
Succinct Partial Sums and Fenwick Trees

Philip Bille, Anders Roy Christiansen, Nicola Prezza(B),
and Frederik Rye Skjoldjensen

Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark
{phbi,aroy,npre,fskj}@dtu.dk

Abstract. We consider the well-studied partial sums problem in succint
space where one is to maintain an array of n k-bit integers subject to
updates such that partial sums queries can be efficiently answered. We
present two succint versions of the Fenwick Tree – which is known for
its simplicity and practicality. Our results hold in the encoding model
where one is allowed to reuse the space from the input data. Our main
result is the first that only requires nk + o(n) bits of space while still
supporting sum/update in O(logb n) / O(b logb n) time where 2 ≤ b ≤
logO(1) n. The second result shows how optimal time for sum/update
can be achieved while only slightly increasing the space usage to nk +
o(nk) bits. Beyond Fenwick Trees, the results are primarily based on
bit-packing and sampling – making them very practical – and they also
allow for simple optimal parallelization.

Keywords: Partial sums · Fenwick tree · Succinct · Parallel

1 Introduction

Let A be an array of k-bits integers, with |A| = n. The partial sums problem is
to build a data structure maintaining A under the following operations.

– sum(i): return the value
∑i

t=1 A[t].
– search(j): return the smallest i such that sum(i) ≥ j.
– update(i,Δ): set A[i] ← A[i] + Δ, for some Δ such that 0 ≤ A[i] + Δ < 2k.
– access(i): return A[i].

Note that access(i) can implemented as sum(i)− sum(i − 1) and we therefore
often do not mention it explicitly.

The partial sums problem is one of the most well-studied data structure
problems [1–4,6–9]. In this paper, we consider solutions to the partial sums
problem that are succinct, that is, we are interested in data structures that use
space close to the information-theoretic lower bound of nk bits. We distinguish
between encoding data structures and indexing data structures. Indexing data
structures are required to store the input array A verbatim along with additional
information to support the queries, whereas encoding data structures have to
support operations without consulting the input array.
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 91–96, 2017.
DOI: 10.1007/978-3-319-67428-5 8

92 P. Bille et al.

In the indexing model Raman et al. [8] gave a data structure that supports
sum, update, and search in O(log n/ log log n) time while using nk+o(nk) bits of
space. This was improved and generalized by Hon et al. [6]. Both of these papers
have the constraint Δ ≤ logO(1) n. The above time complexity is nearly optimal
by a lower bound of Patrascu and Demaine [7] who showed that sum, search,
and update operations take Θ(logw/δ n) time per operation, where w ≥ log n is
the word size and δ is the number of bits needed to represent Δ. In particular,
whenever Δ = logO(1) n this bound matches the O(log n/ log log n) bound of
Raman et al. [8].

Fenwick [2] presented a simple, elegant, and very practical encoding data
structure. The idea is to replace entries in the input array A with partial sums
that cover A in an implicit complete binary tree structure. The operations are
then implemented by accessing at most log n entries in the array. The Fenwick
tree uses nk + n log n bits and supports all operations in O(log n) time. In this
paper we show two succinct b-ary versions of the Fenwick tree. In the first version
we reduce the size of the Fenwick tree while improving the sum and update time.
In the second version we obtain optimal times for sum and update without using
more space than the previous best succinct solutions [6,8]. All results in this
paper are in the RAM model.

Our results. We show two encoding data structures that gives the following
results.

Theorem 1. We can replace A with a succinct Fenwick tree of nk + o(n)
bits supporting sum, update, and search queries in O(logb n), O(b logb n), and
O(log n) time, respectively, for any 2 ≤ b ≤ logO(1) n.

Theorem 2. We can replace A with a succinct Fenwick tree of nk + o(nk) bits
supporting sum and update queries in optimal O(logw/δ n) time and search

queries in O(log n) time.

2 Data Structure

For simplicity, assume that n is a power of 2. The Fenwick tree is an implicit
data structure replacing a word-array A[1, . . . , n] as follows:

Definition 1. Fenwick tree of A [2]. If n = 1, then leave A unchanged. Oth-
erwise, divide A in consecutive non-overlapping blocks of two elements each
and replace the second element A[2i] of each block with A[2i − 1] + A[2i], for
i = 1, . . . , n/2. Then, recurse on the sub-array A[2, 4, . . . , 2i, . . . , n].

To answer sum(i), the idea is to write i in binary as i = 2j1 + 2j2 + · · · + 2jk

for some j1 > j2 > · · · > jk. Then there are k ≤ log n entries in the Fenwick
tree, that can be easily computed from i, whose values added together yield
sum(i). In Sect. 2.1 we describe in detail how to perform such accesses. As per
the above definition, the Fenwick tree is an array with n indices. If represented
compactly, this array can be stored in nk+n log n bits. In this section we present
a generalization of Fenwick trees taking only succinct space.

Succinct Partial Sums and Fenwick Trees 93

2.1 Layered b-ary Structure

We first observe that it is easy to generalize Fenwick trees to be b-ary, for b ≥ 2:
we divide A in blocks of b integers each, replace the first b − 1 elements in each
block with their partial sum, and fill the remaining n/b entries of A by recursing
on the array A′ of size n/b that stores the sums of each block. This generalization
gives an array of n indices supporting sum, update, and search queries on the
original array in O(logb n), O(b logb n), and O(log n) time, respectively. We now
show how to reduce the space of this array.

Let � = logb n. We represent our b-ary Fenwick tree Tb(A) using � + 1 arrays
(layers) T 1

b (A), . . . , T �+1
b (A). For simplicity, we assume that n = be for some

e ≥ 0 (the general case is then straightforward to derive). To improve readability,
we define our layered structure for the special case b = 2, and then sketch how
to extend it to the general case b ≥ 2. Our layered structure is defined as follows.
If n = 1, then T 1

2 (A) = A. Otherwise:

– T �+1
2 (A)[i] = A[(i − 1) · 2 + 1], for all i = 1, . . . , n/2. Note that T �+1

2 (A)
contains n/2 elements.

– Divide A in blocks of 2 elements each, and build an array A′[j] containing
the n/2 sums of each block, i.e. A′[j] = A[(j − 1) · 2 + 1] + A[(j − 1) · 2 + 2],
for j = 1, . . . , n/2. Then, the next layers are recursively defined as T �

2 (A) ←
T �
2 (A′), . . . , T 1

2 (A) ← T 1
2 (A′).

For general b ≥ 2, T �+1
b (A) is an array of n(b−1)

b elements that stores the
b − 1 partial sums of each block of b consecutive elements in A, while A′ is
an array of size n/b containing the complete sums of each block. In Fig. 1 we
report an example of our layered structure with b = 3. It follows that elements
of T i

b (A), for i > 1, take at most k + (� − i + 2) log b bits each. Note that
arrays T 1

b (A), . . . , T �+1
b (A) can easily be packed contiguously in a word array

while preserving constant-time access to each of them. This saves us O(�) words
that would otherwise be needed to store pointers to the arrays. Let Sb(n, k) be
the space (in bits) taken by our layered structure. This function satisfies the
recurrence

Sb(1, k) = k

Sb(n, k) = n(b−1)
b · (k + log b) + Sb(n/b, k + log b)

Which unfolds to Sb(n, k) =
∑logb n+1

i=1
n(b−1)

bi · (k + i log b) . Using the identities∑∞
i=1 1/bi = 1/(b − 1) and

∑∞
i=1 i/bi = b/(b − 1)2, one can easily derive that

Sb(n, k) ≤ nk + 2n log b.
We now show how to obtain the time bounds stated in Theorem 1. In the

next section, we reduce the space of the structure without affecting query times.

Answering sum. Let the notation (x1x2 . . . xt)b, with 0 ≤ xi < b for i = 1, . . . , t,
represent the number

∑t
i=1 bt−ixi in base b. sum(i) queries on our structure are a

generalization (in base b) of sum(i) queries on standard Fenwick trees. Consider
the base-b representation x1x2 . . . x�+1 of i, i.e. i = (x1x2 . . . x�+1)b (note that we
have at most �+1 digits since we enumerate indexes starting from 1). Consider now

94 P. Bille et al.

all the positions 1 ≤ i1 < i2 < · · · < it ≤ �+1 such that xj �= 0, for j = i1, . . . , it.
The idea is that each of these positions j = i1, . . . , it can be used to compute an
offset oj in T j

b (A). Then, sum(i) =
∑

j=i1,...,it
T j

b (A)[oj]. The offset oj relative to
the j-th most significant (nonzero) digit of i is defined as follows. If j = 1, then
oj = x1. Otherwise, oj = (b − 1) · (x1 . . . xj−1)b + xj . Note that we scale by a
factor of b − 1 (and not b) as the first term in this formula as each level T j(A)
stores only b − 1 out of b partial sums (the remaining sums are passed to level
j − 1). Note moreover that each oj can be easily computed in constant time and
independently from the other offsets with the aid of modular arithmetic. It follows
that sum queries are answered in O(logb n) time. See Fig. 1 for a concrete example
of sum.

Answering update. The idea for performing update(i,Δ) is analogous to that of
sum(i). We access all levels that contain a partial sum covering position i and
update at most b − 1 sums per level. Using the same notation as above, for each
j = i1, . . . , it such that xj �= 0, we update T j

b (A)[oj + l] ← T j
b (A)[oj + l] + Δ for

l = 0, . . . , b − xj − 1. This procedure takes O(b logb n) time.

Answering search. To answer search(j) we start from T 1
b (A) and simply perform

a top-down traversal of the implicit B-tree of degree b defined by the layered
structure. At each level, we perform O(log b) steps of binary search to find the
new offset in the next level. There are logb n levels, so search takes overall
O(log n) time.

Fig. 1. Example of our layered structure with n = 27 and b = 3. Horizontal red lines
show the portion of A covered by each element in T j

3 (A), for j = 1, . . . , logb n + 1. To
access the i-th partial sum, we proceed as follows. Let, for example, i = 19 = (0201)3.
The only nonzero digits in i are the 2-nd and 4-th most significant. This gives us
o2 = 2 · (0)3 + 2 = 2 and o4 = 2 · (020)3 + 1 = 13. Then, sum(19) = T 2

3 (A)[2] +
T 4
3 (A)[13] = 89 + 3 = 92. (Color figure online)

2.2 Sampling

Let 0 < d ≤ n be a sample rate, where for simplicity we assume that d divides n.
Given our input array A, we derive an array A′ of n/d elements containing the

Succinct Partial Sums and Fenwick Trees 95

sums of groups of d adjacent elements in A, i.e. A′[i] =
∑d

j=1 A[(i − 1) · d + j],
i = 1, . . . , d. We then compact A by removing A[j · d] for j = 1, . . . , n/d, and by
packing the remaining integers in at most nk(1−1/d) bits. We build our layered
b-ary Fenwick tree Tb(A′) over A′. It is clear that queries on A can be solved
with a query on Tb(A′) followed by at most d accesses on (the compacted) A.
The space of the resulting data structure is nk(1 − 1/d) + Sb(n/d, k + log d) ≤
nk + n log d

d + 2n log b
d bits. In order to retain the same query times of our basic

layered structure, we choose d = (1/ε) logb n for any constant ε > 0 and obtain
a space occupancy of nk + ε

(
n log logb n

logb n + 2n log b
logb n

)
bits. For b ≤ logO(1) n, this

space is nk+o(n) bits. Note that—as opposed to existing succinct solutions—the
low-order term does not depend on k.

3 Optimal-Time sum and update

In this section we show how to obtain optimal running times for sum and update
queries in the RAM model. We can directly apply the word-packing techniques
described in [7] to speed-up queries; here we only sketch this strategy, see [7]
for full details. Let us describe the idea on the structure of Sect. 2.1, and then
plug in sampling to reduce space usage. We divide arrays T j

b (A) in blocks of
b− 1 entries, and store one word (w bits) for each such block. We can pack b− 1
integers of at most w/(b − 1) bits each (for an opportune b, read below) in the
word associated with each block. Since blocks of b − 1 integers fit in a single
word, we can easily answer sum and update queries on them in constant time.
sum queries on our overall structure can be answered as described in Sect. 2.1,
except that now we also need to access one of the packed integers at each level
j to correct the value read from T j

b (A). To answer update queries, the idea is
to perform update operations on the packed blocks of integers in constant time
exploiting bit-parallelism instead of updating at most b − 1 values of T j

b (A). At
each update operation, we transfer one of these integers on T j

b (A) (in a cyclic
fashion) to avoid overflowing and to achieve worst-case performance. Note that
each packed integer is increased by at most Δ for at most b − 1 times before
being transferred to T j

b (A), so we get the constraint (b − 1) log((b − 1)Δ) ≤ w.
We choose (b − 1) = w

log w + δ . Then, it is easy to show that the above constraint
is satisfied. The number of levels becomes logb n = O(logw/δ n). Since we spend
constant time per level, this is also the worst-case time needed to answer sum and
update queries on our structure. To analyze space usage we use the corrected
formula

Sb(1, k) = k

Sb(n, k) = n(b − 1)
b · (k + log b) + nw

b + Sb(n/b, k + log b)

yielding Sb(1, k) ≤ nk + 2n log b + nw
b − 1 . Replacing b − 1 = w

log w + δ we achieve
nk + O(nδ + n log w) bits of space.

We now apply the sampling technique of Sect. 2.2 with a slight variation.
In order to get the claimed space/time bounds, we need to further apply bit-
parallelism techniques on the packed integers stored in A: using techniques

96 P. Bille et al.

from [5], we can answer sum, search, and update queries in O(1) time on blocks
of w/k integers. It follows that we can now use sample rate d = w log n

k log(w/δ)

without affecting query times. After sampling A and building the Fenwick
tree above described over the sums of size-d blocks of A, the overall space is
nk(1 − 1/d) + Sb(n/d, k + log d) = nk + n log d

d + O(nδ
d + n log w

d). Note that d ≤
w2

k log(w/δ) ≤ w2, so log d ∈ O(log w) and space simplifies to nk + O(nδ
d + n log w

d).

The term nδ
d equals nδk log(w/δ)

w log n . Since δ ≤ w, then δ log(w/δ) ≤ w, and
this term therefore simplifies to nk

log n ∈ o(nk). Finally, the term n log w
d equals

n log w·k log(w/δ)
w log n ≤ nk

(w log n)/(log w)2 ∈ o(nk). The bounds of Theorem 2 follow.

Parallelism. Note that sum and update queries on our succinct Fenwick trees can
be naturally parallelized as all accesses/updates on the levels can be performed
independently from each other. For sum, we need O(log logb n) further time
to perform a parallel sum of the logb n partial results. It is not hard to show
that—on architectures with logb n processors—this reduces sum/update times to
O(log logb n)/O(b) and O(log logw/δ n)/O(1) in Theorems 1 and 2, respectively.

References

1. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer,
Heidelberg (1989). doi:10.1007/3-540-51542-9 5

2. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Exp. 24(3), 327–336 (1994)

3. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of 21st STOC, pp. 345–354 (1989)

4. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM (JACM) 29(1), 250–260 (1982)

5. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). doi:10.1007/BFb0028575

6. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable par-
tial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39), 5176–
5186 (2011)

7. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

8. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001). doi:10.1007/3-540-44634-6 39

9. Yao, A.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14(2),
277–288 (1985)

http://dx.doi.org/10.1007/3-540-51542-9_5
http://dx.doi.org/10.1007/BFb0028575
http://dx.doi.org/10.1007/3-540-44634-6_39

	Succinct Partial Sums and Fenwick Trees
	1 Introduction
	2 Data Structure
	2.1 Layered b-ary Structure
	2.2 Sampling

	3 Optimal-Time sum and update
	References

