
Fast and Cache-Oblivious Dynamic
Programming with Local Dependencies

Philip Bille and Morten Stöckel

Technical University of Denmark, DTU Informatics, Copenhagen, Denmark

Abstract. String comparison such as sequence alignment, edit distance
computation, longest common subsequence computation, and approxi-
mate string matching is a key task (and often computational bottleneck)
in large-scale textual information retrieval. For instance, algorithms for
sequence alignment are widely used in bioinformatics to compare DNA
and protein sequences. These problems can all be solved using essentially
the same dynamic programming scheme over a two-dimensional matrix,
where each entry depends locally on at most 3 neighboring entries. We
present a simple, fast, and cache-oblivious algorithm for this type of
local dynamic programming suitable for comparing large-scale strings.
Our algorithm outperforms the previous state-of-the-art solutions. Sur-
prisingly, our new simple algorithm is competitive with a complicated,
optimized, and tuned implementation of the best cache-aware algorithm.
Additionally, our new algorithm generalizes the best known theoretical
complexity trade-offs for the problem.

1 Introduction

Algorithms for string comparison problems such as sequence alignment, edit
distance computation, longest common subsequence computation, and approx-
imate string matching are central primitives in large-scale textual information
retrieval tasks. For instance, algorithms for sequence alignment are widely used
in bioinformatics for comparing DNA and protein sequences.

All of these problems can be solved using essentially the same dynamic pro-
gramming scheme over a two-dimensional matrix [12]. The common feature of
the dynamic programming solution is that each entry (i, j) in the matrix can
be computed in constant time given values of the neighboring entries (i− 1, j),
(i − 1, j − 1), and (i, j − 1) and the characters at position i and j in the in-
put strings. Combined we refer to these problems as local dynamic programming
string comparison problems.

In this paper, we revisit local dynamic programming string comparison prob-
lems for large-scale input strings. We focus on worst-case and exact solutions,
however, the techniques presented are straightforward to combine with the typ-
ical heuristic or inexact solutions that filter out parts of the dynamic program-
ming matrix which do not need to be computed. In the context of large-scale
strings, I/O efficiency and space usage are key issues for obtaining a fast practical
solution.

2 P. Bille and M. Stöckel

Our main result is a new simple and cache-oblivious algorithm that outper-
forms the previous state-of-the-art solutions. Surprisingly, our new simple algo-
rithm is competitive with a complicated, optimized, and tuned implementation
of the best cache-aware algorithm. Furthermore, our new algorithm generalizes
the best known theoretical trade-offs between time, space, and I/O complexity
for the problem.

1.1 Memory Models

The memory in modern computers is typically organized in a hierarchy of caches,
main memory, and disks. The access time to memory significantly increases
with each level of the hierarchy. The external memory model [1] abstracts this
hierarchy by a simple two-level model consisting of an internal memory of size M
and an external memory for storing all remaining data. Data can be transferred
between external and internal memory in contiguous blocks of sizeB, and all data
must be in internal memory before it can be manipulated. The I/O complexity of
an algorithm is the number of transfers of blocks between internal and external
memory, called I/O operations (or just I/Os).

The cache-oblivious model [11] is an extension of the external memory model
with the feature that algorithms do not use knowledge of M and B. The model
assumes an optimal offline cache replacement strategy, which can be approx-
imated within a small constant factor by standard online cache replacements
algorithms such as LRU and FIFO. These properties make cache-oblivious algo-
rithms both I/O efficient on all levels of the memory hierarchy simultaneously
and portable between hardware architectures with different memory hierarchies.

1.2 Previous Results

Let X and Y be the input strings to a local dynamic programming string compar-
ison problem. For simplicity in the presentation, we assume that |X| = |Y | = n.
All solutions in this paper are based on two passes over an (n + 1) × (n + 1)
dynamic programming matrix (DPM). First, a forward pass computes the length
of an optimal path from the top-left corner to the bottom-right corner, and then
a backward pass computes the actual path by backtracking in the DPM. Finally,
the path is translated to the solution to the specific string comparison problem.
An overview of the complexities of the previous bounds and of our new algorithm
is listed in Table 1.

The first dynamic programming solution is due to Wagner and Fischer [21].
Here, the forward pass fills in and stores all entries in the DPM using O(n2)
time and space. The backward pass then uses the stored entries to efficiently
backtrack in O(n) time. In total the algorithm uses O(n2) time and space. The
space usage of this algorithm makes it unsuitable in practice for the sizes of
strings that we consider.

Hirschberg [14] showed how to improve the space at the cost of increasing
the time for the backward pass. The key idea is to not store all values of the
DPM, but instead use a divide and conquer approach in the backward pass to

Fast and Cache-Oblivious Dynamic Programming with Local Dependencies 3

Algorithm Forward Pass Backward Pass Space I/O CO

FullMatrix O
(
n2

)
O(n) O

(
n2

)
O
(

n2

B
+ n

B
+ 1

)
Yes

Hirschberg O
(
n2

)
O
(
n2

)
O(n) O

(
n2

B
+ n

B
+ 1

)
Yes

FastLSAk O
(
n2

)
O
(

n2

k
+ n

)
O(nk + D) O

(
n2

B
+ n

B
+ 1

)
No

CO O
(
n2

)
O
(
n2

)
O(n) O

(
n2

BM
+ n

B
+ 1

)
Yes

FastCOk O
(
n2

)
O
(

n2

k
+ n

)
O(nk) O

(
n2k
BM

+ n
B

+ 1
)

Yes

Table 1. Comparison of different algorithms for local dynamic programming. FullMa-
trix is Wagner and Fischer’s algorithm [21], Hirschberg is the linear space algorithm
by Hirschberg [14], FastLSAk is the algorithm by Driga et al. [9, 10] with parameter
k, CO is the cache-oblivious algorithm by Chowdhury et al. [4,6], and FastCOk is our
new algorithm with parameter k.

reconstruct the path. At each step in the backward pass the algorithm splits the
DPM into two halves. In each half the algorithm recursively finds an optimal
path. The algorithm then combines paths for each half into an optimal path for
the entire DPM. The total time for the backward pass increases to O(n2). Hence,
in total the algorithm uses O(n2) time and O(n) space. Myers and Miller [18]
popularized Hirschberg’s algorithm for sequence alignment in bioinformatics,
and it has since been widely used in practice.

More recently, Driga et al. [9,10] proposed an advanced recursive algorithm,
called FastLSA. The overall idea is to divide the DPM into k2 submatrices,
where k is a tunable parameter defined by the user. The forward pass computes
and stores the entries of the input boundaries of the submatrices, i.e., the row and
column immediately above and to the left of the submatrix. This uses O(n2) time
as the previous algorithms, but now additional O(nk) space is used to store the
input boundaries. The backward pass uses the stored input boundaries to speed
up the computation of the optimal path by processing only the submatrices that
intersect the optimal path. The submatrices are processed recursively until their
size is below another user defined threshold D. Submatrices of size less than D
are processed using Wagner and Fischer’s algorithm. The parameter D is chosen
such that space for the full matrix algorithm is sufficiently small to fit in a fast
cache. With the additional stored input boundaries the time for the backward

pass is improved to O(n2

k + n). In total the algorithm uses O(n2 + n2

k + n) =
O(n2) time and O(nk + D) space. In addition to the basic recursive idea, the
algorithm implements several advanced optimizations to improve the practical
running time of the backward pass. For instance, the sizes of the submatrices
in recursive calls are reduced according to the entry point of the optimal path
in the submatrix and the allocation, deallocation, and caching of the additional
space is handled in a non-trivial way. The resulting full algorithm is substantially
more complicated than Hirschberg’s algorithm.

4 P. Bille and M. Stöckel

In practice, Driga et al. [9,10] only consider strings of lengths ≤ 2000 and in
this case they showed that their solution outperforms both Wagner and Firscher’s
algorithm and Hirschberg’s algorithm. For large strings we found that the origi-
nal implementation was not competitive with the other algorithms. However, by
optimizing and simplifying the implementation in the spirit of our new algorithm
(see Sec. 2), we were able to obtain a fast and competitive algorithm suitable
for large strings.

In terms of I/O complexity all of the above algorithms use O(n2

B + n
B + 1)

I/Os. Furthermore, the algorithm by Driga et al. [9, 10] is cache-aware since it
needs to know the parameters of the memory hierarchy in order to optimally
select the threshold D.

Chowdhury et al. [4, 6] gave a cache-oblivious algorithm that significantly
improves this I/O bound. The key idea is to split the DPM into 4 submatrices
and apply a simple divide and conquer approach in both passes. The forward
pass computes and stores the input boundaries of the 4 submatrices similar to
the algorithm by Driga et al. [9,10], however, the computation is now done recur-
sively on each submatrix. This uses O(n2) time and O(n) space. The backward
pass recursively processes the submatrices that intersect the optimal path. This
also uses O(n2) time and O(n) space. Chowdhury et al. [4, 6] showed that the

total number of I/Os incurred by the algorithm is O(n2

MB + n
B +1). Compared to

the previous results, this improves the number of I/Os in the leading quadratic
term by a factor M . Furthermore, they also showed that this bound is opti-
mal in the sense that any implementation of the local dynamic programming
algorithm must use at least this many I/Os. In practice, the reduced number of
I/Os significantly improve upon the performance of Hirschberg’s algorithm on
large strings. To the best of our knowledge, this algorithm is the fastest known
practical solution on large strings. Furthermore, the full algorithm is nearly as
simple as Hirschberg’s algorithm.

The above bounds represent the best known worst-case complexities for gen-
eral local dynamic programming string comparison. If we restrict the problem
in terms of alphabet size or cost function or if we use the properties of a spe-
cific local dynamic programming string comparison problem better bounds are
known, see e.g., [2, 3, 7, 8, 13,15–17,19] and also the survey [20].

1.3 Our Results

We present a simple new algorithm with the following complexity.

Theorem 1. Let X and Y be strings of length n. Given any integer parameter
k, 2 ≤ k ≤ n, we can solve any local dynamic programming string comparison

problem for X and Y using O(n2) time for the forward pass, O(n2

k) time for the

backward pass, and O(nk) space. Furthermore, the algorithm uses O(n2k
MB +nk

B +1)
I/Os in a cache-oblivious model.

Theorem 1 generalizes the previous bounds. In particular, with k = O(1) we
match the bounds of the cache-oblivious algorithm by Chowdhury et al. [4, 6].

Fast and Cache-Oblivious Dynamic Programming with Local Dependencies 5

Furthermore, we obtain the same time-space trade-off for the backward pass as
the algorithm by Driga et al. [9, 10] by choosing k accordingly.

We have implemented our algorithm and our optimized and simplified version
of the algorithm by Driga et al. [9, 10] with k = 8, 16, 32 and compared it with
the previous algorithms on strings of length up to 221 = 2097152 on 3 different
hardware architectures. In all our experiments, these algorithms significantly
improve the current state-of-the-art cache-oblivious algorithm by Chowdhury
et al. [4, 6]. Our algorithms are faster even when k = 8 and the performance
further improves until k = 32. Hence, our results show that a small constant
factor additional space can have a significant impact in practice. Furthermore,
we found that our new simple and cache-oblivious algorithm is competitive with
our optimized, cache-aware, and tuned implementation of the more complicated
algorithm by Driga et al. [9, 10]. On one of the tested architectures our new
algorithm was even substantially faster than the algorithm by Driga et al. [9,10].

Algorithmically, our new algorithm is a relatively simple combination of the
division of the DPM into k2 submatrices from Driga et al. [9,10] and the recursive
and cache-oblivious approach from Chowdhury et al. [4, 6]. A similar approach
has been studied for solving the problem efficiently on multicore machines [5].
Our results show that this idea can also improve performance on individual cores.

1.4 Basic Definitions

For simplicity, we explain our algorithms in terms of the longest common sub-
sequence problem. All of our bounds and techniques generalize immediately to
any local dynamic programming string comparison problem.

Let X be a string of length |X| = n of characters from an alphabet Σ.
We denote the character at position i in X by X[i] and the substrings from
position i to j by X[i, j]. The substrings X[1, j] and X[i, n] are the prefixes
and suffixes of X, respectively. A subsequence of X is any string Z obtained by
deleting characters in X. Given two strings X and Y a common subsequence is
a subsequence of both X and Y . A longest common subsequence (LCS) of X
and Y is a common subsequence of X and Y of maximal length. The longest
common subsequence problem is to compute an LCS of X and Y .

Let X and Y be strings of length n. The standard dynamic programming
solution fills in an n+ 1× n+ 1 DPM C according to the following recurrence.

C [i, j] =


0 if j = 0 ∨ i = 0,

C [i− 1, j − 1] + 1 if i, j > 0 ∧X[i] = Y [j],

max

{
C [i, j − 1]
C [i− 1, j]

if i, j > 0 ∧X[i] 6= Y [j]
(1)

The entry C[i, j] is the length of the LCS between prefixes X[1, i] and Y [1, j]
and hence the length of LCS of X and Y is C[n, n]. Note that each entry C[i, j]
depends only on the values in C[i − 1, j], C[i, j − 1], C[i − 1, j − 1] and the
characters of X[i] and Y [j]. Hence, we can fill in the entries in a top-down left-
to-right order. The LCS path is the path in C obtained by backtracking from

6 P. Bille and M. Stöckel

s u r g e r y

0 0 0 0 0 0 0 0
s 0 1 1 1 1 1 1 1
u 0 1 2 2 2 2 2 2
r 0 1 2 3 3 3 3 3
v 0 1 2 3 3 3 3 3
e 0 1 2 3 3 4 4 4
y 0 1 2 3 3 4 4 5

(a) (b)

s u r g e r y

0 0 0 0 0 0 0 0
s 0 1 1 1 1 1 1 1
u 0 1 2 2 2 2 2 2
r 0 1 2 3 3 3 3 3
v 0 1 2 3 3 3 3 3
e 0 1 2 3 3 4 4 4
y 0 1 2 3 3 4 4 5

Fig. 1. Computing the LCS of survey and surgery. (a) The dynamic programming
matrix. (b) The LCS path. Each diagonal edge corresponds to a character of the LCS.
The resulting LCS is surey.

C[n, n] to C[0, 0]. Each diagonal edge in the LCS path corresponds to a character
of the LCS. See Fig. 1 for an example.

2 A New Algorithm for LCS

We now present our new algorithm for LCS. We describe our algorithm in the
same basic framework as Chowdhury et al. [4, 6].

Let X and Y be strings of length n and let k be the parameter for the
algorithm. For simplicity, we assume that n and k are powers of 2. Our algorithm
repeatedly uses a simple recursive procedure for computing the output boundary
of the submatrix given the input boundary. We explain this procedure first and
then give the full algorithm.

2.1 Computing Boundaries

Given the input boundary of a DPM for two strings of length n we can compute
the output boundary by computing the entries in the DPM in the standard
top-down left-to-right order. This uses O(n2) time and O(n) space, since we
compute each entry in constant time and we only need to store the last two
rows of the DPM during the algorithm. However, the number of I/Os incurred is

O(n2

B). The following simple recursive algorithm, similar to the one presented in

Chowdhury et al. [4,6], improves this bound toO(n2

MB) I/Os. If n = 1 we compute
the output boundary directly using recurrence 1. Otherwise, we split the matrix
into k2 submatrices of size n

k ×
n
k . We recursively compute the output boundaries

for each submatrix by processing them in a top-down left-to-right order. At each
recursive call to process a submatrix, the input boundary consists of the output
boundary of the submatrix immediately above, to the left, and above-left. Hence
with this ordering, the input boundary is available for each recursive call.

The algorithm uses O(n2) time and O(n) space as before, i.e., we only need
to store the boundaries of the submatrices that are currently being processed.

Fast and Cache-Oblivious Dynamic Programming with Local Dependencies 7

(a) (b) (c)

Fig. 2. States of the algorithm for k = 4. (a) A partition of the DPM into 4 × 4
submatrices. Thick lines indicate the initially stored boundaries. (b) After the forward
pass. (c) After the backward pass. Only the shaded submatrices intersecting the LCS
path are processed.

Let I1(n, k) denote the number of I/Os incurred by the algorithm on strings
of length n with parameter k. If n is sufficiently small such that the recursive
computation is done within internal memory, the algorithm only incurs I/Os
to read and write the input strings and to read and write the boundaries. The
length of the input strings and boundaries is O(n+ nk) = O(nk) and hence the
number of I/Os is O(nk

B + 1). Otherwise, the algorithm additionally creates k2

subproblems of strings of length n
k each. Thus, the total number of I/Os is given

by the following recurrence.

I1(n, k) =

{
O(nk

B + 1) if n ≤ α1M ,

k2I1(n
k , k) +O(nk

B + 1) otherwise.
(2)

Here, α1 is a suitable constant such that all computations of strings of length
α1M are done entirely within memory. It follows that the total number of I/Os

is I1(n, k) = O(n2k
MB + nk

B + 1).

2.2 Computing the LCS

We now present the full algorithm to compute the LCS in C. The algorithm is
recursive and works as follows. If n = 1 we simply compute an optimal path
directly using recurrence (1). Otherwise, we proceed in the following steps (see
Fig 2).

Step 1: Forward Pass Partition C into k2 square submatrices of size n
k ×

n
k .

Compute and store the input boundaries of each submatrix in a top-down left-
to-right order. We compute the boundaries using the algorithm from Sect. 2.1.

Step 2: Backward pass Compute an optimal LCS path through the submatrices
from the bottom-right to the top-left. At each step we recursively find an optimal

8 P. Bille and M. Stöckel

path through a submatrix C ′ given the input boundary (computed in step 1)
and a point on the optimal path on the output boundary. Depending on the exit
point on the input boundary of the computed optimal LCS path through C ′ we
continue in the submatrix above, to the left, or above-left of C ′ using the exit
point as the point on the output boundary in the next step.

Step 3: Output LCS Finally, concatenate the path through the submatrices to
form an optimal LCS path in C and output the corresponding LCS.

2.3 Analysis

First consider the time complexity of the algorithm. Step 1 (the forward pass)
uses O(n2) time. In step 2 (the backward pass), we only process the submatrices
that are intersected by the optimal path. Since any path from (n, n) to (0, 0) can

intersect at most 2k−1 submatrices, step 2 uses O((2k−1) · n
2

k2 +n) = O(n2

k +n)
time. Finally, step 3 concatenates the pieces of the path and outputs the LCS in
O(n) time. In total, the algorithm uses O(n2) time.

Next consider the space used by the algorithm. Let S(n, k) denote the space
for a subproblem of size n with parameter k. The stored input boundaries use
O(nk) space and the recursive call uses S(n/k, k) space. Hence, the total space
S(n, k) is given by the recurrence

S(n, k) =

{
O(1) if n = O(1),

S(n/k, k) +O(nk) otherwise.

It follows that the space used by the algorithm is S(n, k) = O(nk).
Next consider the I/O complexity. Let I2(n, k) denote I/O complexity of the

algorithm on strings of length n with parameter k. If n is sufficiently small such
that the recursive computation is done within internal memory, the algorithm
incurs O(nk

B + 1) I/Os by similar arguments as in the analysis above. Otherwise,
the algorithm additionally does k2 − 1 boundary computations in step 1 on
subproblems of size n

k and recursively creates 2k − 1 subproblems of strings of
length n

k . Hence, the total number of I/Os is given by

I2(n, k) =

{
O(nk

B + 1) if n ≤ α2M ,

(k2 − 1)I1
(
n
k , k

)
+ (2k − 1)I2

(
n
k , k

)
+O

(
nk
B + 1

)
otherwise.

(3)
Here, α2 is a suitable constant such that computation is done entirely in memory.

It follows that I2(n, k) = O(n2k
MB + nk

B + 1).
In summary, our algorithm for LCS uses O(n2) time for the forward pass,

O(n2

k + n) time for the backward pass, O(nk) space, and O(n2k
MB + nk

B + 1)
I/Os. Since the algorithm only uses the local dependencies of LCS these bounds
hold for any local dynamic programming string comparison problem. Hence, this
completes the proof of Theorem 1.

Fast and Cache-Oblivious Dynamic Programming with Local Dependencies 9

3 Experimental Results

3.1 Setup

We have compared the following algorithms.

FullMatrix Wagner and Fischer’s [21] original algorithm in our own imple-
mentation.

Hirschberg Hirschberg’s [14] linear space divide and conquer algorithm in our
own implementation.

CO The cache-oblivious algorithm by Chowdhury et al. [4, 6]. We have tested
the original implementation of the algorithm.

FastLSAk The FastLSA algorithm by Driga et al. [9, 10] with parameter k.
We used an optimized version of the original implementation of the algo-
rithm. The optimization improves and simplifies parameter passing in the
recursion, and the allocation and deallocation of the auxiliary arrays. In our
experiments, we report the results for k = 8, 16, 32, since larger values of
k did not further improve the performance of the algorithm. Furthermore,
we have tuned the threshold parameter D for each of the tested hardware
architectures.

FastCOk An implementation of our new algorithm with parameter k. As with
FastLSA, we report the results for k = 8, 16, 32. In our experiments we
found that the choice of k did not affect the forward pass. For simplicity, we
therefore fixed k = 2 for the forward and only varied k in the backward pass.

We compared the algorithms on the following 3 architectures.

Intel i7 2.66GHz. 32KB L1, 256KB L2, 8MB L3 cache. 4GB memory
AMD X2 - 2.5GHz. 64KB L1, 512KB L2 cache. 4GB memory
Intel M - 1.6GHz. 2MB L2 cache. 1GB memory

All algorithms were implemented in C/C++ and compiled using the gcc 3.4
compiler. We tested the performance of the algorithms on strings of lengths
n = 2i, for i = 16, 17, 18, 19, 20, 21, i.e., the largest strings are slighty larger
than 2 million. The strings are DNA strings taken from the standardized text
collection of Pizza&Chili Corpus 1. We have experimented with other types of
strings but found only very small differences in performance. This is likely due to
the small difference between worst-case and best-case performance. For brevity,
we therefore focus DNA strings from the standardized text collection in our
experiments. Additionally, we have used Cachegrind2 to simulate the algorithms
on a standard memory hierarchy with 64KB L1 and 512KB L2 caches.

3.2 Results

The results of the running time and the Cachegrind experiments are listed in
Tables 2 and 3. Results for FullMatrix are not reported since they were either

1 pizzachili.dcc.uchile.cl or pizzachili.di.unipi.it.
2 valgrind.org/info/tools.html#cachegrind

10 P. Bille and M. Stöckel

Intel i7

n Hb CO FLSA8 FLSA16 FLSA32 FCO8 FCO16 FCO32

216 0.016h 0.012h 0.009h 0.009h 0.008h 0.009h 0.009h 0.008h
217 0.063h 0.049h 0.0387h 0.036h 0.033h 0.036h 0.035h 0.034h
218 0.251h 0.194h 0.150h 0.144h 0.132h 0.143h 0.136h 0.134h
219 1.003h 0.775h 0.584h 0.559h 0.529h 0.565h 0.539h 0.530h
220 4.059h 3.129h 2.320h 2.290h 2.127h 2.238h 2.258h 2.100h
221 16.105h 12.297h 9.544h 9.022h 8.741h 9.036h 8.611h 8.355h

AMD X2

216 0.017h 0.009h 0.010h 0.010h 0.010h 0.007h 0.007h 0.007h
217 0.069h 0.037h 0.041h 0.039h 0.038h 0.028h 0.027h 0.026h
218 0.278h 0.149h 0.169h 0.159h 0.156h 0.114h 0.108h 0.104h
219 1.123h 0.597h 0.685h 0.640h 0.624h 0.455h 0.430h 0.418h
220 4.474h 2.389h 2.752h 2.574h 2.498h 1.846h 1.721h 1.671h
221 17.949h 9.442h 11.007h 10.337h 9.950h 7.278h 6.873h 6.685h

Intel M

216 0.027h 0.021h 0.0140h 0.013h - 0.015h 0.012h -
217 0.108h 0.083h 0.0571h 0.053h - 0.061h 0.050h -
218 0.438h 0.334h 0.227h 0.218h - 0.234h 0.200h -
219 1.800h 1.337h 0.945h 0.889h - 0.928h 0.852h -
220 7.170h 5.325h 3.814h 3.575h - 3.697h 3.481h -
221 28.999h 20.601h 15.283h 14.994h - 14.730h 14.529h -

Table 2. Performance results for Hirschberg (Hb), CO, FastLSAk (FLSAk),
FastCOk (FCOk) on Intel i7, AMD X2, and Intel M. The fastest running times for
each row is in boldface.

infeasible or far from competitive in all our experiments. Furthermore, for Intel
M we only report result for FastLSA and FastCO with parameter k up to 16
due to the small memory of this machine.

From Table 2 we see that FastLSA32 or FastCO32 significantly outper-
form the current state-of-the-art cache-oblivious algorithm CO. Compared with
Hirschberg, FastLSA32 and FastCO32 are a about a factor 1.8 to 2.6 faster.
Surprisingly, our simple cache-oblivious FastCOk is competitive with our opti-
mized and cache-aware implementation of the more complicated FastLSAk. For
the AMD X2 architecture, FastCO is even significantly faster than FastLSA.
We outperform previous results even when k = 8 and our performance further
improves until k = 32.

Our Cachegrind experiments listed in Table 3 show that FastCOk executes a
similar number of instructions as FastLSAk and far less than both Hirschberg
and CO. Furthermore, FastCOk incurs at least a factor 2000 less cache misses in
both L1 and L2 cache compared to FastLSAk. Note that this corresponds well
with the difference in the theoretical I/O complexity between the algorithms. The
fewest number of cache misses are incurred by CO closely followed by FastCOk.

Fast and Cache-Oblivious Dynamic Programming with Local Dependencies 11

Instructions Executed ×109

n Hb CO FCO8 FCO16 FCO32 FLSA8 FLSA16 FLSA32

216 177.30 123.84 77.122 72.823 70.670 84.463 79.043 76.584
217 708.87 494.68 308.06 290.91 282.53 337.68 315.95 306.07
218 2, 835.4 1, 978.2 1, 221.2 1, 163.4 1,129.3 1, 352.9 1, 263.7 1, 223.8
219 11, 339 7, 907.8 4, 914.2 4, 646.4 4,514.6 5, 416.1 5, 057 4, 894.5

L1 cache misses ×106

216 1, 090 0.855 1.682 1.980 2.070 1, 293 1, 162 1, 154
217 4, 639 1.952 3.823 4.566 7.49 5, 156 4, 834 4, 626
218 18, 866 5.916 11.23 12.29 17.41 20, 640 19, 4654 18, 789
219 76, 654 19.85 37.27 39.59 46.55 83, 201 77, 630 75, 355

L2 cache misses ×106

216 604.6 0.345 1.038 1.373 1.711 1, 151 1, 146 1, 150
217 3, 207 0.594 1.949 2.49 5.2 4, 575 4, 579 4, 581
218 16, 517 1.312 4.385 5.067 9.373 18, 741 18, 303 18, 290
219 71, 629 3.416 11.689 15.12 18.792 82, 131 75, 219 73, 117

Table 3. Cachegrind results for Hirschberg (Hb), CO, FastLSAk (FLSAk),
FastCOk (FCOk) on a 64K L1 and 512K L2 cache hierarchy. Lowest instruction/miss
count shown in boldface. We could only test inputs up to n = 219 due to the overhead
of the Cachegrind simulation.

The difference between the number of cache misses incurred by FastCOk and
FastLSAk is much larger than the difference in their running time. The main
reason for this is because the number of cache misses incurred relative to the total
number of instructions executed is low (around 4% for FastLSAk). Ultimately,
the simple FastCOk simultaneously achieves good cache performance and a low
instruction count making it competitive with current state-of-the-art algorithms.

Acknowledgments

We would like to thank the authors of Driga et al. [9, 10] and Chowdhury et
al. [4, 6] for providing us with the source code of their algorithms.

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Bille, P.: Faster approximate string matching for short patterns. Theory Comput.
Syst. (2011), to appear

3. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. The-
oret. Comput. Sci. 409(3), 486 – 496 (2008)

12 P. Bille and M. Stöckel

4. Chowdhury, R.A., Ramachandran, V.: Cache-oblivious dynamic programming. In:
Proc. 17th Symp. on Discrete Algorithms. pp. 591–600 (2006)

5. Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming al-
gorithms for multicores. In: Proc. 20th Symp. on Parallelism in Algorithms and
Architectures. pp. 207–216 (2008), http://doi.acm.org/10.1145/1378533.1378574

6. Chowdhury, R.A., Le, H.S., Ramachandran, V.: Cache-oblivious dynamic pro-
gramming for bioinformatics. Trans. Comput. Biol. and Bioinformatics 7, 495–510
(2010)

7. Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm.
SIAM J. Comput. 31(6), 1761–1782 (2002)

8. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–
1673 (2003)

9. Driga, A., Lu, P., Schaeffer, J., Szafron, D., Charter, K., Parsons, I.: FastLSA:
A fast, linear-space, parallel and sequential algorithm for sequence alignment. In:
Proc. Intl. Conf. on Parallel Processing. pp. 48–57 (2005)

10. Driga, A., Lu, P., Schaeffer, J., Szafron, D., Charter, K., Parsons, I.: FastLSA: A
fast, linear-space, parallel and sequential algorithm for sequence alignment. Algo-
rithmica 45, 337–375 (2006)

11. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. 40th Symp. Foundations of Computer Science. pp. 285 – 297
(1999)

12. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge (1997)

13. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for
accelerating edit-distance computation via text-compression. In: Proc. 26th Symp.
Theoretical Aspects of Computer Science. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 3, pp. 529–540 (2009)

14. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Commun. ACM 18(6), 341–343 (1975)

15. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Commun. ACM 20, 350–353 (1977)

16. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10, 157–169 (1989)

17. Masek, W., Paterson, M.: A faster algorithm for computing string edit distances.
J. Comput. System Sci. 20, 18–31 (1980)

18. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci.
4(1), 11–17 (1988)

19. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46(3), 395–415 (1999)

20. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

21. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21,
168–173 (1974)

