
Rank and Select on Degenerate Strings

Philip Bille1, Inge Li Gørtz1, and Tord Stordalen

DTU Compute, Technical University of Denmark
Lyngby, Denmark

{phbi,inge,tjost}@dtu.dk

Abstract

A degenerate string is a sequence of subsets of some alphabet; it represents any string
obtainable by selecting one character from each set from left to right. Recently, Alanko et
al. generalized the rank-select problem to degenerate strings, where given a character c and
position i the goal is to find either the ith set containing c or the number of occurrences of
c in the first i sets [SEA 2023]. The problem has applications to pangenomics; in another
work by Alanko et al. they use it as the basis for a compact representation of de Bruijn
Graphs that supports fast membership queries.

In this paper we revisit the rank-select problem on degenerate strings, introducing a
new, natural parameter and reanalyzing existing reductions to rank-select on regular strings.
Plugging in standard data structures, the time bounds for queries are improved exponen-
tially while essentially matching, or improving, the space bounds. Furthermore, we provide
a lower bound on space that shows that the reductions lead to succinct data structures in
a wide range of cases. Finally, we provide implementations; our most compact structure
matches the space of the most compact structure of Alanko et al. while answering queries
twice as fast. We also provide an implementation using modern vector processing features;
it uses less than one percent more space than the most compact structure of Alanko et al.
while supporting queries four to seven times faster, and has competitive query time with
all the remaining structures.

1 Introduction

Given a string S over an alphabet [1, σ] the rank-select problem is to preprocess S to
support, for any c ∈ [1, σ],

• rankS(i, c): return the number of occurrences of c in S[1, i]

• selectS(i, c): return the index j of the ith occurrence of c in S

This fundamental string problem has been studied extensively due to its wide ap-
plicability, see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], references therein, and
survey [15].

A degenerate string is a sequence X = X1, . . . Xn where each Xi is a subset of
[1, σ]. We define its length to be n, its size to be N =

∑
i |Xi|, and denote by n0

the number of empty sets among X1, . . . , Xn. Degenerate strings have been studied
since the 80s [16] and the literature contains papers on problems such as degenerate

1Supported by Danish Research Council grant DFF-8021-002498.

{phbi, inge, tjost}@dtu.dk


string comparison [17], finding string covers for degenerate strings [18], and pattern
matching with degenerate patterns, degenerate texts, or both [16,19].

Alanko, Biagi, Puglisi, and Vuohtoniemi [20] recently generalized the rank-select
problem to the subset rank-select problem, where the goal is to preprocess a given
degenerate string X to support

• subset-rankX(i, c): return the number of sets in X1, . . . , Xi that contain c

• subset-selectX(i, c): return the index of the ith set that contains c

Their motivation for studying this problem is to support fast membership queries on
de Bruijn graphs, a useful tool in pangenomic problems such as genome assembly and
pangenomic read alignment (see [20, 21] for details and further references). Specifi-
cally, in another work by some of the authors [21], they show how to represent the
de Bruijn graph of all length-k substrings of a given string such that membership
queries on the graph can be answered using 2k subset-rank queries. They also provide
an implementation that, when compared to the previous state of the art, improves
query time by one order of magnitude while improving space usage, or by two orders
of magnitude with similar space usage.

Their result for subset rank-select is the following [20]. They introduce the Subset
Wavelet Tree, a generalization of the well-known wavelet tree (see [22]) to degenerate
strings. It supports both subset-rank and subset-select queries in O(log σ) time and
uses 2(σ− 1)n+ o(nσ) bits of space in the general case. In the special case of n = N
(which is the case for their representation of de Bruijn Graphs in [21]) they show
that their structure uses 2n log σ + o(n log σ) bits. We note that their analysis for
this special case happens to generalize nicely to also show that their structure uses
at most 2N log σ + 2n0 + o(N log σ + n0) bits for any N .

Furthermore, in [21], Alanko, Puglisi, and Vuohtoniemi present a number of re-
ductions from the subset rank-select to the regular rank-select problem. We will
elaborate on these reductions later in the paper.

2 Our Results

Our contributions are threefold. Firstly, we introduce the natural parameter N and
revisit the subset rank-select problem to reanalyze a number of simple and elegant
reductions to the regular rank-select problem, based on the reductions from [21]. We
express the complexities in terms of the performance of a given rank-select structure,
achieving flexible bounds that benefit from the rich literature on the rank-select prob-
lem (Theorem 1). Secondly, we show that any structure supporting either subset-rank
or subset-select must use at least N log σ − o(N log σ) bits in the worst case (The-
orem 2). By plugging a standard rank-select data structure into Theorem 1 we, in
many cases, match this bound to within lower order terms, while simultaneously
matching the query time of the fastest known rank-select data structures (see below).
Note that any lower bound for rank-select queries also holds for subset rank-select
queries since any string is also a degenerate string. All our results hold on a word



RAM with logarithmic word-size. Finally, we provide implementations of the reduc-
tions and compare them to the implementations of the Subset Wavelet Tree provided
in [20], and the implementations of the reductions provided in [21]. Our most com-
pact structure matches the space of their most compact structure while answering
queries twice as fast. We also provide a structure using vector processing features
that matches the space of the most compact structure while imporving query time
by a factor four to seven, remaining competitive with the fast structures for queries.

We now elaborate on the points above. The reductions are as follows.

Theorem 1. Let X be a degenerate string of length n, size N , and with n0 empty
sets over an alphabet [1, σ]. Let D be a Db(ℓ, σ)-bit data structure for a length-ℓ string
over [1, σ] that supports rank in Dr(ℓ, σ) time and select in Ds(ℓ, σ) time. If n0 = 0
we can solve subset rank-select on X in
(i) Db(N, σ)+N + o(N) bits, Dr(N, σ)+O(1) subset-rank-time, and Ds(N, σ)+O(1)
subset-select-time.
Otherwise, if n0 > 0 we can solve subset rank-select on X in
(ii) the bounds in (i) where we replace N by N ′ = N + n0 and σ by σ′ = σ + 1.
(iii) the bounds in (i) with additional Bb(n, n0) bits of space, additional Br(n, n0)
time for subset-rank, and additional Bs(n, n0) time for subset-select. Here B is a data
structure on a length-n bitstring that contains n0 1s, uses Bb(n, n0) bits, and supports
rank(·, 1) in Br(n, n0) time and select(·, 0) in Bs(n, n0) time.

Here Theorem 1(i) and (ii) are based on the reduction from [21, Sec. 4.3], and
Theorem 1(iii) is a variation of Theorem 1(ii) that handles empty sets using a natural,
alternative strategy. By plugging a standard rank-select structure into Theorem 1 we
exponentially improve query times while essentially matching, or improving, space
usage compared to Alanko et al. [20]. For example, consider the rank-select structure
by Golynski, Munro, and Rao [3] which uses ℓ log σ + o(ℓ log σ) bits, supports rank
in O(log log σ) time, and supports select in constant time. These query times are
optimal in succinct space, see e.g. [1].

For n0 = 0, plugging this structure into Theorem 1(i) yields an N log σ + N +
o(N log σ + N) bit data structure supporting subset-rank in O(log log σ) time and
subset-select in constant time. Compared to the previous result by Alanko et al. [20],
this improves the constant on the space bound from 2 to 1+1/ log σ and improves the
query time from O(log σ) for both queries to O(log log σ) for subset-rank and constant
for subset-select. Note that the additional N bits in the space bound are a lower order
term when σ = ω(1).

For n0 > 0, plugging their structure into Theorem 1(ii) gives the same time bounds
as above and the space bound

(N + n0) log(σ + 1) + (N + n0) + o(n0 log σ +N log σ +N + n0)

bits. If n0 = o(N) and σ = ω(1), the space bound is identical to the one above. In
any case, the query time is still improved exponentially.

Alternatively, by plugging it into Theorem 1(iii) the space bound becomesN log σ+
o(N log σ) + Bs(n, n0) bits. For n = o(N log σ) we can choose B to be an (n+ o(n))-
bit data structure with constant time rank and select, such as [23,24], again achieving



the same space and time bounds as when n0 = 0. Otherwise, we can plug in any
data structure for B that is sensitive to the number of 1-bits in the bitvector. For
example, if n0 = O(log n) we can store the positions of the 1-bits in sorted order using
O(n0 log n) = O(log2 n) bits, supporting select(i, 1) in constant time and rank(i, ·) in
O(log n0) = O(log log n) time using binary search. We can also binary search for
select(i, 0) in O(log n0) = O(log log n) time using the fact that — if the ith position
of a 1-bit is pi — there are pi − i zeroes in the prefix ending at pi. There are many
such sensitive data structures that obtain various time-space trade-offs, e.g [2, 25].

We also show the following lower bound on the space required to support either
subset-rank or subset-select on a degenerate string.

Theorem 2. Let X be a degenerate string of size N over an alphabet [1, σ]. Any
data structure supporting subset-rank or subset-select on X must use at least N log σ−
o(N log σ) bits in the worst case.

Thus, applying Theorem 1 in many cases results in succinct data structures, whose
space deviates from this lower bound by at most a lower order term. The three
examples above each illustrate this when respectively (1) σ = ω(1), (2) n0 = o(N)
and σ = ω(1), and (3) n = o(N log σ).

Finally, we provide implementations and compare them to variants of the Subset
Wavelet Tree [20] and the reductions [21] implemented by Alanko et al. Specifically,
we apply the test framework from [20] and run two types of tests: one where the subset
rank-select structures are used to support k-mer queries on a de Bruijn Graph (the
motivation for, and practical application of, the subset rank-select problem), and one
where subset-rank queries are tested in isolation. We implement Theorem 1(iii) and
plug in efficient off-the-shelf rank-select structures from the Succinct Data Structure
Library (SDSL) [26] (https://github.com/simongog/sdsl-lite). We also implement
a variation of another reduction from [21, Sec. 4.2], which is more optimized for
genomic test data. The highlight is our most compact structure, which matches the
space of their most compact structure while supporting queries twice as fast, as well
as our structure using vector processing, which matches the most compact structure
while supporting queries four to seven times faster.

3 Reductions

We now present the reductions from Theorem 1. Let X, D, and B be defined as in
Theorem 1. Furthermore, let V be the data structure from [24], which for a length-ℓ
bitstring uses ℓ+ o(ℓ) bits and supports rank and select in constant time.

Reductions (i) and (ii)

First assume that n0 = 0. For each Xi let the string Si be the concatenation of the
characters in Xi in an arbitrary order, and let the string Ri be a single 1 followed
by |Xi| − 1 0s. This is always possible since |Xi| ≥ 1. Let S (resp. R) be the
concatenation of S1, . . . , Sn (resp. R1, . . . , Rn) in that order, with an additional 1
appended after Rn. The lengths of S and R are respectively N and N + 1. See

https://github.com/simongog/sdsl-lite


X =

{
A

C

G

} {
A

T

} {
C

} {
T

G

}

X1 X2 X3 X4

S = ACG AT C TG

R = 100 10 1 10 1

S1 S2 S3 S4

Figure 1: Left: A degenerate string X over the alphabet {A, C, G, T} where n = 4 and N = 8.
Right: The reduction from Theorem 1(i) on X. White space is for illustration purposes
only. To compute subset-rank(2, A), we first compute selectR(3, 1) = 6. Now we know that S2

ends at position 5, so we return rankS(5, A) = 2. To compute subset-select(2, G) we compute
selectS(2, G) = 8, and compute rankR(8, 1) = 4 to determine that position 8 corresponds to
X4.

Figure 1 for an example. The data structure consists of D built over S and V built
over R, which takes D(N, σ) +N + o(N) bits.

To support subset-rank(i, c), compute the starting position k = selectR(i + 1, 1)
of Si+1 and return rankS(k − 1, c). To support subset-select(i, c), find the index k =
selectS(i, c) of the ith occurrence of c, and return rankR(k, 1) to determine which
set k is in. Since rank and select queries on R take constant time, subset-rank and
subset-select queries take respectively Dr(N, σ) + O(1) and Ds(N, σ) + O(1) time,
achieving the bounds stated in Theorem 1(i).

If n0 ̸= 0, add a new character σ+1 and replace each empty set with the singleton
set {σ+1}, and then apply reduction (i). This instance hasN ′ = N+n0 and σ′ = σ+1,
achieving the bounds in Theorem 1(ii).

Reduction (iii)

Let E denote the length-n bitvector where E[i] = 1 if Xi = ∅ and E[i] = 0 oth-
erwise. Let X ′′ denote the degenerate string obtained by removing all the empty
sets from X. The data structure consists of reduction (i) over X ′′ and B built over
E. This takes Db(N, σ) + N + o(N) + Bb(n, n0) bits. To support subset-rankX(i, c)
first compute k = i − rankE(i, 1), mapping Xi to its corresponding set X ′′

k . Then
return subset-rankX′′(k, c). This takes Br(n, n0) +Dr(N, σ) + O(1) time. To support
subset-selectX(i, c), find k = subset-selectX′′(i, c) and return selectE(k, 0), the position
of the kth zero in E (i.e., the kth non-empty set). This takes Bs(n, n0) +Ds(N, σ) +
O(1), matching the stated bounds.

4 Lower Bound

In this section we prove Theorem 2. The strategy is as follows. Any structure
supporting subset-rank or subset-select on X is a representation of X since we can
fully recover X by repeatedly using either of these operations. We will lower bound
the number L of distinct degenerate strings that can exist for a given N and σ. Any
representation of X must be able to distinguish between these instances, so it needs
to use at least log2 L bits in the worst case. Let sufficiently large N and σ = ω(logN)
be given and assume without loss of generality that logN and N/ logN are integers.



Consider the class of degenerate strings X1, . . . , Xn where each |Xi| = logN and

n = N/ logN . There are
(

σ
logN

)N/ logN
such degenerate strings, so any representation

must use at least

log

(
σ

logN

)N/ logN

=
N

logN
log

(
σ

logN

)
≥ N

logN
log

(
σ − logN

logN

)logN

= N log

(
σ − logN

logN

)
= N log σ − o(N log σ)

bits, concluding the proof.

5 Experimental Setup

Setup and Data

The code to replicate our results is available on GitHub (https://github.com/tstordalen/
subset-rank-select). Our tests are based on the test framework by Alanko et al. [20]
(https://github.com/jnalanko/SubsetWT-Experiments/). Like them, we used the fol-
lowing data sets.

1. A pangenome of 3682 E. coli genomes, available on Zenodo (https://zenodo.
org/record/6577997). According to [20], the data was collected by downloading
a set of 3682 E. Coli assemblies from the National Center for Biotechnology
Information.

2. A human metagenome (SRA identifier ERR5035349) consisting of a set of ≈ 17
million length-502 sequence reads sampled from the human gut from a study
on irritable bowel syndrome and bile acid malabsorption [27].

We applied two tests. Firstly, we plugged our data structures into the k-mer query
test from [20]; they plug subset rank-select structures into their k-mer index and query
a large number of k-mers. Secondly, we tested the subset rank-select structures in
isolation by building the k-mer indices, extracting the subset rank-select structures,
and performing twenty million randomly generated subset-rank queries. For each
measurement we built only the structure under testing, and timed only the execution
of the queries. Each value reported below is the average of five such measurements.
Note that, like [20], we do not test subset-select queries; only subset-rank queries are
necessary for their k-mer index.

All the tests were run on a system with a 3.00GHz i7-1185G7 processor and 32
gigabytes of DDR4 random access memory, running Ubuntu 22.04.3 LTS with kernel
version 6.2.0-35-generic. The programs were compiled using g++ version 11.4.0 with
compiler flags -O3, -march=native, and -DNDEBUG.

https://github.com/tstordalen/subset-rank-select
https://github.com/tstordalen/subset-rank-select
https://github.com/jnalanko/SubsetWT-Experiments/
https://zenodo.org/record/6577997
https://zenodo.org/record/6577997


Data Structures

This section summarizes a subset of the data structures we tested (the ones we have
omitted do not affect the results; see the full version [28]). We implement both
Theorem 1(iii) as well as variation of the reduction split representation from [21, Sec
4.2]; this reduction is optimized for their k-mer query structure built over genomic
data, in which most of the sets are singletons. We name our variation the dense-
sparse decomposition (DSD), which works as follows. The empty sets are handled
in the same way as in Theorem 1(iii). Furthermore, we store a sparse bitvector of
length n for each character, i.e., A, C, G, and T. For each Xi of size at least two we
remove |Xi| − 1 of the characters and set the ith bit in the corresponding bitvector
to 1. What remains are n−n0 singleton sets, i.e., a regular string, for which we store
a rank-select structure. A query thus consists of three rank queries; one to eliminate
empty sets, one in the regular string, and one in the sparse bitvector. In the split
representation by [21], each such set is instead removed and all the characters are
represented in the additional bitvectors.

The data structures we tested are as follows. Matrix is the benchmark structure
from [20], consisting of one bitvector per character (i.e., a 4×n matrix). Thm 1(iii)
is the reduction from Theorem 1(iii), using a wavelet tree for the string, a bitvector for
the length-N indicator string, and a sparse bitvector for the empty sets. DSD (x),
SWT (x), and Split (x) are the DSD, Subset Wavelet Tree, and split represen-
tation parameterized by x, respectively, where x may be any of the following data
structures: (1) scan, the structure from Alanko et al. [20, Sec. 5.2], inspired by
scanning techniques for fast rank queries on bitvectors, (2) split, a rank structure for
size-four alphabets optimized for the skewed distribution of singleton to non-singleton
sets [20, Sec 5.3] (not to be confused with the split representation) (3) rrr, an SDSL
wavelet tree using H0-compressed bitvectors, based mainly on the result by Raman,
Raman, and Rao Satti [4], (4) rrr gen., a generalization of RRR to size-four alpha-
bets [20, Sec. 5.4], (5) ef, an efficient implementation of rank queries on a bitvector
stored using Elias-Fano encoding from [29], or (6) plain, a standard SDSL bitvectors
supporting rank in constant time.

Furthermore, [21] implements Concat (rrr), which is essentially reduction (ii) using
a wavelet tree with RRR-compressed bitvectors, and we also implement the structure
DSD (SIMD). It is based on a standard idea for compact data structures; we divide
the string into blocks, precompute the answer to rank queries up to each block, and
compute partial rank queries for blocks as needed using word parallelism. This is the
essence of how the ‘scan’ structure by [20] works; we use SIMD (single instruction,
multiple data) instructions to speed up the process further, allowing for large blocks,
further reducing space. Most computers support SIMD to some extent, allowing the
same operation to be performed on many words simultaneously. We used AVX512,
which supports 512-bit vector registers.



0 2 3 4 5
Space (bits per k-mer)

0

5

10

15

20

25

30
Ti

m
e (

s p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Split (ef)
Split (rrr)

Split (plain)

DSD (rrr)

DSD (scan)
SIMD

0 2 3 4
Space (bits per symbol)

0

250

500

750

1000

1250

1500

1750

Ti
m

e (
ns

 p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Split (ef)
Split (rrr)

Split (plain)

DSD (rrr)

DSD (scan)

SIMD

Figure 2: Note that the x-axis is truncated in both plots. The two gray lines represent
the performance of the benchmark solution “Matrix”. The crosses indicate our data struc-
tures and the circles indicate the data structures from [20, 21]. Left: Results of the k-mer
query test on the metagenome data set. Right: The result of the subset-rank test on the
metagenome data set. The space is in number of bits per symbol, i.e., bits/N .

6 Results

The test results for the metagenome data set can be seen in Figure 2; the results for
the E. Coli data set are similar. See appendix A for all the data. The fastest structure
is SWT (scan), but it is large and is outperformed by the benchmark solution on both
parameters. Our unoptimized reduction Thm1(iii) uses 20−60% more space than the
remaining structures of [20, 21] while remaining within a factor two in query time of
most of them. Our fastest structure, DSD (scan), is competitive with both Split (ef)
and Split (rrr). Our most compact structure DSD (rrr) matches the space of the
previous smallest structure, Concat (ef), while supporting queries twice as fast. Our
SIMD-enhanced structure uses less than one percent more space than Concat (ef)
while supporting queries four to seven times faster. It is also competitive with the
fast and compact structures Split (ef) and Split (rrr). We note that the entropies
for the distributions of sets in the Metagenome and E. Coli data sets are respectively
2.21 and 2.24 bits (as seen in [20]), and that reduction from 2.44 bits (Split (rrr),
Metagenome) to 2.28 bits (SIMD, Metagenome) reduces the distance to the entropy
from approximately 10% to 3%, while simultaneously supporting queries faster.

References

[1] Djamal Belazzougui and Gonzalo Navarro, “Optimal lower and upper bounds for
representing sequences,” ACM Trans. Algorithms, vol. 11, no. 4, pp. 31:1–31:21, 2015.

[2] Daisuke Okanohara and Kunihiko Sadakane, “Practical Entropy-Compressed
Rank/Select Dictionary,” in Proc. 9th ALENEX, 2007.



[3] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao, “Rank/select operations on
large alphabets: a tool for text indexing,” in Proc. 15th SODA, 2006, pp. 368–373.

[4] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti, “Succinct indexable dic-
tionaries with applications to encoding k -ary trees, prefix sums and multisets,” ACM
Trans. Algorithms, vol. 3, no. 4, pp. 43, 2007.

[5] Alberto Ordóñez Pereira, Gonzalo Navarro, and Nieves R. Brisaboa, “Grammar com-
pressed sequences with rank/select support,” J. Discrete Algorithms, vol. 43, pp. 54–71,
2017.

[6] Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei, “Ac-
cess, rank, and select in grammar-compressed strings,” in Proc. 23rd ESA, 2015, pp.
142–154.

[7] Veli Mäkinen and Gonzalo Navarro, “Rank and select revisited and extended,” Theor.
Comput. Sci., vol. 387, no. 3, pp. 332–347, 2007.

[8] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro, “Compressed
representations of sequences and full-text indexes,” ACM Trans. Algorithms, vol. 3,
no. 2, pp. 20, 2007.

[9] Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti, “Succinct indexes
for strings, binary relations and multilabeled trees,” ACM Trans. Algorithms, vol. 7,
no. 4, pp. 52:1–52:27, 2011.

[10] Jérémy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich,
“Efficient fully-compressed sequence representations,” Algorithmica, vol. 69, no. 1, pp.
232–268, 2014.

[11] Gonzalo Navarro and Kunihiko Sadakane, “Fully functional static and dynamic suc-
cinct trees,” ACM Trans. Algorithms, vol. 10, no. 3, pp. 16:1–16:39, 2014.

[12] Meng He and J. Ian Munro, “Succinct representations of dynamic strings,” in Proc.
17th SPIRE, 2010, pp. 334–346.

[13] Gonzalo Navarro and Yakov Nekrich, “Optimal dynamic sequence representations,”
SIAM J. Comput., vol. 43, no. 5, pp. 1781–1806, 2014.

[14] Roberto Grossi, Rajeev Raman, Srinivasa Rao Satti, and Rossano Venturini, “Dynamic
compressed strings with random access,” in Proc. 40th ICALP, 2013, pp. 504–515.

[15] Travis Gagie, “Rank and select operations on sequences,” in Encyclopedia of Algo-
rithms, pp. 1776–1780. 2016.

[16] Karl R. Abrahamson, “Generalized string matching,” SIAM J. Comput., vol. 16, no.
6, pp. 1039–1051, 1987.

[17] Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Il-
iopoulos, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone, “Comparing degenerate
strings,” Fundam. Informaticae, vol. 175, no. 1-4, pp. 41–58, 2020.

[18] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen, “Covering problems for partial words and for
indeterminate strings,” Theor. Comput. Sci., vol. 698, pp. 25–39, 2017.

[19] Costas S. Iliopoulos, Laurent Mouchard, and Mohammad Sohel Rahman, “A new
approach to pattern matching in degenerate DNA/RNA sequences and distributed
pattern matching,” Math. Comput. Sci., vol. 1, no. 4, pp. 557–569, 2008.

[20] Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and Jaakko Vuohtoniemi, “Subset
wavelet trees,” in Proc. 21st SEA, 2023, pp. 4:1–4:14.

[21] Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuohtoniemi, “Small searchable κ-
spectra via subset rank queries on the spectral burrows-wheeler transform,” in Proc.
ACDA, 2023, 2023, pp. 225–236.

[22] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter, “High-order entropy-
compressed text indexes,” in Proc. 14th SODA, 2003, pp. 841–850.



[23] David R. Clark and J. Ian Munro, “Efficient suffix trees on secondary storage (extended
abstract),” in Proc. 7th SODA, 1996, pp. 383–391.

[24] Guy Jacobson, “Space-efficient static trees and graphs,” in Proc. FOCS, 1989, pp.
549–554.

[25] Alexander Golynski, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao, “Optimal
indexes for sparse bit vectors,” Algorithmica, vol. 69, no. 4, pp. 906–924, 2014.

[26] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri, “From theory to practice:
Plug and play with succinct data structures,” in Proc. 13th SEA, 2014, pp. 326–337.

[27] Ian B Jeffery, Anubhav Das, Eileen O’Herlihy, Simone Coughlan, Katryna Cisek,
Michael Moore, Fintan Bradley, Tom Carty, Meenakshi Pradhan, Chinmay Dwibedi,
et al., “Differences in fecal microbiomes and metabolomes of people with vs without
irritable bowel syndrome and bile acid malabsorption,” Gastroenterology, vol. 158, no.
4, pp. 1016–1028, 2020.

[28] Philip Bille, Inge Li Gørtz, and Tord Stordalen, “Rank and select on degenerate
strings,” 2023, arXiv, arXiv:2310.19702.

[29] Danyang Ma, Simon J Puglisi, Rajeev Raman, and Bella Zhukova, “On elias-fano for
rank queries in fm-indexes,” in Proc. DCC, 2021, 2021, pp. 223–232.

A Additional Data

k-mer Queries Subset Rank Queries
E. Coli Metagenome E. Coli Metagenome

Data structure Query Space Query Space Query Space Query Space

(µs) (bpk) (µs) (bpk) (ns) (bps) (ns) (bps)
Matrix 0.63 4.29 0.77 4.62 38.75 4.26 56.98 4.25
DSD (scan) 3.00 2.61 3.75 2.70 210.23 2.57 311.33 2.48
Thm1(iii) 3.87 3.68 4.95 3.91 435.28 3.64 546.89 3.60
DSD (rrr) 13.21 2.38 15.17 2.46 850.99 2.34 1086.11 2.26
SIMD 3.31 2.42 4.16 2.50 320.53 2.37 444.94 2.28
SWT (scan) 1.63 4.53 1.96 4.87 129.44 4.49 170.44 4.49
SWT (split) 4.93 3.17 6.06 3.21 436.69 3.13 620.47 2.96
SWT (rrr gen.) 18.97 2.84 19.79 3.04 789.12 2.81 860.4 2.80
SWT (rrr) 25.33 2.48 27.55 2.62 1384.0 2.45 1610.73 2.41
Split (plain) 2.28 3.30 2.84 3.52 235.22 3.27 298.87 3.24
Split (ef) 2.71 2.69 3.30 2.78 317.71 2.65 390.65 2.56
Split (rrr) 4.70 2.54 5.54 2.65 393.14 2.51 471.30 2.44
Concat(ef) 26.25 2.38 30.53 2.48 1372.2 2.35 1786.65 2.28

Table 1: The left half of the table shows the result for the k-mer query test. The times are
listed in microseconds per query, and space in the number of bits per represented k-mer.
The right half shows the result of the subset-rank query test. Times are listed in nanoseconds
per query, and space in bits per symbol (i.e., the number of bits divided by N). There are
five groups, separated by horizontal lines; the benchmark structure, our reductions, our
structure using SIMD, the Subset Wavelet Trees from [20], and the reductions from [21].
Each group is ordered from fastest to slowest and largest to smallest, except for Thm1(iii)
which breaks space order. Each value in the table is the average of five measurements.


	Introduction
	Our Results
	Reductions
	Lower Bound
	Experimental Setup
	Results
	Additional Data

