basic primitive for searching and processing
data. A standard textbook solution [Thompson, CACM 1968] constructs and simulates a nondeterministic
finite automaton, leading to an O(nm) time algorithm, where n is the length of  and m is the length of R.
Despite considerable research efforts only polylogarithmic improvements of this bound are known. Recently,
conditional lower bounds provided evidence for this lack of progress when Backurs and Indyk [FOCS 2016]
proved that, assuming the strong exponential time hypothesis (SETH), regular expression matching cannot

be solved in O((nm)*~¢), for any constant ¢ > 0. Hence, the complexity of regular expression matching is
essentially settled in terms of n and m.

In this paper, we take a new approach and introduce a density parameter, A, that captures the amount of
nondeterminism in the NFA simulation on . The density is at most nm + 1 but can be significantly smaller.
Our main result is a new algorithm that solves regular expression matching in

o (Aloglog% +n+m)

time.
This essentially replaces nm with A in the complexity of regular expression matching. We complement
our upper bound by a matching conditional lower bound that proves that we cannot solve regular expression

matching in time O(A'™¢) for any constant ¢ > 0 assuming SETH.

The key technical contribution in the result is a new linear space representation of the classic position
automaton that supports fast state-set transition computation in near-linear time in the size of the input and
output state sets. To achieve this we develop several new insights and techniques of independent interest,
including new structural properties of the parse trees of regular expression, a decomposition of state-set
transitions based on parse trees, and a fast batched predecessor data structure.

1 Introduction

A regular expression R specifies a set of strings formed by characters from an alphabet Y combined with
concatenation (®), union (|), and Kleene star (*) operators. For instance, (a|(b® a))* describes the set of strings of
as and bs such that every b is followed by an a. Given a regular expression R and string @), the regular expression
matching is to decide if ) matches any of the strings specified by R. Regular expressions are a fundamental concept
in formal language theory introduced by Kleene in the 1950’ties [48] and regular expression matching is a basic tool
in computer science for searching and processing text. Standard tools such as grep and sed provide direct support
for regular expression matching in files, and the scripting language perl [72] is a full programming language
designed to support regular expression matching easily. Regular expression matching appears in many large-scale
data processing applications such as internet traffic analysis [44,49, 78], data mining [31], data bases [52,60],
computational biology [63], and human-computer interaction [47].

A classic textbook algorithm for regular expression matching, due to Thompson [70] from 1968, constructs
and simulates a nondeterministic finite automaton (NFA) A in O(nm) time, where n is the length of @ and
m is the number of character symbols in R. The simulation processes @) from left to right and computes a
sequence of sets of states Sp,...,S5, such that S; is the set of states in A to which there is a path from the
initial state that matches Q[1..7]. In 1985 Galil [29] asked if a faster algorithm could be obtained. A sequence of
results [10,11,12,62] improved the O(nm) bound using tabulation or word-level parallelism leading to solutions

using either O(nm ll‘z)ggﬂg;‘ +n+m) [12] or O(nmlo% + n + mlogm) time [10] time, where w is the word length.
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Figure 1: (a) The position automaton for the regular expression a*a*a*a*. (b) The position automaton for
a(a®)(aba)*(blc).

Finally, Bille and Thorup [13] gave an algorithm using O(nklo% + n + mlogk) time, where k < m is the number
of strings appearing in the regular expression (see also [8,20]).

The above solutions are based on the classic NFA simulation algorithm from Thompson’s original algorithm [70]
and thus achieve the same O(nm) time with some polylogarithmic factors shaved. Recently, conditional lower
bounds have provided evidence for the lack of more significant progress. First, Backurs and Indyk [7] showed
in 2016 that we cannot solve regular expression matching in time O((nm)!=€), for € > 0, assuming the strong
exponential time hypothesis (SETH) [43]. Then, in 2018 Abboud and Bringmann [1] showed that we cannot solve
the problem in time O(nm/log” ¢ n), for € > 0, assuming the Formula SAT hypothesis [1]. These results, together
with Bringmann, Larsen, and Grgnlund [15] and Schepper [67], also studied subclasses of regular expression
matching depending on the structure of the operators in the expression, leading to a classification of the complexity
of each such subclass. In summary, the complexity of regular expression matching is essentially settled in terms of
n and m.

In this paper, we take a new approach and introduce a density parameter, A, that captures the amount of
nondeterminism in the NFA simulation on ). The density is at most nm + 1 but can be significantly smaller. Our
main result is a new algorithm that solves regular expression matching in

(@) (Aloglog% +n+m)

time. This essentially replaces nm with A in the complexity of regular expression matching. We complement our
upper bound by a conditional lower bound that proves that we cannot solve regular expression matching in time
O(A'~¢) for any constant € > 0 assuming SETH.

1.1 Sparse Regular Expression Matching Recall that the NFA simulation algorithm constructs a sequence
So, ..., Sy of state sets such that S; is the set of states in the automaton to which there is a path from the initial
state that matches Q[1..7]. The goal of this paper is to explore the complexity of regular expression matching if
these sets are sparse. More precisely, let (R, @) be an instance of the regular expression matching and let A be a
finite automaton that accepts the set of strings defined by R, and let Sy, ..., .S, be the sequence of sets of states
in the simulation of A on Q). We define the density of (R, Q) wrt. A to be

n
Akg =D ISi,

i=0
i.e., the density is the total size of the state sets in the simulation of A on Q). We will focus on density wrt. to
the classic position automaton (also known as Glushkov’s automaton), denoted Apes, proposed by Glushkov in
1960 [34,35] and independently by McNaughton and Yamada [57]. For most NFA constructions [4, 17,33, 70]
(including several textbook constructions [2,3,24,51,56,69,77]), the density wrt. to Apes is a lower bound on
the density wrt. to the other NFA construction. The key observation is that the set of states in Apys naturally
corresponds to a subset of the set of states in the other constructions. For instance, we can convert Thompson’s
NFA, Ar, into the corresponding position automaton, Apes, by carefully contracting e-transitions [4,17,33]. This
implies Ag:’g < AQTQ and thus if an algorithm is efficient in terms of Aé:’gj the same algorithm is also efficient in
terms of AQ’TQ. Hence, for the rest of the paper, we define the density, denoted Ag ¢, to be gf’& and when R
and @ are clear from the context we simply write A.
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Intuitively, the density captures the amount of nondeterminism in the simulation of Apys. At one extreme
A = n + 1 when all of the n + 1 state sets are singletons (assuming R matches @) and at the other extreme
A = nm+ 1 when all of the state sets, except the special Sy, consists of all states. The density can be significantly
smaller than nm in important practical scenarios. For instance, in internet traffic analysis a stream is matched
against a large set of rules specified as a regular expression. Typically, most of these packets will only match a
small subset of the rules implying a small density of the problem instance.

A related concept is deterministic regular expressions (also known as 1-unambiguous regular expressions).
These are defined as regular expressions for which Apys is deterministic, that is, all state-set transitions
on any singleton state set result in a singleton state set. Deterministic regular expressions are widely
used in schema languages [14, 19, 30, 61] and have been extensively studied in complexity and automata
theory [18,19,23,36,54,55,65]. Groz and Maneth [36] showed how to solve the deterministic regular expression
matching problem in O(nloglogm + m) time. Note that if the regular expression is deterministic we always have
that A <n+1.

1.2 Sparse State-Set Transitions Given a set of S of states and a character « a state-set transition, denoted
0(S, a), is the set of states reachable from S via paths of transitions in the NFA that match « (for e-free NFAs the
paths are always single transitions). We can implement the NFA simulation using n state-set transitions by setting
So to be the initial state, and computing S; = §(S;—-1,Q[é]) for i = 1,...,n. In our scenario, we are interested in a
compact representation of Apes that supports fast sparse state-set transitions, i.e., a state-set computation that is
efficient in terms of the sizes of the input set |S| and the output set |6(S, r)|. Since A is the total size of state sets
in the simulation this implies an efficient algorithm for sparse regular expression matching.

Surprisingly, few results are known for this problem. If we store Apes explicitly we can compute §(S, ) by
computing the union of the endpoints of transitions out of states in S labeled «. This leads to a data structure
that uses O(m?) space and supports state-set transitions in O(|S||§(S, a)|) time. Note that since endpoints of the
transition may overlap (see Figure 1(a)) we may need to explore Q(|S]|0(S, «)|) transitions in general. A similar
worst-case trade-off also holds for the many variants of the position automaton, see e.g. [5,20,42,59]. While e-free
NFAs with fewer transitions are known [32,37,40,68] these do not appear to translate to simulations for Apes nor
do they improve the above time bound.

Alternatively, we can store Thompson’s automaton, At, and use the mapping of states mentioned above to
convert state-set transitions on At to state-set transitions on Apes. Since At is not an e-free automaton we can
compute a state-set transition using a breadth-first search to explore all paths from S that match «. This uses
O(m) space and O(m) time. However, it is easy to see that with this approach we may need to traverse large
subgraphs of 2(m) transitions labeled € even if the sets |S| or 6(.5, ) are sparse. Indeed, the efficient solutions in
terms of n and m are based on improving state-set transitions in At for the dense case by polylogarithmic factors.

1.3 Results Our main result is an efficient algorithm for sparse regular expression matching.

THEOREM 1.1. Given a reqular expression R with m positions and a string Q of length n, we can solve the reqular
expression matching problem in space O(m) and time

O (Aloglog% +n+m> .
Since the density A is at most nm + 1, this essentially replaces nm with A in the complexity of regular expression
matching. As an immediate Corollary of Theorem 1.1 we obtain a solution to deterministic regular expression
matching using O(nloglogm + m) time and O(m) space, thus matching the best known bound of Groz and
Maneth [36]. We complement Theorem 1.1 with an essentially matching conditional lower bound.

THEOREM 1.2. For any A = n'*™7, for any constant 0 < v < 1, there exists no O(A'~¢) time algorithm for
reqular expression matching for any constant € > 0 assuming SETH.

Theorem 1.1 is based on a compact representation of the position automaton that supports efficient sparse
state-set transitions.

THEOREM 1.3. Given a regular expression R with m positions, we can represent the position automaton in O(m)
space and preprocessing time, such that given any set of states S in sorted order and a character a, we can compute
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the state-set transition 6(S,«) in time

m
o) (|S| loglogm +16(S, a)|) :

The output of the state-set transition is also reported in sorted order.

The sorted order of S and §(.S, @) in Theorem 1.3 refers to the ordering of the corresponding positions in R from left
to right (without this condition the loglog(m/|S|) factor becomes loglog |S])). Theorem 1.3 significantly improves
the previous O(|S]]d(S, @)|) and O(m) time bounds. Since any solution must use at least Q(|S| + [0(S, a)|) to read
the input and write the output the bound is almost optimal.

1.4 Techniques We develop several new insights and techniques of independent interest, including new structural
properties of the parse trees of regular expressions, a novel decomposition of state-set transitions based on parse
trees, and a fast batched predecessor data structure.

We show how to decompose any state-set transition §(S,«) into a set of internal transitions on a set of
O(|S| + 16(S, a)|) transition nodes of the parse tree of R. We have two types of internal transitions: one for ® and
one for *. Intuitively, if R(v) = R(u) ® R(w) then the internal ®-transition of v wrt. « are all the states/positions
in R(w) reachable from a state/position in R(u) using a transition labeled «. The internal *-transitions are more
complicated to describe, but both types of internal transitions are independent of the state set S. We show how to
represent R in linear space to efficiently compute internal transitions for any node v and character a.

We identify the set of transition nodes for 6(S, ) by first computing a compact representation of a transition
tree, which encodes all paths in R containing transition nodes in O(|S|) space. Then, we find the set of transition
nodes using this tree. The key challenge is that even though the representation of the transition tree is small
the tree itself can be significantly larger and contain many nodes that are irrelevant for the character « and/or
irrelevant for the state set S. Using the structural properties of the parse tree we show how to overcome the
challenges and efficiently find the set of transition nodes for any S and a. Computing the internal transitions of
all transition nodes could take too long, as the output of these overlap and we could end up using Q(]S]]6(S, a)|)
time. However, we prove that these output sets form a laminar family and show how to divide the computations
of the internal transitions into computations on a bounded number of non-overlapping intervals.

In combination, the above techniques lead to an O(m) space representation of R that supports state-set
transitions in O(|S]loglogm + |§(S, a)|) time. The bottleneck here is computing a O(|S]) predecessor queries in
O(loglogm) time. We present a simple two-level data structure that solves this batched predecessor problem
in O(]S]loglog ﬁ) time while maintaining linear space leading to our final structure. Using this solution for
sparse-set transitions to implement the NFA simulation implies our main result for sparse regular expression
matching of Theorem 1.1.

The lower bound follows from a reduction from the orthogonal vectors problem (OVP). We prove that given
A =n't7, for any constant 0 < v < 1, we can construct an instance of regular expression matching such that the
existence an O(A~¢) algorithm for regular expression matching violates SETH. The reduction is based on the
reduction by Backurs and Indyk [7] and is a fairly straightforward generalization of their lower bound.

1.5 Related Work Another NFA construction, by Chang and Paige [21], considered compact representations
of Apys that support efficiently implementing NFA to DFA conversion by subset construction. They presented a
linear space representation that supports efficiently computing the set of states S’ reachable via any character
from a state-set S in time O(|S| + |S’|). Since S’ can be much larger than §(S, «) this does not imply an efficient
sparse state-set transition.

Some measures of nondeterminism of NFAs have been studied in automata theory, e.g., width, ambiguity,
string tree width, string path width, and cycle height [39,45,46,50,53]. These focus on the complexity of computing
measures of the nondeterminism of a given NFA. In contrast, we study the complexity of regular expression
matching in terms of the nondeterminism of a simulation on a given NFA and input string.

As mentioned, Bille and Thorup [13] considered the number of strings & < m in the regular expression as a
parameter for regular expression matching. They gave an algorithm using O(nkloq% +n+mlogk) = O(nk+mlogk)
time. It is straightforward to construct instances of regular expression matching (for a matching regular expression)
such that either nk = ©(nm) and A = ©(n) or nk = O(n) and A = ©(nm) hence this result is incomparable
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to ours. Cotumaccio, D’Agostino, Policriti, and Prezza [22] studied the indexing version of regular expressions,
where the goal is to preprocess a regular expression in order to allow for fast matching given a query string. They
considered the co-lexicographic width of an automaton. Applying their construction in the matching setting gives
an algorithm that runs in O(m? + np? log(p - o)), where p is the width of the co-lexicographic order and m? comes
from the preprocessing of the automaton.

Several papers have studied the related problem of string matching in labeled graphs. For example, Rizzo,
Tomescu, and Policriti [66] studied the problem of pattern matching on a labeled graph parameterized in the size
of the labeled direct product graph, and Nellore, Nguyen, and Thompson [64] studied string matching in graphs
parameterized by the size of the powerset automaton.

Finally, we note that sparsity is a well-studied phenomenon in a wide range of areas in computer
science. In particular, sparsity has been extensively studied for other classic pattern matching problems, see,
e.g., [6,27,28,41,73,74).

1.6 Outline We review regular expressions and automata in Section 2 and the parse tree view of regular
expressions in Section 3. We introduce internal transitions, state-set decompositions, and transition trees in
Section 4 and present our main algorithm for sparse state-set transitions in Section 5. In Section 6, we present the
improved batched predecessor data structure. We use this to obtain the final result for sparse state-set transitions
of Theorem 1.3 which we then use to obtain Theorem 1.1. Finally, we show the lower bound of Theorem 1.2 in
Section 7.

2 Regular Expressions and Automata

We briefly review the classical concepts used in the paper. For more details see, e.g., Aho et al. [2].

Regular Expressions We consider the set of non-empty regular expressions over an alphabet X, defined
recursively as follows. If & € ¥ U {e} then « is a regular expression, and if S and T are regular expressions then
so is the concatenation, (S) ® (T), the union, (S)|(T), and the star, (S)*. We often omit the concatenation ®
when writing regular expressions. The language L(R) generated by a regular expression R is defined as follows.
If « € ¥ U {e}, then L(a) is the set containing the single string «. If S and T are regular expressions, then
L(S®T)=L(S)® L(T), that is, any string formed by the concatenation of a string in L(.S) with a string in L(T),
L(S)|L(T) = L(S) U L(T), and L(S*) = ;>0 L(S)*, where L(S)" = {e} and L(S)" = L(S)"~' ® L(9), for i > 0.

Finite Automata A finite automaton is a tuple A = (V, E, X, 0, ®), where V is a set of nodes called states,
E C (VxV xXU({e}) is a set of directed edges between states called transitions each labeled by a character from
Y U{e}, © CVis a set of start states, and ® C V is a set accepting states. In short, A is an edge-labeled directed
graph with designated subsets of start and accepting nodes. A is a deterministic finite automaton (DFA) if A does
not contain any e-transitions, all outgoing transitions of any state have different labels, and there is exactly one
start state. Otherwise, A is a nondeterministic finite automaton (NFA).

Given a string (Q and a path p in A we say that p and @ match if the concatenation of the labels on the
transitions in p is ). Given a state s in A and a character a we define the state-set transition d4(s,a) to be the
set of states reachable from s through paths matching a (note that the paths may include transitions labeled
€). For a set of states S we define §4(S,a) = J,cg0a(s,a). We say that A accepts a string @ if there is a path
from a state in © to a state in ® that matches Q. Otherwise, A rejects Q. We can use a sequence of state-set
transitions to test acceptance of a string @ of length n by computing a sequence of state-sets So, ..., Sy, given by
So=104(0,¢) and S; = 54(Si-1,Qlt]), i = 1,...,n. We have that ® NS, # 0 iff A accepts Q.

The Position Automaton Given a regular expression R, we can construct an NFA accepting precisely the
strings in L(R) by several classic methods [34,57,70]. In particular, Glushkov gave an important construction
called the position automaton or Glushkov automaton. The position automaton is an e-free NFA consisting of only
m + 1 states and O(m?) transitions (See Figure 1). Each state except the start state corresponds to a position.
Intuitively, each state-set in a state-set simulation is the set of positions in R that correspond to a match of a
prefix of Q.

We review the details of the position automaton in the following. Let R be a regular expression with m
character symbols from an alphabet ¥. The position of a character in R is the index of the character in the
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[ v ] first(v) [ ast(v) ] [ p [ follow(vy,p) [ follow(vs,p) |

U1 {pl} {p67p7} P1 {p2,P37p67p7} {p2=p3}
va | {p1} | {p1,p2;ps} P2 | {p2,P3,P6,P7} {p2, 3}
v | {pe,p7} | {ps.pr} 3 {pa} {p4}
Vg {Z)z,p:s} {p27P5} P4 {Ps} {Ps}
Us {Pz} {p'z} Ps {P371067P7} {P3}
Vs {ps } {p5 } Ps € -

v7 {p3 } {p5 } pr € -

vs | {pa} {ps}

Figure 2: The parse tree for the expression a(a*)(aba)*(b|c), the corresponding first and last sets, and the follow
sets for v; and ws.

left-to-right order among the characters in R. The set of positions in R, denoted Pos(R), is the set {1,...,m}.
The label of a position p, denoted label(p), is the character at position p. The subset of positions labeled « is
denoted Pos, (R). When R is clear from the context we abbreviate Pos(R) to phb Pos.

The marked reqular expression of R, denoted R, is obtained from R by subscripting each character in R with
its position. Similarly, the marked alphabet, denoted X, is obtained from ¥ by adding subscripts. The marked
regular expression R defines the language L(R) over the marked alphabet 3. Note that Pos(R) = Pos(R). Given
a position p we define label(p) to be the label of p in R. The first and last set of R represent the positions that

match the first and last character, respectively, in some string in L(R). Given a position p, the follow set of R and

p is the set of positions that can follow a position p in L(R). More precisely,

first(R) = {p € Pos(R) | 3s € &', Tabel(p) © s € L(R))}
last(R) = {p € Pos(R) | 3s € ", s ® label(p) € L(R))}
follow(R,p) = {q € Pos(R) | 3s,t € &, s ® label(p) ® label(q) ® t € L(R))}

We then define the position automaton for R as the NFA A = (V, E, {0}, F'), where
V = Pos(R) U {0},
E = {(0,q,label(q)) | € first(R)} U | ] {(p. ¢, 1abel(q)) | ¢ € follow(R, p)}

p€EPos

Fo {0} Ulast(R) 1if e € L(R),
| last(R) otherwise

3 Regular Expressions as Trees

Throughout the rest of the paper, let R be a regular expression with m positions and let § denote the state-
set transition function of the position automaton for R. For simplicity in the presentation, we will focus on
implementing § on the positions of R and ignore the extra start state of the position automaton. The extra start
state is straightforward to represent with additional linear space and is only needed in the initial step of state-set
simulations.

We identify regular expressions by their parse trees (see Figure 2). Note that the leaves in left-to-right order
are the positions. We call the three types of internal nodes ®-nodes, *-nodes, and |-nodes. For a |-node or ®-node
v the left and right child are denoted left(v) and right(v), respectively, and for a *-node the single child is denoted
left(v). The depth of a node v in R is the number of edges on the path from the root of R to v. We denote the
subtree (equivalently subexpression) rooted at a node v by R(v). If uw € R(v) then v is an ancestor of u, denoted
v = u, and if u € R(v) and u # v then v is a proper ancestor of u, denoted v < u. If v is a (proper) ancestor of u
then w is a (proper) descendant of v. A node w is a common ancestor of u and v if it is an ancestor of both u and
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v. The lowest common ancestor of u and v, Ica(u,v), is the common ancestor of u and v of greatest depth. The
lowest star ancestor of a node v, denoted parent*(v), is the lowest ancestor of v that is a *-node.

We extend the definition of labels to internal nodes. For each internal node v, the label of v, denoted label(v),
is a set of characters such that a € label(v) iff v = Ica(p, ¢) for some positions p and g both labeled «. In Figure 2,
label(vg) = {a} since vy = Ica(py, p2) and label(p;) = label(py) = {a}. Since the total number of internal nodes
containing label « is |Pos,| — 1 the total size of all labels is O(m). For a node v we extend our notation to define
Pos(v), first(v), last(v), and follow(v, p) to denote the sets on the subexpression R(v) (see Figure 2).

In our setting, we will often view the first and last sets from the perspective of a single position p and
consider the nodes for which p appears in the corresponding first and last sets, respectively. Specifically,
we define the first extent and last extent of a position p, respectively, to be the set of nodes in R given
by firstextent(p) = {v | p € first(v)} and lastextent(p) = {v | p € last(v)}. Furthermore, for a set
of positions P, we write firstextent(P) = (J,p firstextent(p) and lastextent(P) = J p lastextent(p). For
instance, in Figure 2 we have firstextent({ps,ps}) = {ps,v7,v6,v4,06,v3}. We define the first extent and
last extent of an internal node v, to be the sets firstextent(v) = {u | v <X v and u € firstextent(Pos(v))} and
lastextent(v) = {u | u = v and u € lastextent(Pos(v))}, respectively.

The first sets and the last sets, respectively, form a laminar family. That is, for any two nodes in the parse
tree, their first sets, respectively, last sets, are either disjoint or one is contained in the other. That implies that
the set of nodes in firstextent(p), respectively, lastextent(p), forms a path from position p to an ancestor of p.

LEMMA 3.1. Let p be a position in a regular expression R and let v and u be nodes in R such that u < v < p. If
u € firstextent(p), then v € firstextent(p) and if u € lastextent(p), then v € lastextent(p).

Proof. We have that R(v) is a subexpression of R(u) and p is a position in R(v). Then, if p € first(u) then
p € first(v). Similarly, if p € last(u) then p € last(v). ad

4 Internal Transitions, State-Set Decompositions, and Transition Trees

We now introduce the main structural properties of state-set transitions that we need for our fast sparse state-set
transition algorithm in Section 5. We first characterize state-set transitions in the position automaton in terms of
firstextent and lastextent using the following important property.

LEMMA 4.1. Let p € Pos and q € Pos, and v =lca(p,q). Then, q € §(p, ) iff either
(i) v is a ®-node, left(v) € lastextent(p), and right(v) € firstextent(q), or
(7i) parent*(v) € lastextent(p) N firstextent(q).

Lemma 4.1 has appeared in various forms in earlier work [21,36,65]. For our purposes, we state it in terms of
lowest common ancestors and first extents and last extents. Lemma 4.1 states that a position ¢ can only appear in
d(p, @) through a ®-node or a x-node. We write g € 6°(p, a) if (i) is satisfied and ¢ € §*(p, @) if (ii) is satisfied.

4.1 Internal Transitions Given an internal node v, an internal transition on v and a character « will correspond
to the conditions on ¢ and v in Lemma 4.1 while ignoring the condition on p. In general, we will also specify a
range of positions we are interested in. Formally, given an internal node v, a character «, and positions [ and r,
define the internal O-transition and internal *-transition, denoted §° (v, ) and §*(v, @), respectively, as follows.
o)

Ot

Op1,r (v, @) = {q € Posq N Pos(v) | parent”(v) € firstextent(q) and ¢ € [I,7]} if v is a *-node

(v, ) = {q € Pos, | right(v) € firstextent(q) and ¢ € [I,7]} if v is a ®-node

When the range includes all positions we drop the subscript, that is, §°(v,a) = 62 ,(v,a) and §*(v,a) =

(1,m]

[1’m](v,a). For instance, in Figure 2 we have 6% (va,a) = {p2,ps}, 6875](112,00 = {ps}, 69(v1,¢) = {pr} and
6*(vz,a) = {ps}.

4.2 Transition Nodes Given a state-set transition 0(P, a), the transitions nodes are a set of nodes N such
that if we compute the union of internal transitions on N we obtain 6(P, ). Formally, we define the ®-transition
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nodes and x-transition nodes of (P, a), denoted N®(P, ) and N*(P, «), respectively, as

N®(P,a) = {v | v is a ®-node and left(v) € lastextent(P) and right(v) € firstextent(Pos,)}
N*(P,a) = {v | there exists ¢ € Pos, and p € P such that v = Ica(p, q)
and parent®(v) € lastextent(p) N firstextent(q)}

In combination, the set of transition nodes is the union of the ®-transition nodes and the *-transition nodes.

LEMMA 4.2. For any set of positions P and a character «,

(4.1) (P, ) = U 59 (v, @) U U 0 (v, ) .

vENO(P,x) vEN*(P,a)

Proof. Let RH denote the right handside of (4.1). We first show that 6(P,«a) C RH. Let p € P and g € Pos be
positions with v = Ica(p, ¢) such that ¢ € §(p, ). Then, ¢ € Pos, and hence p, ¢, and v satisfies either case (i)
or (ii) in Lemma 4.1. If (i) is satisfied, v is a ®-node and left(v) € lastextent(p) C lastextent(P) and right(v) €
firstextent(q) C lastextent(Pos,). By definition, v € N®(P,a), and thus ¢ € 6°(v,a) C Uyeno(pa)d® (v, ).
Similarly, if (ii) is satisfied, then parent*(v) € lastextent(p) N firstextent(q), and it follows v € N*(P,«). This
implies that ¢ € §*(v,a) C Uyen=(p,a)0* (v, @).

To show RH C §(P, a) first suppose ¢ € Uyeno(p,a)0® (v, ). Then, g € Pos, and there is a ®-node v such
that right(v) € firstextent(q) and left(v) € lastextent(P), which implies that v = Ica(p, ¢) for some p € P. By
Lemma 4.1(i) ¢ € 6(P, ). If ¢ € Uyen+(p,a)0* (v, @) then there exists a v € N*(P,a) such that ¢ € Pos(v) and
parent*(v) € firstextent(q). It follows from the definition of N*(P, ) and By Lemma 4.1(ii) that there exists a
p € P and a ¢ € Pos, such that v = Ica(p, ¢’) and parent* € lastextent(p) N firstextent(q’). Since both p and ¢ are
descendants of v we have that u = Ica(p, ¢) is a (not necessarily proper) descendant of v. It follows from Lemma 3.1
that u € lastextent(p) and parent™(u) € firstextent(¢q). Thus by Lemma 4.1(ii) we have ¢ € (P, o). d

We show that the total size of the two sets N©(P,«) and N*(P,«a) is O(|P| + |6(P, «)]).
LEMMA 4.3. We have [IN®(P,a)| < |P| + [0°(P,a)| — 1 and |[N*(P,a)| < |P| + [6*(P, )| — 1.

Proof. By definition every node in N®(P,«) is the lowest common ancestor of some position p € P and some
position ¢ € (P, ). The number of distinct pairwise lowest common ancestors of a subset of £ leaves in a tree
cannot exceed ¢ — 1. Therefore, the number of lowest common ancestors between positions in P and positions
in 0°(P, «) can never be larger than |P| + [6®(P, )| — 1. The same argument holds for the number of nodes in
IN*(P, )| a0

The internal transitions on the set of transition nodes are not disjoint and hence we cannot afford to compute
internal transitions on each of the transition nodes explicitly. Fortunately, by Lemma 3.1, the internal ®-transitions
(resp. *-transitions) of the nodes from N©(P, «) (resp. N*(P,«)) form a laminar family. We use this to divide the
computations of the internal transitions into computations on a bounded number of non-overlapping intervals.
We implement this idea by compactly encoding all relevant transition nodes in the transition tree defined in the
following.

4.3 Transition Trees Let P be a set of positions. Given a state-set transition §(P, «), we define the transition
tree T' as the subtree of R induced by all nodes in P and their ancestors (see Figure 4(a)). A segment in T is a
path from a leaf or a branching node to (but not including) the nearest branching node above it (or to the root
if no such branching node exists). The root node is its own segment (see Figure 4(b)). The bottom node of a
segment s is denoted bot(s). Note that bot(s) is always a branching node, a leaf, or the root. Any branching node
in T is the lowest common ancestor of two nodes in P and vice versa. Hence, we can compactly store 7" in O(|P|)
space by storing P and the branching nodes with pointers into R.

The following observation follows immediately from the fact that all nodes in lastextent(P) and their ancestors
are contained in 7.

OBSERVATION 4.4. Let T be the transition tree for P in R. If v is a transition node for 6( P, «) then v is a node
on a segment in T.
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Figure 3: The dotted lines edges indicate the firstextent paths for the positions in Pos,. (a) We have §°(vs, ) =
59(v1,a) and they are contained in but not equal to §°(vg, ). Both §°(usz, ) and §°(us,a) = §°(uy, @)
are contained in §°(ug,«). Whereas, 6% (uz, ) € 6 (ug, ). Note, that we cannot dismiss e.g. §°(u3,a) at
preprocessing time, since left(ug) might not be in lastextent(P). (b) The grey nodes are lcas of a position in P and
a position in Pos,. The set 6*(v4, @) is not included in any of the others. Nodes vs and v has the same *-parent
and thus 0*(vs, &) C §*(va, @). Since Pos, N Pos(ve) = Pos, N Pos(v3) in the example then §*(v3, a) = §*(va, a).
We also have 6* (v, @) C §*(v1, ) = §*(vp, ). We cannot dismiss any of the nodes at preprocessing time as might
be the case that only a subset (or none) of them is in lastextent(P).

Figure 4: (a) The parse tree R. The blue leaves are the positions in P. (b) The transition tree T of P. Branching
nodes are grey and internal nodes on segments are white.

Thus it is enough to consider the nodes in the transition tree when computing the set of transition nodes.

OBSERVATION 4.5. Any ®-node u that is an internal node on a segment and where left(u) € lastextent(P) must
have its left child on the same segment.

To see why, observe that since left(u) € lastextent(P), then left(u) is an ancestor of a node in P, and thus by
definition of T', left(u) belongs to T'. Since w is an internal node on a segment s, only one of its children belongs to
T. Therefore, left(u) must also belong to segment s.

We will show in Section 5.2 that the transition tree T and the key information we need in our algorithm can
be computed in O(|P]) time.

5 Sparse State-Set Transitions

We now present our O(m) space data structure that supports computing a state-set transition (P, «) in
O(|P|loglogm + |0(]P],«)|) time. We describe the data structure and analyze the space and preprocessing
time in Section 5.1. The high-level idea of our sparse state-set algorithm is to identify the transition nodes for
d9(P, ) and §*(P, ) using the transition tree. The state-set transitions for each set of nodes induce a partition
of Pos,, into nested intervals. We partition these intervals into non-overlapping intervals and then compute the
internal transitions for each new interval. We then compute the union of these, which by the decomposition
in Lemma 4.2, is precisely the set §(P, ). We describe how to construct the transition tree in Section 5.2. In
Section 5.3 we describe how to find the set transition nodes and how to construct the intervals. In Section 5.4 we
we show how to compute the internal transitions efficiently. Finally, in Section 5.5 we put everything together to
get an algorithm for computing a state-set transition 6(P, ) in O(|P|loglogm + |§(P, «)|) time.
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5.1 Data Structure We store the regular expression with labels on leaves and internal nodes together with the
following components.

e For each node v in R, we store the range of positions that are descendants of v, the depth of v, the highest
node in lastextent(v), and the highest node in firstextent(v). We also store a pointer parent®(v) to the lowest
ancestor u of v such that u is an ®-node and v € T'(left(u)), and a pointer parent*(v) to its lowest star
ancestor.

e At each branching node v we store the position of the rightmost leaf in left(v) and the position of the leftmost
leaf in right(v).

e Data structures for R that supports lowest common ancestor queries and first label queries. Given a node v
and a character «, a first label query, denoted firstlabel(v, ), returns the lowest ancestor of v whose label
contains a.

Furthermore, we store the following information for each « € X.

e Arrays A, and D,, where A,[7] is the ith position labeled « in the left-to-right ordering of Pos,, and D[]
is the depth of the highest node in firstextent(A,[7]).

e A data structure supporting predecessor and successor queries on the positions in Pos,. That is, given any
position p in R the predecessor (successor) query returns the position in A, of the nearest position labeled «
to the left (right) of p including p itself. For a branching node v € R, we define the successor of v in Pos, as
the successor in Pos, of the leftmost leaf in right(v). Note that this corresponds to the first position labeled
« after v in the order obtained by an inorder traversal of the nodes in R. Similarly, we define the predecessor
of v in Pos, as the predecessor in Pos,, of the rightmost leaf in left(v).

e A data structure on D, that supports range minimum queries. Given any pair of indices [ and r, the range
minimum query on D, returns a minimum value in the subarray D,[l,].

e For each node v containing label a:

— A pointer next® (v, ) to the lowest proper ancestor u of v such that v € T'(left(u)), « € label(u), and
59 (u, @) is non-empty. If no such u exists we store a null pointer to indicate this.

— A pointer next*(v, @) to the lowest proper ancestor u of v labeled « such that there exists a ¢ € 6*(u, @)
where ¢ € T(right(u)) if v € T(left(u)) and g € T(left(u)) if v € T(right(w)). If no such u exists we store
a null pointer to indicate this.

— The range of positions in A, that are descendants of v, of left(v), and of right(v), respectively.

The idea of the next®-pointers is that they form a chain of prospective nodes for N© with label o. Any node
u from N©(P,«) with label a on a segment s has its left child on the path and §° (u,«) # 0, so it is included in
this chain. We show that at most one node can be from N® (P, «) on each segment that does not have label .
Furthermore, given a segment s, the nodes from the chain on s that belong to N®(P, «) form a subchain starting
from the lowest node of the chain that is on s to (not including) the first node in the chain that is either not in
lastextent(P) or not on s. Similarly, the next*-pointers form a chain of prospective nodes for N* with label a.

Space The regular expression and the labels use O(m) space. The arrays A, and D,, « € X, use O(m) space in
total. We use linear space and linear preprocessing time data structures to support lowest common ancestors in
constant time [9,38], first label queries in O(loglogm) time [25], predecessor queries in O(loglogm) time [58, 75],
and range minimum queries in constant time [9, 38]. For each alphabet character, the total size of these data
structures is linear in the number of leaves labeled with that character. Thus in total the space for these data
structures is linear in m. The cited data structures for predecessor queries both use randomization, but since we
only need a static structure it is straightforward and well-known how to obtain the same bound deterministically
by combining deterministic dictionaries [37] with a simple two-level approach (see, e.g., Thorup [71]). We store at
most two next pointers for each label in R and a single pointer for each position using O(m) space. The remaining
information uses O(m) space.
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Preprocessing We compute the range of positions that are descendants of v, the depth of v, the parent®(v) and
parent®(v) pointers, and the positions of left(v) and right(v) using tree traversal in linear time. To compute the
highest node for each node in R, we first compute for each node u € R if € € R(u) using a linear time bottom-up
tree traversal. In top-down traversal we then compute the highest node Hy (v) in lastextent(v) for each node v € R
using the following rules: If v is the left child of an ®-node and € ¢ R(right(v)) then Hy(v) = v. Otherwise,
Hp (v) = Hp(parent(v)). We compute the highest node in firstextent(v) similarly. We construct the arrays A, and
D,, for all « € ¥ in a single tree traversal.

To compute the remaining information we do the following for each o € ¥. Construct a tree R,, containing all
nodes with label «. To do this, we use Ica queries on each consecutive pair of leaves in A, from left to right. By
keeping track of the depths of the nodes and checking if the newest node is an ancestor of the previous node it is
straightforward to implement this in linear time. To compute the next-pointers we do a top-down traversal of
R,. In each node u we check if 6°(u, @) and 6*(u, ) are empty using range minimum queries on D,. To check
if °(u, o) we do the range minimum query on the range of positions in Pos,, in right(v). If the depth returned
is less than or equal to depth(right(v)) then §°(u,a) is non-empty. For 6*(u, ) we do the query separately on
the intervals corresponding to the left and the right child and we compare with the depth of parent*(v). With
this information, we can compute the next-pointers during the traversal of R, in constant time per node. The
total size of all the R, trees O(m), since each tree has size 2|Pos,| — 1. Thus the total time used for each « is
O(|Pos,|)- Hence, it follows that the total preprocessing time is O(m).

5.2 Constructing the Transition Tree We say that a node v is a ®-live node if left(v) € lastextent(P) and v
is a ®-node. Note that any node in N®(P, ) is a ®-live node and a node in the transition tree T'. It follows from
Observation 4.5 that any ®-live node that is an internal node on a segment has its left child on the segment. A
segment s in T is called a x-segment if bot(s) is not the root and parent*(bot(s)) € lastextent(P).

We compute the compact representation of the transition tree as follows. Let P be the set of leaves and
repeatedly take the Ica of adjacent nodes to form the internal nodes and the segments of T'. Using a tree traversal
on the compact transition tree we also compute for all branching nodes v in T" the depth of the highest node in
lastextent(P N Pos(v)), all ®-live branching nodes in T, and all *-segments of T'. Hence, we have the following
result.

LEMMA 5.1. In O(|P|) time we can compute the transition tree T of P, for all branching nodes v in T the depth
of the highest node in lastextent(P N Pos(v)), all ®-live branching nodes in T, and all x-segments of T.

OBSERVATION 5.2. We can check in constant time if a node v € T is in lastextent(P) given the segment it is on.

If v is a leaf or a branching node, we already computed the information. Otherwise, v is an internal node on a
segment s. Then we compare the depth of v with the depth d of the highest node in lastextent(P N Pos(bot(s))).
Now v is in lastextent(P) if and only if the depth of v is at least d.

5.3 Computing Transitions Nodes and Intervals We construct two sets of nodes M® and M* that consists
of all nodes in N®(P, ) and N*(P, ), respectively, together with a constant number of other nodes per segment.
We compute these sets for each segment using a depth-first traversal of the transition tree. We also construct
sets L® and L*, that partition Pos, into intervals in order to avoid recomputing overlapping internal transitions.
We associate each interval with the lowest node from M© (respectively M*) that can contain the positions in its
internal transition (see Figure 5).

5.3.1 Computing Transitions Nodes We first explain how to compute the transition nodes using the
next-pointers and the transition tree.

Computing M© We find for each segment s all ®-transition nodes for §(P, «) as follows.

1. Find first relevant ®-node on s: Set x = parent®(bot(s)). If x is not on s or z is not an ®-live node stop.

2. Find first ®-transition node on s: Compute the successor g of x in Pos,, i.e., g is the successor in Pos,, of
the leftmost leaf in R(right(x)). If no such ¢ exists stop, otherwise set v = Ica(z, ¢). If v is not on s stop.
If v is a ®-live node not labeled o we add v to M®. Now compute x = firstlabel(v, ). If z is not a ®-live
node set x = next®(z, a).
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Figure 5: The nodes in M® are colored grey. The interval [l,,7,] covered by right(v) is written next to the nodes.
The list LO = {(5,7,v1), (8,10, v3), (11, 14, v1), (15,19, v2), (28, 31, v4), (32,36, vs ), (37,49, vs), (41,48, v6)}. In the
final algorithm, we compute and return the union of 587] (v1, @), 5%10] (vs, @), 5[?1714] (v1, @), ... ,5[%748] (vg, ).

3. Repeatedly find next transition node by following next®-pointers: ~ We find all ®-transition nodes by
repeatedly following next®-pointers from z and adding the visited nodes to M© as follows. As long as
left(z) € lastextent(P) and z is on s we add = to M® and set x = next®(z, a).

Computing M* We find for each segment s = (v, w) all *-transition nodes for (P, «).
1. If s is not a *-segment we stop.

2. Find first x-transition node on s: Compute the predecessor ¢~ and successor q* of bot(s) in Pos, and
let v be the lowest of Ica(bot(s),q~) and lca(bot(s),q™). If v is not on s stop. If a & label(v) and
parent*(v) € lastextent(P) we add v to M*.

3. Repeatedly find next transition node by following next*-pointers: We first compute x = firstlabel(v, o). We
find all *-transition nodes by repeatedly following next*-pointers from x and adding the visited nodes to M*
as follows. As long as parent*(x) € lastextent(P) and z is on s we add  to M™* and set z = next*(v, a).

Complexity We first analyze the time used to find M®. We use O(|M®|) time to follow pointers. Additionally,
we use O(|T|loglogm) = O(]P|loglogm) time to compute the first label queries, as we do one first label query
on each of the |T| segments. The time to check if a node is ®-live is constant. For all the bottom nodes of the
segments the information is stored in the tree and for all the other nodes v we can check in constant time if
left(v) € lastextent(P) as described in the end of Section 5.2 as left(v) will always be on the current segment. Thus
the total time used is O(|[M®| + |P|loglogm). Similarly, we use time O(|M*| + |P|loglogm) to compute M*.
Next we analyze the size of M© and M*.

LEMMA 5.3. |M®| = O(|6°(P,a)| + |P)).

Proof. We will prove that at most one node from M® from each segment is not in N®(P, «). Recall that N®(P, «)
consists of all the ®-nodes v that have left(v) € lastextent(P) and right(v) € firstextent(Pos,).

Any node u € s added to M® in step 3 except the first one has §(u, ) # (), since they were found using
next®-pointers. Thus, right(u) € firstextent(Pos,). A node is only added if it is ®-live, i.e., left(u) € lastextent(P).
Thus u € N®(P,a). Therefore, only the first node found on each segment—the node from step 2—might not be in
N@(P, ). Since there are O(|P|) segments in T we have |[M®| = O(|[N®(P,a)| + |P|). By Lemma 4.3 we have
INO(P )| <[69(P,a)| + |P| and thus |M®| = O(|6°(P,a)| + | P]). 0

The argument for the size of M™* is similar, but here we show that the number of nodes in M* that are not in
N*(P,«) is at most 2|P|.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3365



Downloaded 01/12/24 to 24.97.200.131 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 6: The thick edges are the edges on the segment s and the black node is bot(s). In (a) both ¢ and ¢’ are
positions in the right subtree of u, and u = Ica(z, ¢). In (b) the positions ¢ and ¢’ are in different subtrees and
node u has label «. In (c) the arrows indicates the next*-pointers.

LEMMA 5.4. |M*| = O(|6*(P,a)| + | P]).

Proof. We will prove that at most two nodes from M* from each segment is not in N*(P,«). Recall that
N*(P, ) consists of all the nodes v such that there exists a ¢ € Pos,, and a p € P such that v = Ica(p, q) and
parent*(v) € lastextent(p) N firstextent(q).

Any node u added to M* by following next*-pointers has §*(u,a) # 0 and parent*(u) € lastextent(P).
Furthermore, if left(u) is on the segment s, then there exists a position ¢ € right(u) N 0*(u, ) and a position
p € P Nleft(u). This implies that w is in N*(P, ). The argument for the case where right(u) is on the segment s
is symmetric.

At most two other nodes are added to M* for each segment (the first two nodes are added to M* on each
segment). It follows that the total number of nodes in M* is at most |§*(P, )| + 2| P|. By Lemma 4.3 we have
IN*(P,a)| < |6*(P, )| + |P| and thus |[M*| = O(|0* (P, «)| + | P|). O

Combining Lemmas 5.3 and 5.4 and the above discussion, the total time to compute M® and M* is
O(|6®(P, )| + | P|loglogm) and O(|6*(P, )| + | P|loglogm), respectively.

Correctness We argue that the sets M© and M* include all transition nodes for §(P, ). We need the following
lemma, which follows from the path structure of the last extent sets.

LEMMA 5.5. Let u be an ®-live node and let s be the segment in T containing u. All ®-nodes below u on s with
left(u) on s are also ®-live.

Proof. If left(u) is not on s then u is a branching node in T' by construction of T. Thus u = bot(s) and it is
trivially true since u has no descendants on s. We will prove the case left(u) on s by contradiction. Since u is
©-live there exists a node p € left(u) N P such that u € lastextent(p). Furthermore, bot(s) is an ancestor of some
node p’ in P. Let w = Ica(bot(s),p). If p’ = p then w = bot(s). If p’ # p then w is a branching node in T'. Since
there are no branching nodes internally on a segment it follows that w = bot(s). By Lemma 3.1 all nodes on s are
in lastextent(p). |

We are now ready to prove that N (P, «a) is contained in M®. Let u be a node in N®(P, «). There are two
main cases in the proof depending on whether u labeled « or not. If not, then we show that u = Ica(z, ¢) in step 2.
If w is labeled «, then we show, that either u is the first ®-node on the segment, in which case it is added as the
first node in step 3, or it is a node on the path induced by the next®-pointers. As we proved in Lemma 5.5 above,
all the nodes on this path below u are also ®-live and we show by induction that all the ®-live nodes from s on
this path are added to M© in step 3.

LEMMA 5.6. N®(P,a) C M©.
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Proof. Let u € N®(P,«). By definition u is ®-live, right(v) € firstextent(Pos,,), and 6(u, ) # 0. Let s be the
segment in T’ containing u. We want to show that u is added to M®. Define x = parent®(bot(s)) and ¢ as the
successor of x in Pos, as in step 1 and 2 of the algorithm. There are two cases depending on whether v has label
« or not.

Case 1: a ¢ label(u). We first show that u = Ica(x, ¢). Since u is an ®-node we have that v is an ancestor of x.
If u is a proper ancestor of z then z € R(left(u)). Since right(u) € firstextent(Pos, ) there is a position ¢’ € Pos,
such that ¢ € Pos(right(u)). This implies that ¢ < ¢’. If ¢ € Pos(right(u)) then u = lca(z, ¢) and we are done
(see Figure 6(a)). Assume ¢ & Pos(right(u)) and let w = lca(z,q) # u. Since ¢ < ¢’ we have u < w. But then
q € Pos(w) C Pos(left(u)). Thus u = Ica(q,q’) and u has label o which is a contradiction (see Figure 6(b)). It
follows that u = Ica(x, ¢). Thus, since u is ®-live and not labeled a, u is added to M© in step 2.

Case 2: «a € label(u). There are two subcases. In the first case u = parent®(bot(s)). Then u = z in

step 1. Since right(u) € firstextent(Pos,) we have v = v = lca(z,q) in step 2. Since u is labeled o we have

u = firstlabel(v, ) = firstlabel(u, o). Since left(u) € lastextent(P) we add u to M© in the first iteration in step 3.
In the other case u # parent®(bot(s)). Let

S, ={w € s|wisa ®-live node, left(w) € s,a € label(w) and §°(w,a) # 0} .
Clearly, u € S,, and thus u € M© follows from the following claim.
CLAIM 5.7. Let w be a node in S. Then w is added to M® in step 3.

Proof: We prove the claim using induction on the height of w. For the base case let w be the lowest node in S,,.
Since w is ®-live it follows from Lemma 5.5 that parent®(bot(s)) is also ®-live and thus we continue from step 1
to step 2. Since right(w) € firstextent(Pos,) we have w < v, where v = Ica(z, ¢) as computed in step 2. Now either
w = firstlabel(v, @) and then w is added to M© in the first iteration in step 3. Otherwise, w < firstlabel(v, ).
Since w is the lowest node in S, then x = firstlabel(v, @) has its next®-pointer pointing to w. Now either z is an
®-live node, in which case z is set to w in the end of the first iteration of step 3. Otherwise, z is set to w in the
end of step 2. In either case, w is added to M© in step 3.

Induction step: Let w € S, be a node that is not the lowest node in S,,. Let w’ € S, be the highest node in S,,
that is a proper descendant of w. Then w’ points to w. Let v = next®(w’, ). By definition of the next®-pointers
v €S, and v < w’. Now, since w’ € R(left(w)), a € label(w) and §°(w, ) # 0, we have v = next® (w’, @) = w. If
v # w then w’ = v = w contradicting that w’ is the highest descendant of w in S,. Thus v = w. By the induction
hypothesis, w’ was added to M© in step 3, whereafter we follow the next®-pointer to w and add w in the next
iteration. | O

We will now prove that N*(P,a) C M*. Here is an outline of the proof. Recall that for any node u in
N*(P, «), there exists a position ¢ in Pos,, and a position p in P, such that u is the Ica of ¢ and p and parent*(u)
is in both firstextent(q) and lastextent(p). We first prove that the segment s containing u is a *-segment. Then it
follows easily that if u = bot(s) then u is added to M* in step 2 or 3. If u is not the bottom node on s, then due
to the properties of the transition tree the child of v not on s contains ¢ in its subtree. We then show that if u
is not labeled « then it is added to M* in step 2. Otherwise, it is either added as the first node in step 3, or it
is a node on the path induced by the next*-pointers on s. By similar arguments as those in the previous proof
all nodes below u on this path has their parent*-node in lastextent(p), the first node on the path is « found by a
firstlabel query in step 3, and thus u is added to M™* in step 3. See Figure 6.

LEMMA 5.8. N*(P,a) C M*.

Proof. Let u be a node in N*(P,«). Then there exists a position p € P and a position ¢ € Pos, such that
u = lca(p, ¢) and parent*(u) € lastextent(p) N firstextent(q). Let s be the segment u is on. We first prove that s is a
x-segment: If u = bot(s) then parent*(bot(s)) = parent*(u) € lastextent(P) and thus s is a *-segment. Otherwise,
u < bot(s). By construction of T we have p € Pos(bot(s)) and thus by Lemma 3.1 bot(s) € lastextent(p), since
parent*(u) is an ancestor of bot(s).

We now prove that u € M*. Let v be the lowest of Ica(bot(s),g—) and lca(bot(s), ¢+) as computed in step 2.
If u = bot(s) then ¢ € Pos(bot(s)) and thus v = bot(s) = u. If a ¢ label(u) then u is added to M* in step 2.
Otherwise, it is added in step 3.
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If u # bot(s), let us be the child of v that is on s and let u, be the child not on s. By construction of T' we
have p € Pos(us) and p € Pos(bot(s)), since all bottom nodes of segments in T have a position from P in their
subtree and any node that is the Ica of two nodes in P is a branching node in 7. Thus ¢q € Pos(u,). There are two
cases depending on whether w is labeled a or not.

Case 1: « ¢ label(u).  Since g € Pos(u,) we have Pos(us) N Pos, = (). Thus, either g+ or ¢g— is in Pos(u,) and
then v = u. Therefore, u is added to M* in step 2.

Case 2: « € label(u).  Then u is the Ica of two positions in Pos,, which implies that there exists a position
labeled « in Pos(us). It follows that either g— or g+ is in Pos(us) and thus v < v. If w = v then v is added to M*
in the first iteration in step 3. Otherwise, u < v. Let x = firstlabel(v, ). If u = x then u is added to M* in the
first iteration in step 3.

If u # x then u < 2. Since ¢ € Pos(u,) and parent*(u) € firstextent(q) we have ¢ € §*(u, ). Therefore, the
highest proper descendant of u labeled a has its next*-pointer pointing to u. It follows that there is a chain of
next*-pointers from z to u. It remains to show that for all the nodes in this chain = = xg,...,xr = u we have
parent™(x;) € lastextent(P). If this is true we will reach u in step 3. Since p € Pos(bot(s)) then all nodes on s are
ancestors of p. Since u < x; we have parent*(u) < parent*(z;). By Lemma 3.1 we have parent*(z;) € lastextent(p).
0

5.3.2 Computing the Intervals We now compute the lists L® and L* of intervals for the nodes in M©® and
M*, respectively. We do this by processing the nodes M® and M* in inorder using a depth-first left-to-right
inorder traversal of T

First, we compute for each node v in M® the range [l,,r,] of positions labeled « that are descendants of
right(v). If v is labeled « the range [l,, 7] is stored at v and otherwise we use the predecessor data structure to
compute it using the range stored at right(v). Similarly, we compute for each node in M* the range [l,, ] of
positions labeled o that are descendants of v.

Computing L® We compute the list of intervals L® by a depth-first left-to-right inorder traversal of 7. We
maintain a stack S keeping track of the deepest node not finished and a counter ¢ equal to the left starting point
of the currently open interval. If there is no open interval £ = —1. Initially, S = () and £ = —1.

For each node v € M® in inorder do the following:

e When we meet v in the traversal after traversing the left subtree of v: If £ # —1 append (¢,1, — 1,top(95))
to L®. Set £ = I, and push v onto the stack S.

e When we finish the traversal of the subtree containing v: Note that in this case top(S) = v. If £ < r, append
(¢,7y,v) to L®. Pop v from S. If the stack is now empty set ¢ = —1, otherwise set £ = r, + 1.

Note that right(v) might not be in T, in which case the two steps for v follow immediately after each other.

Computing L* We maintain a stack S and counter ¢ as before.
For each node v € M* in inorder do the following:

e First time we meet v in the traversal: If £ # —1 append (¢,1, — 1,top(S)) to L*. Set £ =, and push v onto
the stack S.

e Last time we meet v in the traversal: Note that in this case top(S) = v. If £ < r, append (¢,7,,v) to L*.
Pop v from S. If the stack is now empty set £ = —1, otherwise set { = r, + 1.

Complexity To compute the ranges use time O(|M®|+|P|loglogm) as at most one node in M® on each segment
is not labeled a. We will store the nodes in M© in increasing order of depth for each segment. This is easy to
maintain as we find them in order of decreasing depth. This way we can do the depth-first left-to-right traversal
on the nodes of M® in T in linear time in the size of M®. Thus computing L® takes time O(|M®]).

Similarly, we use time O(]M*|) to compute L*. In summary, we have the following lemma.

LEMMA 5.9. The sets M© and M*, and the lists L® and L*, can be computed in time O(|6(P, )|+ |P|loglogm).
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5.4 Internal Transitions We will compute and return the state-set transition by computing the internal
transitions on the nodes in L® and L*. Next, we show how to compute internal transitions efficiently using 3-sided
range queries. We assume that the range [, r| is given as indexes in A,

Computing 5[?;] (v,a). Given an ®-node v, a character «, and a range [l,r] we compute §[<?’T] (v, ) as follows.
We perform a 3-sided range reporting query (I, r, depth(right(v)) on D,. That is, we return all positions in D,[l, r]
with a value less than or equal to depth(right(v)). This can be done by a standard technique of recursively
applying range minimum queries as follows. Let j be the position returned by range minimum query on D,[l, r].
If D,[j] < depth(right(v)) return A,[j] and recurse on the ranges [I,j — 1] and [j + 1,7]. We stop if this is not the
case or if the range is empty.

For instance, suppose we compute 687 4 (vg,a) in our example in Figure 2. The range [2,4] in A, corresponds
to the positions po, p3, and ps. We find the highest first extent in to be f = vy corresponding to both ps and
ps3. Suppose j = 3 corresponding to p;. Then we compare f with right(ve) = v4 and since f is an ancestor of vy
we report ps and repeat on the subarrays [2,2] and [4,4]. On [2,2] we return po, while on [4,4] we do not get a
position since vg is a proper descendant of vy.

Note, that we can get the output in sorted order if we first recurse on the range [I, 7 — 1], then report A,[j],
and then recurse on the range [j + 1, 7].

The algorithm returns all positions ¢ with label « in [, 7] such that right(v) € firstextent(q) and is thus correct.
Each recursive call uses constant time and we repeat at most 2|6[?7T] (v,a)| + 1 times. Hence, in total we use

o1+ |5§T] (v, a)|) time.

Computing 6{; ] (v, ). To compute an internal transition for the *-case we do a 3-sided range reporting query
(1,7, depth(parent*(v)). Correctness follows as above and the time and space bounds are the same.
In summary, we have the following result.

LEMMA 5.10. Let R be a regular expression of size m. Given R we can build a data structure in O(m) space and
preprocessing time, such that given a node v in R, a character o« € X, and a range [l,r] we can compute 6[<?T] (v, @)

in sorted order in time O(1 + |6[<?T] (v,)|) and 01111 (v, @) in sorted order in time O(1 + ‘5@ ] (v, a)|).

5.5 Computing State-Set Transitions Given a set of positions P and a character «, we compute the state-set
transition 6(P, «) as follows. For simplicity, we assume that the positions in P are sorted according to their
left-to-right order since otherwise we can sort them in additional O(|P|loglogm) time using integer sorting. The
final algorithm for computing fast state-set transitions is as follows.

1. First, we construct the transition tree and all the information from Lemma 5.1 as in Subsection 5.2.
2. We then compute M®, M*, L®, and L* as in Subsection 5.3.

3. Finally, we compute and return the state-set transition by computing

D® = U §ﬁr] (u, @) and D* = U 01, (u, ).
(I,ru)eLO (l,r,u)eL*

by processing L® and L* from left-to-right using the procedure from Subsection 5.4 that computes 6[<?T] (u, @)

and 5[*1 l (u, @) in sorted order. Since both lists L® and L* are sorted the lists D® and D* are also sorted.
We merge these two lists to get the final output.

Analysis of the algorithm Step 1 uses O(|P|) time by Lemma 5.1, and Step 2 uses O(|§(P, «)| + | P|loglogm)
time by Lemma 5.9. By Lemma 5.10 the time to compute all internal transitions in step 3 is

(5:2) Of > Q+log wa)+ Do (1416, wa))

(I,r,u)eL® (I,r,u)eL*
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The length of list L® is O(|M®|) as each interval endpoint is due to meeting a node in M® for the first or
last time in the traversal. Similarly, |L*| = O(|M*|). Hence, (5.2) is O(|M®| + |M*| + |§(P,«)|). The time to
merge the two lists is linear in the total size of the lists since the lists are sorted. Thus the time for step 3 is
O(|M®| + |M*| + |6(P,)]). Plugging in the bounds from Lemma 5.3 and 5.4 we get a total running time of
O(|6(P, )| + | P|loglogm).

Correctness We have already proved that N®(P,a) € M® and N*(P,a) C M*. Thus, by Lemma 4.2 the set of
positions computed in step 4 is §(P, a). There are at most |P| nodes in M@\ N®(P, «). These nodes are all in
lastextent(P) and thus the set of internal transitions on these will all be in §(P, ). Similarly, for the nodes in
M*\ N*(P, ).

It remains to show that the partition into lists is correct. We show that a position q € UUGM@ 59 (v, ) is
covered by the lowest node in M® such that q € 6°(u, @), i.e., where covered means that q € 5[%0] (u, @) for some

I,r such that (I,r,u) € L®. This follows easily from the properties of the inorder traversal. The arguments for
q € Uyen+0* (v, @) are similar. For completeness, the full proof is shown below.

LEMMA 5.11. We have

U M, a) = U 5[?,7»](“70‘) and U 0 (v,a) = U 61 (u, @) -

veEMO (I,r,u)eL® veM* (L,r,u)eL*

Proof. We split the proof into two cases.

Case 1: J,cp0 09(v, ) = Ua,ruyere 6[?_7‘] (u,).  We are only adding subranges of the range of right(v) for
any node in v € M® to L®. This immediately implies that U, ,yero (5[%_] (u, @) C Upeprod® (v, a).

For the other direction, let ¢ be a position in U,ecp0d® (v, o) and let u be the deepest node in M® such that
q € 0°(u, ). We will show that ¢ € 58T] (u, @) for some I, 7 such that (I,r,u) € L®.

Let pred(u) = argmax,¢cyo{r: < ¢} and succ(u) = argming¢ o {l, > ¢}. If neither pred(u) nor succ(u) are
in T'(right(u)) then nothing happens with ¢ and the stack S after the step where we add u to the top of the stack
until we leave u the last time. At this point top(S) = v and £ = I, and (£,7,u) = (I, 7y, u) is appended to L®.
If pred(u) € T'(right(u)) then when we leave pred(u), node u will be on top of the stack and £ = ryreq(y) + 1. If
also succ(u) € T(right(u)) then succ(u) is the next node from M® we process in our inorder traversal. When we
meet succ(u) before traversing its right subtree we add (¢, lsycc(u) — 1,t0p(S)) = (Ppred(u) + 1s bsuce(u) — 1, 1) to L®.

Since Tpred(u) + 1 < ¢ < lsuce(uy) — 1 we have g € 5[%@( Ll +1] (u, a). If succ(u) ¢ T(right(u)) then the next

change we perform is when leaving u. Here we add (¢,r, — 1,u) to L®. If only succ(u) € T(right(u)) then we
have top(S) = w and £ = [,, when we process succ(u) the first time (after visiting its left subtree). Then we add
(lua lsucc(u) - 1; u) to L.

Case 2: ,ep- 0" (v, ) = Uy ruyer 01111 (u,0).  The arguments are similar to case 1. We are only adding
subranges of the range of v for any node in v € M* to L*. This immediately implies that U ru)er~d] ,; (u, ) C
Upenrr=0* (v, ).

For the other direction let ¢ be a position in (J,c,.. 0%(v, @) and let u be the deepest node in M* such that
q € 0" (u, ). We will show that ¢ € dj; ,;(u, a) for some [, r such that (I,r,u) € L".

If there are no other nodes from M* than w in T'(u) then nothing happens between the first and last
time we meet u in the traversal and (l,,r,,u) is appended to L® when we meet u the last time. Similarly
to case 1, let Uprequ) = argmaxzen+{r, < ¢} and succ(u) = argmingen-{l, > q}. If pred(u) € T(u) then
when we leave pred(u), node u will be on top of the stack and £ = 7peq(u) + 1. If also succ(u) € T'(u) then
succ(u) is the next node from M* we process in our traversal. When we meet succ(u) the first time we
add (4, lsucc(uy — 1,top(S)) = (Tpred(u) + 1s lsuce(u) — 1,u) to L*. Since rprequ) + 1 < ¢ < lsucc(uy) — 1 we have
q€ 6[krpred(u)+1,lsucc(u)+1] (u, ). If succ(u) & T'(u) then the next change we perform is when leaving u. Here we add
(4,7, — 1,u) to L*. If only succ(u) € T'(u) then we have top(S) = u and ¢ = [,, when we process succ(u) the first
time (after visiting its left subtree). Then we add (lu, lsucc(u) — 1, u) to L*. O

In summary, we have the following result.
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LEMMA 5.12. Given a regular expression R of size m, we can build a data structure in O(m) space and
preprocessing time such that given any set of positions P in R and character o € 3, we can compute (P, @) in
O(|P|loglogm + |6(P, av)|) time.

6 Speeding Up State-Set Transitions

We now show how to improve the run time of computing a state-set transition §( P, &) from O(|P|loglog m+|J(P, «)|)
to O(]P]loglog e+ |0(P, )|) while still using linear space. Finally, we show how to use this to obtain the main
results of Theorems 1.1. We now require that the input positions in P are sorted and the output positions in
0(P, a) are reported in sorted order.

First, observe that the loglog m factor is from computing |P| predecessor queries and |P| first label queries in
steps 2 and 3 in the main algorithm in Section 5.5. The first label queries in turn are reduced to computing O(|P|)
predecessor queries on the Euler tour of R [25]. In both cases, we need to answer a batch of b = ©(]P|) predecessor
queries on a set of size t = ©(|Pos,|) from a universe of size v = ©(m). The batch is provided in sorted order and
the output should also be sorted.

We use a simple two-level data structure as follows. We first partition the universe into ¢ intervals of size u/t
(except possibly the last which may be smaller). For each interval, we store a predecessor data structure over the
subset of the elements in the interval using a reduced universe of size u/t. Furthermore, we also store a pointer
to the nearest non-empty smaller interval. Using the same predecessor data structure as in Section 5.5 for each
interval the total space is O(t). We answer a batch of b predecessor queries according to the following two cases:

1. If b <t we process each predecessor query in the batch by identifying the at most two intervals containing
the answer and then querying these predecessor data structures. In total, this uses O(bloglog(u/t)) =
O(bloglog(u/b)) time.

2. If b > t we simply merge the sorted batch of queries with the input set using O(b+t) = O(b) time.

Since the batch is sorted we can also return the output in sorted order in O(b) time. It follows that the running
time is bounded by O(bloglog(u/b). Plugging into to the algorithm of Section 5.5, we obtain a data structure
that uses O(m) space and supports computing a state-set transition d(P, «) in time O(|P|loglog P+ |0(P, @)]).
This completes the proof of Theorem 1.3.

Next consider Theorem 1.1. Let @ be a string of length n and let Sy, ..., .S, be the state-sets in the simulation
of R on Q. We implement the state-set transitions using Theorem 1.3. Note that each state-set transition produces
the output in sorted order as required. Since logarithms are concave we have that the total time for the state-set
transitions is

" m A m nm

=0

The algorithm uses O(m) space to store the representation of R and at most two state sets during the simulation.
This completes the proof of Theorem 1.1.

7 Conditional Lower Bound

We now prove the conditional lower bound of Theorem 1.2. Our lower bound follows the reduction of Backurs and
Indyk [7] from the orthogonal vectors problem (OVP) to regular expression matching.

The orthogonal vectors problems is defined as follows. Given two sets A, B C {0,1}% such that |A| = M,
|B| = N, determine if there exists a € A and b € B such that a-b = 0. For any M = O(N“) for some « € (0,1] and
any constant € > 0, any algorithm for OVP with running time O((M N)'~¢€) violates SETH for d = w(log N) [16,76].

Backurs and Indyk [7] showed hardness of regular expression matching using a reduction from OVP. Given an
instance of OVP they show how to construct a regular expression R’ and a string Q" in O(Nd) time such that @’
matches R’ if and only if there exists a € A and b € B such that a - b= 0. The reduction works in O(Nd) time,
the lengths of both R’ and @’ is ©(Nd), and the alphabet is {z,y}. The regular expression R’ has the form

[of Q'

R={O@y)|-P- Oy

j=1 j=1
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Figure 7: (a) The position automaton for z*y*xz*y*a*y*. (b) The position automaton for a®x*y*x*y*z*y*.

koK ok ok ok ok

Here P is a regular expression of length O(Md) with the property that a substring of @’ can be derived from P if
and only if there exists a € A and b € B such that a - b = 0. The precise definition of R’, Q’, and P can be found
in [7].

We claim that Ap o = O(|Q’|?). To see this first note that Ag/ ¢ is at most |R'[|Q'| +1 = O(|Q’|?). For
the lower bound, consider the sequence So, S1,...,S|q/ of state sets in the NFA simulation, and focus on the
first 2|Q’| positions in R/, i.e., the positions corresponding to the subexpression immediately before P. Since @ is
a string of zs and ys, we have |S;| = |Q’| and |S;| > |S;—1| — 1 . Thus, Ap o = Q(]Q’|?) and hence the claim
follows. See Figure 7(a).

We can now prove the following theorem.

THEOREM 7.1. Given A = {a',...,;a"} C {0,1}¢ and B = {b',...,6M} C {0,1}? and a constant v, where
0 < v <1, we can construct in O((Nd)?/+7)) time a regular expression R and a string Q, such that there
exists a € A and b € B where a-b = 0 if and only if Q € L(R). The size of R and Q is ©((Nd)*>/ 7)) and
Arq=0(|QI"") = O(N?d?).

Proof. We construct our instance R, () from R’ and Q' as follows.
Q==2z"qQ and R=z'""R

where ¢ = (Nd)?/(+7),

Clearly, @Q matches R if and only if Q' matches R’. Furthermore, the NFA simulation on the first £ characters
must produce singleton state sets (see Figure 7(b)). Hence, we have that Ar g = £+ Ao = O((Nd)?). Since
Q| = £+ |Q'| = O((Nd)>(+7)) we have that A = O(|Q[ 7). 0

Theorem 1.2 follows directly from Theorem 7.1, since an O(A'=¢) = O((Nd)?~2¢) time algorithm for regular
expression matching would imply a O((Nd)?~2¢ + (Nd)%/(1+7)) algorithm for OVP.
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