
Sparse Su�x Tree Construction in Small Space

Philip Bille1, Johannes Fischer2, Inge Li Gørtz1, Tsvi Kopelowitz3,
Benjamin Sach4, and Hjalte Wedel Vildhøj1

1 Technical University of Denmark, {phbi,inge}@dtu.dk,hwv@hwv.dk
2 KIT, Institute of Theoretical Informatics, johannes.fischer@kit.edu

3 Weizmann Institute of Science, kopelot@gmail.com
4 University of Warwick, sach@dcs.warwick.ac.uk

Abstract. We consider the problem of constructing a sparse su�x tree
(or su�x array) for b su�xes of a given text T of length n, using only
O(b) words of space during construction. Attempts at breaking the naive
bound of ⌦(nb) time for this problem can be traced back to the origins
of string indexing in 1968. First results were only obtained in 1996, but
only for the case where the su�xes were evenly spaced in T . In this paper
there is no constraint on the locations of the su�xes.
We show that the sparse su�x tree can be constructed in O(n log2 b)
time. To achieve this we develop a technique, which may be of indepen-
dent interest, that allows to e�ciently answer b longest common prefix
queries on su�xes of T , using only O(b) space. We expect that this tech-
nique will prove useful in many other applications in which space usage
is a concern. Our first solution is Monte-Carlo and outputs the correct
tree with high probability. We then give a Las-Vegas algorithm which
also uses O(b) space and runs in the same time bounds with high prob-
ability when b = O(

p
n). Furthermore, additional tradeo↵s between the

space usage and the construction time for the Monte-Carlo algorithm are
given.

1 Introduction

In the sparse text indexing problem we are given a string T = t
1

. . . tn of length n,
and a list of b interesting positions in T . The goal is to construct an index for only
those b positions, while using only O(b) words of space during the construction
process (in addition to storing the text T). Here, by index we mean a data
structure allowing for the quick location of all occurrences of patterns starting

at interesting positions only. A natural application comes from computational
biology, where the string would be a sequence of nucleotides or amino acids, and
additional biological knowledge rules out many positions where patterns could
potentially start. Another application is indexing far eastern languages, where
one might be interested in indexing only those positions where words start, but
natural word boundaries do not exist.

Examples of suitable O(b) space indexes include su�x trees [18] or su�x
arrays [14] built on only those su�xes starting at interesting positions. Of course,
one can always first compute a full-text su�x tree or array in linear time, and

then postprocess it to include the interesting positions only. The problem of this
approach is that it needs O(n) words of intermediate working space, which may
be much more than the O(b) words needed for the final result, and also much
more than the space needed for storing T itself. In situations where the RAM is
large enough for the string itself, but not for an index on all positions, a more
space e�cient solution is desirable. Another situation is where the text is held in
read-only memory and only a small amount of read-write memory is available.
Such situations often arise in embedded systems or in networks, where the text
may be held remotely.

A “straightforward” space-saving solution would be to sort the interesting
su�xes by an arbitrary string sorter, for example, by inserting them one after
the other into a compacted trie. However, such an approach is doomed to take
⌦(nb+ n log n) time [5], since it takes no advantage of the fact that the strings
are su�xes of one large text, so it cannot be faster than a general string sorter.

Breaking these naive bounds has been a problem that can be traced back
to—according to Kärkkäinen and Ukkonen [10]—the origins of string indexing
in 1968 [15]. First results were only obtained in 1996, where Andersson et al. [2, 3]
and Kärkkäinen and Ukkonen [10] considered restricted variants of the problem:
the first [2, 3] assumed that the interesting positions coincide with natural word
boundaries of the text, and the authors achieved expected linear running time
using O(b) space. The expectancy was later removed [9, 7], and the result was
recently generalized to variable length codes such as Hu↵man code [17]. The
second restricted case [10] assumed that the text of interesting positions is evenly
spaced ; i.e., every kth position in the text. They achieved linear running time
and optimal O(b) space. It should be mentioned that the data structure by
Kärkkäinen and Ukkonen [10] was not necessarily meant for finding only pattern
occurrences starting at the evenly spaced indexed positions, as a large portion of
the paper is devoted to recovering all occurrences from the indexed ones. Their
technique has recently been refined by Kolpakov et al. [13]. Another restricted
case admitting an O(b) space solution is if the interesting positions have the same
period ⇢ (i.e., if position i is interesting then so is position i+⇢). In this case the
sparse su�x array can be constructed in O(b⇢ + b log b) time. This was shown
by Burkhardt and Kärkkäinen [6], who used it to sort di↵erence cover samples

leading to a clever technique for constructing the full su�x array in sublinear
space. Interestingly, their technique also implies a time-space tradeo↵ for sorting
b arbitrary su�xes in O(v+n/

p
v) space and O(

p
vn+(n/

p
v) log(n/

p
v)+vb+

b log b) time for any v 2 [2, n].

1.1 Our Results

We are the first to break the naive O(nb) time algorithm for general sparse
su�x trees, by showing how to construct a sparse su�x tree in O(n log2 b) time,
using only O(b) words of space. To achieve this, we develop a novel technique for
performing e�cient batched longest common prefix (LCP) queries, using little
space. In particular, in Section 3, we show that a batch of b LCP queries can be
answered using only O(b) words of space, in O(n log b) time. This technique may

2

be of independent interest, and we expect it to be helpful in other applications
in which space usage is a factor. Both algorithms are Monte-Carlo and output
correct answers with high probability, i.e., at least 1� 1/nc for any constant c.

In Section 5 we give a Las-Vegas version of our sparse su�x tree algorithm.
This is achieved by developing a deterministic verifier for the answers to a batch
of b longest common prefix queries. We show that this verifier can be used to
obtain the sparse su�x tree with certainty in O(n log2 b+b2 log b) time with high
probability using only O(b) space. For example for b = O(

p
n) we can construct

the sparse su�x tree correctly in O(n log2 b) time with high probability using
O(b) space in the worst case. This follows because, for verification, a single batch
of b LCP queries su�ces to check the sparse su�x tree. The verifier we develop
encodes the relevant structure of the text in a graph with O(b) edges. We then
exploit novel properties of this graph to verify the answers to the LCP queries
e�ciently.

Finally, in Section 6, we show some tradeo↵s of construction time and space
usage of our Monte-Carlo algorithm, which are based on time-space tradeo↵s
of the batched LCP queries. In particular we show that using O(b↵) space the

construction time is reduced to O
⇣
n log

2 b
log↵ + ↵b log2 b

log↵

⌘
. So, for example, the cost

for constructing the sparse su�x tree can be reduced to O(n log b) time, using
O(b1+") words of space where " > 0 is any constant.

2 Preliminaries

For a string T = t
1

· · · tn of length n, denote by Ti = ti · · · tn the ith su�x
of T . The LCP of two su�xes Ti and Tj is denoted by LCP (Ti, Tj), but we will
slightly abuse notation and write LCP (i, j) = LCP (Ti, Tj). We denote by Ti,j

the substring ti · · · tj . We say that Ti,j has period ⇢ > 0 i↵ Ti+⇢,j = Ti,j�⇢. Note
that ⇢ is a period of Ti,j and not necessarily the unique minimal period of Ti,j ,
commonly referred to as the period.

We assume the reader is familiar with both the su�x tree data structure [18]
as well as su�x and LCP arrays [14].

Fingerprinting We make use of the fingerprinting techniques of Karp and Ra-
bin [11]. Our algorithms are in the word-RAM model with word size ⇥(log n)
and we assume that each character in T fits in a constant number of words.
Hence each character can be interpreted as a positive integer, no larger than
nO(1). Let p be a prime between nc and 2nc (where c > 0 is a constant picked
below) and choose r 2 Zp uniformly at random. A fingerprint for a substring

Ti,j , denoted by FP[i, j], is the number
Pj

k=i r
j�k · tk mod p. Two equal sub-

strings will always have the same fingerprint, however the converse is not true.
Fortunately, as each character fits in O(1) words, the probability of any two
di↵erent substrings having the same fingerprint is at most by n�⌦(1) [11]. By
making a suitable choice of c and applying the union bound we can ensure that
with probability at least 1�n�⌦(1), all fingerprints of substring of T are collision
free. I.e. for every pair of substrings Ti

1

,j
1

and Ti
2

,j
2

we have that Ti
1

,j
1

= Ti
2

,j
2

3

i↵ FP[i
1

, j
1

] = FP[i
2

, j
2

]. The exponent in the probability can be amplified by
increasing the value of c. As c is a constant, any fingerprint fits into a constant
number of words.

We utilize two important properties of fingerprints. The first is that FP[i, j+
1] can be computed from FP[i, j] in constant time. This is done by the formula
FP[i, j+1] = FP[i, j] · r+ tj+1

mod p. The second is that the fingerprint of Tk,j

can be computed in O(1) time from the fingerprint of Ti,j and Ti,k, for i k j.
This is done by the formula FP[k, j] = FP[i, j] � FP[i, k] · rj�k mod p. Notice
however that in order to perform this computation, we must have stored rj�k

mod p as computing it on the fly may be costly.

3 Batched LCP Queries

3.1 The Algorithm

Given a string T of length n and a list of q pairs of indices P , we wish to compute
LCP (i, j) for all (i, j) 2 P . To do this we perform log q rounds of computation,
where at the kth round the input is a set of q pairs denoted by Pk, where we
are guaranteed that for any (i, j) 2 Pk, LCP (i, j) 2logn�(k�1). The goal of the
kth iteration is to decide for any (i, j) 2 Pk if LCP (i, j) 2logn�k or not. In
addition, the kth round will prepare Pk+1

, which is the input for the (k + 1)th

round. To begin the execution of the procedure we set P
0

= P , as we are always
guaranteed that for any (i, j) 2 P , LCP (i, j) n = 2logn. We will first provide
a description of what happens during each of the log q rounds, and after we will
explain how the algorithm uses P

log q to derive LCP (i, j) for all (i, j) 2 P .

A Single Round The kth round, for 1 k log q, is executed as follows. We
begin by constructing the set L =

S
(i,j)2P

k

{i� 1, j� 1, i+2logn�k, j+2logn�k}
of size 4q, and construct a perfect hash table for the values in L, using a 2-wise
independent hash function into a world of size qc for some constant c (which with
high probability guarantees that there are no collisions). Notice if two elements
in L have the same value, then we store them in a list at their hashed value. In
addition, for every value in L we store which index created it, so for example,
for i� 1 and i+ 2logn�k we remember that they were created from i.

Next, we scan T from t
1

till tn. When we reach t` we compute FP[1, `] in con-
stant time from FP[1, `� 1]. In addition, if ` 2 L then we store FP[1, `] together
with ` in the hash table. Once the scan of T is completed, for every (i, j) 2 Pk

we compute FP[i, i+ 2logn�k] in constant time, as we stored FP[1, i� 1] and
FP[1, i+ 2logn�k]. Similarly we compute FP[j, j + 2logn�k]. Notice that to do

this we need to compute r2
log n�k

mod p = r
n

2

k in O(log n� k) time, which can
be easily a↵orded within our bounds, as one computation su�ces for all pairs.

If FP[i, i+ 2logn�k] 6= FP[j, j + 2logn�k] then LCP (i, j) < 2logn�k, and so
we add (i, j) to Pk+1

. Otherwise, with high probability LCP (i, j) � 2logn�k and
so we add (i+ 2logn+k, j + 2logn+k) to Pk+1

. Notice there is a natural bijection
between pairs in Pk�1

and pairs in P following from the method of constructing

4

the pairs for the next round. For each pair in Pk+1

we will remember which pair
in P originated it, which can be easily transferred when Pk+1

is constructed
from Pk.

LCP on Small Strings After the log q rounds have taken place, we know that for
every (i, j) 2 P

log q, LCP (i, j) 2logn�log q = n
q . For each such pair, we spend

O(nq) time in order to exactly compute LCP (i, j). Notice that this is performed

for q pairs, so the total cost is O(n) for this last phase. We then construct
Pfinal = {(i + LCP (i, j), j + LCP (i, j)) : (i, j) 2 P

log q}. For each (i, j) 2 Pfinal

denote by (i
0

, j
0

) 2 P the pair which originated (i, j). We claim that for any
(i, j) 2 Pfinal, LCP (i

0

, j
0

) = i� i
0

.

3.2 Runtime and Correctness

Each round takes O(n+q) time, and the number of rounds is O(log q) for a total
of O((n + q) log q) time for all rounds. The work executed for computing Pfinal

is an additional O(n).
The following lemma on LCPs, which follows directly from the definition,

will be helpful in proving the correctness of the batched LCP query.

Lemma 1. For any 1 i, j n, for any 0 m LCP (i, j), it holds that

LCP (i+m, j +m) +m = LCP (i, j).

We now proceed on to prove that for any (i, j) 2 Pfinal, LCP (i
0

, j
0

) = i � i
0

.
Lemma 2 shows that the algorithm behaves as expected during the log q rounds,
and Lemma 3 proves that the work done in the final round su�ces for computing
the LCPs.

Lemma 2. At round k, for any (ik, jk) 2 Pk, ik � i
0

 LCP (i
0

, j
0

) ik � i
0

+
2logn�k

, assuming the fingerprints do not give a false positive.

Proof. The proof is by induction on k. For the base, k = 0 and so P
0

= P
meaning that ik = i

0

. Therefore, ik�i
0

= 0 LCP (i
0

, j
0

) 2logn = n, which is
always true. For the inductive step, we assume correctness for k�1 and we prove
for k as follows. By the induction hypothesis, for any (ik�1

, jk�1

) 2 Pk�1

, i�i
0

LCP (i

0

, j
0

) i� i
0

+2logn�k+1. Let (ik, jk) be the pair in Pk corresponding to
(ik�1

, jk�1

) in Pk�1

. If ik = ik�1

then LCP (ik�1

, jk�1

) < 2logn�k. Therefore,

ik � i
0

= ik�1

� i
0

 LCP (i
0

, j
0

)

 ik�1

� i
0

+ LCP (ik�1

, jk�1

) ik � i
0

+ 2logn�k.

If ik = ik�1

+ 2logn�k then FP[i, i+ 2logn�k] = FP[j, j + 2logn�k], and because
we assume that the fingerprints do not produce false positives, LCP (ik�1

, jk�1

) �
2logn�k. Therefore,

ik � i
0

= ik�1

+ 2logn�k � i
0

 ik�1

� i
0

+ LCP (ik�1

, jk�1

)

 LCP (i
0

, j
0

) ik�1

� i
0

+ 2logn�k+1

 ik � i
0

+ 2logn�k,

5

where the third inequality holds from Lemma 1, and the fourth inequality holds
as LCP (i

0

, j
0

) = ik�1

� i
0

+ LCP (ik�1

, jk�1

) (which is the third inequality),
and LCP (ik�1

, jk�1

) 2logn�k+1 by the induction hypothesis. ut

Lemma 3. For any (i, j) 2 Pfinal, LCP (i
0

, j
0

) = i� i
0

(= j � j
0

).

Proof. Using Lemma 2 with k = log q we have that for any (i
log q, jlog q) 2

P
log q, i

log q � i
0

 LCP (i
0

, j
0

) i
log q � i

0

+ 2logn�log q = i
log q � i

0

+ n
q .

Because LCP (i
log q, jlog q) 2logn�log q it must be that LCP (i

0

, j
0

) = i
log q �

i
0

+ LCP (i
log q, jlog q). Notice that ifinal = i

log q + LCP (i
log q, jlog q). Therefore,

LCP (i
0

, j
0

) = ifinal � i
0

as required. ut

Notice that the space used in each round is the set of pairs and the hash table
for L, both of which require only O(q) words of space. Thus, we have obtained
the following. We discuss several other time/space tradeo↵s in Section 6.

Theorem 1. There exists a randomized Monte-Carlo algorithm that with high

probability correctly answers a batch of q LCP queries on su�xes from a string

of length n. The algorithm uses O((n+q) log q) time and O(q) space in the worst

case.

4 Constructing the Sparse Su�x Tree

We now describe a Monte-Carlo algorithm for constructing the sparse su�x tree
on any b su�xes of T in O(n log2 b) time and O(b) space. The main idea is to
use batched LCP queries in order to sort the b su�xes, as once the LCP of two
su�xes is known, deciding which is lexicographically smaller than the other takes
constant time by examining the first two characters that di↵er in said su�xes.

To arrive at the claimed complexity bounds, we are interested in grouping
the LCP queries into O(log b) batches each containing q = O(b) queries on pairs
of su�xes. One way to do this is to simulate a sorting network on the b su�xes
of depth log b [1]. Unfortunately, such known networks have very large constants
hidden in them, and are generally considered impractical [16]. There are some
practical networks with depth log2 b such as [4], however, we wish to do better.

Consequently, we choose to simulate the quick-sort algorithm by each time
picking a random su�x called the pivot, and lexicographically comparing all
of the other b � 1 su�xes to the pivot. Once a partition is made to the set of
su�xes which are lexicographically smaller than the pivot, and the set of su�xes
which are lexicographically larger than the pivot, we recursively sort each set
in the partition with the following modification. Each level of the recursion tree
is performed concurrently using one single batch of q = O(b) LCP queries for
the entire level. Thus, by Theorem 1 a level can be computed in O(n log b) time
and O(b) space. Furthermore, with high probability, the number of levels in the
randomized quicksort is O(log b), so the total amount of time spent is O(n log2 b)
with high probability. The time bound can immediately be made worst-case by
aborting if the number of levels becomes too large, since the algorithm is still
guaranteed to return the correct answer with high probability.

6

Notice that once the su�xes have been sorted, then we have in fact computed
the sparse su�x array for the b su�xes. Moreover, the corresponding sparse
LCP array can be obtained as a by-product or computed subsequently by a
answering a single batch of q = O(b) LCP queries in O(n log b) time. Hence we
have obtained the following.

Theorem 2. There exists a randomized Monte-Carlo algorithm that with high

probability correctly constructs the sparse su�x array and the sparse LCP array

for any b su�xes from a string of length n. The algorithm uses O(n log2 b) time

and O(b) space in the worst case.

Having obtained the sparse su�x and LCP arrays, the sparse su�x tree can
be constructed deterministically in O(b) time and space using well-known tech-
niques, e.g. by simulating a bottom-up traversal of the tree [12].

Corollary 1. There exists a randomized Monte-Carlo algorithm that with high

probability correctly constructs the sparse su�x tree on b su�xes from a string of

length n. The algorithm uses O(n log2 b) time and O(b) space in the worst case.

5 Verifying the Sparse Su�x and LCP Arrays

In this section we give a deterministic algorithm which verifies the correctness of
the sparse su�x and LCP arrays constructed in Theorem 2. This immediately
gives a Las-Vegas algorithm for constructing either the sparse su�x array or
sparse su�x tree with certainty. For space reasons some proofs are omitted.

First observe that as lexicographical ordering is transitive it su�ces to verify
the correct ordering of each pair of indices which are adjacent in the sparse su�x
array. The correct ordering of su�xes Ti and Tj can be decided deterministically
in constant time by comparing ti+LCP (i,j) to tj+LCP (i,j). Therefore the problem
reduces to checking the LCP of each pair of indices which are adjacent in the
sparse su�x array. These LCPs are computed as a by-product of our Monte-
Carlo algorithm, and there is a small probability that they are incorrect.

Therefore our focus in this section is on giving a deterministic algorithm
which verifies the correctness of the answers to a batch of b LCP queries. As
before, to do this we perform O(log b) rounds of computation. The rounds occur
in decreasing order. In the kth round the input is a set of (at most) b index pairs
to be verified. Let {x, y} be such a pair of indices, corresponding to a pair of
substrings Tx,x+m

k

�1

and Ty,y+m
k

�1

wheremk = 2k. We say that {x, y}matches

i↵ Tx,x+m
k

�1

= Ty,y+m
k

�1

. In round k we will replace each pair {x, y} with a new
pair {x0, y0} to be inserted into round (k� 1) such that Tx,x+m

k

�1

= Ty,y+m
k

�1

i↵ Tx0,x0
+m

k�1

�1

= Ty0,y0
+m

k�1

�1

. Each new pair will in fact always correspond
to substrings of the old pair. In some cases we may choose to directly verify some
{x, y}, in which case no new pair is inserted into the next round. The initial,
largest value of k is the largest integer such that mk < n. We perform O(log b)
rounds, halting when n/b < mk < 2n/b after which point we can verify all pairs
by scanning T in O(mk · b) = O(n) time.

7

Of course an original query pair {x, y} may not have LCP (Tx, Ty) = mk for
any k. This is resolved by inserting two overlapping pairs into round k where
mk�1

< LCP (Tx, Ty) < mk. If the verifier succeeds, for each original pair we
have that Tx,x+LCP (T

x

,T
y

)�1

equals Ty,y+LCP (T
x

,T
y

)�1

. We also need to check
that tx+LCP (T

x

,T
y

)

does not equal tx+LCP (T
x

,T
y

)

- otherwise the true LCP value
is larger than was claimed. Where it is clear from context, for simplicity, we
abuse notation by letting m = mk. We now focus on an arbitrary round k.

The Su�x Implication Graph We now build a graph (V,E) which will encode
the structure in the text. We build the vertex set V greedily. Consider each text
index 1 x n in ascending order. We include index x as a vertex in V i↵
it occurs in some pair {x, y} (or {y, x}) and the last index included in V was
at least m/(9 · log b) characters ago. Observe that |V | 9 · (n/m) log b and also
varies between 9 · log b |V | b as it contains at most one vertex per index
pair.

Each pair of indices {x, y} corresponds to an edge between vertices v(x) and
v(y). Here v(x) is the unique vertex such that v(x) x < v(x)+m/(9·log b). The
vertex v(y) is defined analogously. This may create multiple edges between two
vertices v(x) and v(y). Any multi-edges imply a two-cycle and can be handled
first using a simplification of the main algorithm without increasing the overall
time or space complexity. For brevity we omit this case and continue under the
assumption that there are no multi-edges. It is simple to build the graph in
O(b log b) time by traversing the pairs. As |E| b we can store the graph in
O(b) space.

We now discuss the structure of the graph constructed and show how it can
be exploited to e�ciently solve the problem. The following simple lemma will be
essential to our algorithm and underpins the main arguments below.

Lemma 4. Let (V 0, E0) be a connected component of an undirected graph in

which every vertex has degree at least three. There is a (simple) cycle in (V 0, E0)
of length at most 2 log |V 0|+ 1.

The graph we have constructed may have vertices with degree less than
three, preventing us from applying Lemma 4. For each vertex v(x) with degree
less than three, we verify every index pair {x, y} (which corresponds to an edge
(v(x), v(y))). By directly scanning the corresponding text portions this takes
O(|V |m) time. We can then safely remove all such vertices and the correspond-
ing edges. This may introduce new low degree vertices which are then verified
iteratively in the same manner. As |V | 9 · (n/m) log b, this takes a total of
O(n log b) time. In the remainder we continue under the assumption that every
vertex has degree at least three.

Algorithm Summary The algorithm for round k processes each connected com-
ponent separately. However the time complexity arguments will be amortized
over all components. Consider a connected component (V 0, E0). As every ver-
tex has degree at least three, any component has a short cycle of length at

8

most 2 log |V 0| + 1 2 log b + 1 by Lemma 4. We begin by finding such a cy-
cle in O(b) time by performing a BFS of (V 0, E0) starting at any vertex (this
follows immediately from the proof of Lemma 4). Having located such a cycle,
we will distinguish two cases. The first case is when the cycle is lock-stepped
(defined below) and the other when it is unlocked. In both cases we will show
below that we can exploit the structure of the text to safely delete an edge from
the cycle, breaking the cycle. The index pair corresponding to the deleted edge
will be replaced by a new index pair to be inserted into the next round where
m mk�1

= mk/2. Observe that both cases reduce the number of edges in
the graph by one. Whenever we delete an edge we may reduce the degree of
some vertex to below three. In this case we immediately directly process this
vertex in O(m) time as discussed above (iterating if necessary). As we do this
at most once per vertex (and O(|V |m) = O(n log b)), this does not increase the
overall complexity. We then continue by finding and processing the next short
cycle. The algorithm therefore searches for a cycle at most |E| b times over
all components, contributing an O(b2) time additive term. In the remainder we
will explain the two cycle cases in more detail and prove that summed over all
components, the time complexity for round k is upper bounded by O(n log b)
(excluding finding the cycles). As there are O(log b) rounds the final time com-
plexity is O(n log2 b+ b2 log b) and the space is O(b).

Cycles We now define a lock-stepped cycle. Let (v(xi), v(yi)) for i = 1 . . . ` be
a cycle of length at most 2 log b + 1, i.e. v(yi) = v(xi+1

) for 1 i < ` and
v(y`) = v(x

1

). Here {xi, yi} for all i are the underlying text index pairs. Let

di = xi+1

� yi for 1 i < `, d` = x
1

� y` and let ⇢ =
P`

i=1

di. We say that the
cycle is lock-stepped i↵ ⇢ = 0 (and unlocked otherwise). Intuitively, lock-stepped
cycles are ones where all the underlying pairs are in sync. Lemma 5 gives the
key property of lock-stepped cycles which we will use.

Lemma 5. Let (v(xi), v(yi)) for i = 1 . . . ` be the edges in a lock-stepped cy-

cle. Further let j = argmax
Pj

i=1

dj. If {xi, yi} match for all i 6= j then

Tx
j

,x
j

+m/2�1

= Ty
j

,y
j

+m/2�1

.

Case 1: Lock-stepped Cycles The first, simpler case is when we find a lock-
stepped cycle in the connected component (V 0, E0). By Lemma 5, once we have
found a lock-stepped cycle we can safely remove some single edge, (v(xj), v(yj))
from the cycle. When we remove a single edge, we still need to verify the right
half of the removed pair, {xj , yj}. This is achieved by inserting a new pair,
{xj +m/2, yj +m/2} into the next round where m mk�1

= mk/2. We can
determine which edge can be deleted by traversing the cycle in O(log b) time.
Processing all lock-stepped cycles (over all components) takes O(b log b) time in
total.

Case 2: Unlocked Cycles The remaining case is when we find an unlocked cycle in
the connected component (V 0, E0). Lemma 6 tells us that in this case (if all pairs
match) then one of the pairs, {xj , yj} corresponding to an edge, (v(xj), v(yj)) in

9

the cycle must have a long, periodic prefix. We can again determine the suitable
pair {xj , yj} as well as ⇢ in O(log b) time by inspecting the cycle. This follows
immediately from the statement of the lemma and the definition of ⇢.

Lemma 6. Assume that the connected component, (V 0, E0) contains an unlocked

cycle denoted, (v(xi), v(yi)) for i = 1 . . . `. Further let j = argmax
Pj

i=1

dj. If
{xi, yi} match for all i = 1 . . . ` then Tx

j

,x
j

+3m/4�1

has a period |⇢| m/4.

Consider some pair {x, y} such that both Tx,x+3m/4�1

and Ty,y+3m/4�1

are
periodic with period at most m/4. We have that Tx,x+m�1

= Ty,y+m�1

i↵
Tx+m/2,x+m�1

= Ty+m/2,y+m�1

. This is because Tx+m/2,x+m�1

contains at least
a full period of characters from Tx,x+3m/4�1

, and similarly with Ty+m/2,y+m�1

and Ty,y+3m/4�1

analogously. So we have that if {xi, yi} match for all i 6= j
then the chosen pair {xj , yj} matches i↵ both Tx

j

,x
j

+3m/4�1

and Ty
j

,y
j

+3m/4�1

have period |⇢| m/4 and Tx
j

+m/2,x
j

+m�1

= Ty
j

+m/2,y
j

+m�1

. We can therefore
delete the pair {xj , yj} (and the corresponding edge, (v(xj), v(yj))) and insert a
new pair, {xj +m/2, yj +m/2} into the next round where m mk�1

= m/2.
However, for this approach to work we still need to verify that both strings

Tx
j

,x
j

+3m/4�1

and Ty
j

,y
j

+3m/4�1

have |⇢| as period. We do not immediately
check the periodicity, we instead delay computation until the end of round k,
after all cycles have been processed. At the current point in the algorithm, we
simply add the tuple ({x, y}, ⇢) to a list, ⇧ of text substrings to be checked later
for periodicity. This takes O(b) space over all components. Excluding checking
for periodicity, processing all unlocked cycles takes O(b log b) time in total.

Checking for Substring Periodicity The final task in round k is to scan the text
and check that for each ({x, y}, ⇢) 2 ⇧, |⇢| is a period of both Tx,x+3m/4�1

and
Ty,y+3m/4�1

. We process the tuples in left to right order. On the first pass we
consider Tx,x+3m/4�1

for each ({x, y}, ⇢) 2 ⇧. In the second pass we consider y.
The two passes are identical and we focus on the first.

We begin by splitting the tuples greedily into groups in left to right order. A
tuple ({x, y}, ⇢) is in the same group as the previous tuple i↵ the previous tuple
({x0, y0}, ⇢0) has x� x0 m/4. Let Tz,z+m0�1

be the substring of T which spans
every substring, Tx,x+3m/4�1

which appears in some ({x, y}, ⇢) in a single group
of tuples. We now apply the classic periodicity lemma stated below.

Lemma 7 (see e.g. [8]). Let S be a string with periods ⇢
1

and ⇢
2

and with

|S| > ⇢
1

+ ⇢
2

. S has period gcd(⇢
1

, ⇢
2

), the greatest common divisor of ⇢
1

and

⇢
2

. Also, if S has period ⇢
3

then S has period ↵ · ⇢
3

 |S| for any integer ↵ > 0.

First observe that consecutive tuples ({x, y}, ⇢) and ({x0, y0}, ⇢0) in the same
group have overlap least m/2 � |⇢|+ |⇢0|. Therefore by Lemma 7, if Tx,x+3m/4�1

has period |⇢| and Tx0,x0
+3m/4�1

has period |⇢0| then their overlap also has
gcd(|⇢|, |⇢0|) as a period. However as their overlap is longer than a full period in
each string, both Tx,x+3m/4�1

and Tx0,x0
+3m/4�1

also have period gcd(|⇢|, |⇢0|).
By repeat application of this argument we have that if for every tuple ({x, y}, ⇢),
the substring Tx,x+3m/4�1

has period |⇢| then Tz,z+m0�1

has a period equal to

10

the greatest common divisor of the periods of all tuples in the group, denoted g.
To process the entire group we can simply check whether Tz,z+m0�1

has period
g in O(m0) time. If Tz,z+m0�1

does not have period g, we can safely abort the
verifier. If Tz,z+m0�1

has period g then by Lemma 7, for each ({x, y}, ⇢) in the
group, Tx,x+3m/4�1

has period |⇢| as g divides |⇢|. As every m0 � 3m/4 and the
groups overlap by less than m/2 characters, this process takes O(n) total time.

Theorem 3. There exists a randomized Las-Vegas algorithm that correctly con-

structs the sparse su�x array and the sparse LCP array for any b su�xes from

a string of length n. The algorithm uses O(n log2 b + b2 log b) time with high

probability and O(b) space in the worst case.

6 Time-Space Tradeo↵s for Batched LCP Queries

We provide an overview of the techniques used to obtain the time-space tradeo↵
for the batched LCP process, as it closely follows those of Section 3. In Section 3
the algorithm simulates concurrent binary searches in order to determine the
LCP of each input pair (with some extra work at the end). The idea for obtaining
the tradeo↵ is to generalize the binary search to an ↵-ary search. So in the kth

round the input is a set of q pairs denoted by Pk, where we are guaranteed that
for any (i, j) 2 Pk, LCP (i, j) 2logn�(k�1) log↵, and the goal of the kth iteration
is to decide for any (i, j) 2 Pk if LCP (i, j) 2logn�k log↵ or not. From a space
perspective, this means we need O(↵q) space in order to compute ↵ fingerprints
for each index in any (i, j) 2 Pk. From a time perspective, we only need to
perform O(log↵ q) rounds before we may begin the final round. However, each
round now costs O(n+ ↵q), so we have the following trade-o↵.

Theorem 4. Let 2 ↵ n. There exists a randomized Monte-Carlo algorithm

that with high probability correctly answers a batch of q LCP queries on su�xes

from a string of length n. The algorithm uses O((n+↵q) log↵ q) time and O(↵q)
space in the worst case.

In particular, for ↵ = 2, we obtain Theorem 1 as a corollary. Consequently, the
total time cost for constructing the sparse su�x tree in O(↵b) space becomes

O

✓
n
log2 b

log↵
+

↵b log2 b

log↵

◆
.

If, for example, ↵ = b" for a small constant " > 0, the cost for constructing
the sparse su�x tree becomes O(1" (n log b+ b1+" log b)), using O(b1+") words of
space. Finally by minimizing with the standard O(n) time, O(n) space algorithm
we achieve the stated result of O(n log b) time, using O(b1+") space.

References

1. M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) Sorting Network. In Proc.
15th STOC, pages 1–9, 1983.

11

2. A. Andersson, N. J. Larsson, and K. Swanson. Su�x Trees on Words. In Proc.
7th CPM (LNCS 1075), pages 102–115, 1996.

3. A. Andersson, N. J. Larsson, and K. Swanson. Su�x Trees on Words. Algorithmica,
23(3):246–260, 1999.

4. K. E. Batcher. Sorting Networks and Their Applications. In Proc. AFIPS Spring
JCC, pages 307–314, 1968.

5. J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In Proc. 8th SODA, pages 360–369, 1997.

6. S. Burkhardt and J. Kärkkäinen. Fast Lightweight Su�x Array Construction and
Checking. In Proc. 14th CPM (LNCS 2676), pages 55–69, 2003.

7. P. Ferragina and J. Fischer. Su�x Arrays on Words. In Proc. 18th CPM (LNCS
4580), pages 328–339, 2007.

8. N. J. Fine and H. S. Wilf. Uniqueness Theorems for Periodic Functions. Proc.
AMS, 16(1):109–114, 1965.

9. S. Inenaga and M. Takeda. On-line linear-time construction of word su�x trees.
In Proc. 17th CPM (LNCS 4009), pages 60–71, 2006.

10. J. Kärkkäinen and E. Ukkonen. Sparse Su�x Trees. In Proc. 2nd COCOON
(LNCS 1090), pages 219–230, 1996.

11. R. M. Karp and M. O. Rabin. E�cient Randomized Pattern-Matching Algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

12. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-Time Longest-
Common-Prefix Computation in Su�x Arrays and Its Applications. In Proc. 12th
CPM (LNCS 2089), pages 181–192, 2001.

13. R. Kolpakov, G. Kucherov, and T. A. Starikovskaya. Pattern Matching on Sparse
Su�x Trees. In Proc. 1st CCP, pages 92–97, 2011.

14. U. Manber and G. Myers. Su�x Arrays: A New Method for On-Line String
Searches. SIAM J. Comput., 22(5):935–948, 1993.

15. D. R. Morrison. Patriciapractical algorithm to retrieve information coded in al-
phanumeric. J. ACM, 15(4):514–534, 1968.

16. M. Paterson. Improved Sorting Networks with O(logN) Depth. Algorithmica,
5(1):65–92, 1990.

17. T. Uemura and H. Arimura. Sparse and truncated su�x trees on variable-length
codes. In Proc. 22nd CPM (LNCS 6661), pages 246–260, 2011.

18. P. Weiner. Linear Pattern Matching Algorithms. In Proc. 14th FOCS (SWAT),
pages 1–11, 1973.

12

