The Tree Inclusion Problem: In Linear Space and Faster

PHILIP BILLE and INGE LI G@RTZ, Technical University of Denmark

Given two rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine if P can be
obtained from T' by deleting nodes in 7'. This problem has recently been recognized as an important query
primitive in XML databases. Kilpeldinen and Mannila [1995] presented the first polynomial-time algorithm
using quadratic time and space. Since then several improved results have been obtained for special cases
when P and T have a small number of leaves or small depth. However, in the worst case these algorithms
still use quadratic time and space. Let ng, g, and ds denote the number of nodes, the number of leaves, and
the depth of a tree S € {P, T'}. In this article we show that the tree inclusion problem can be solved in space

O(nr) and time:
lpnr
O | min { lply loglogny + np .
npnr

Togny + nr lognyp

This improves or matches the best known time complexities while using only linear space instead of
quadratic. This is particularly important in practical applications, such as XML databases, where the space
is likely to be a bottleneck.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Pattern matching; computations on discrete structures

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Tree inclusion, pattern matching

ACM Reference Format:

Bille, P. and Ggrtz, I. L. 2011. The tree inclusion problem: In linear space and faster. ACM Trans. Algor. 7,

3, Article 38 (July 2011), 47 pages.
DOI = 10.1145/1978782.1978793 http://doi.acm.org/10.1145/1978782.1978793

1. INTRODUCTION

Let T be a rooted tree. We say that T is labeled if each node is assigned a character
from an alphabet £ and we say that T is ordered if a left-to-right order among siblings
in T is given. All trees in this article are rooted, ordered, and labeled. A tree P is
included in T', denoted P C T, if P can be obtained from 7' by deleting nodes of 7.
Deleting a node v in T' means making the children of v children of the parent of v and
then removing v. The children are inserted in the place of v in the left-to-right order

An extended abstract of this article appeared in the Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 3580, Springer, pp. 66-77.
This work is partially supported by the Danish Council for Independent Research, and is also part of the
DSSCYV project supported by the IST Programme of the European Union (IST-2001-35443).

Authors’ addresses: P. Bille and I. L. Ggrtz (corresponding author), Department of Informatics and Mathe-
matical Modelling, Technical University of Denmark; email: ilg@imm.dtu.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 1549-6325/2011/07- ART38 $10.00

DOI 10.1145/1978782.1978793 http://doi.acm.org/10.1145/1978782.1978793

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:2 P. Bille and I. L. Gortz

Q D catalog)
book bok_ T
author chapter author chapter chapter
john Xl\|/IL na|me titlle \section titlle
john datal!)ases XML queries
(a) (b)
catalog_
book---"TTTTTTTIIIITTTI T TT e bolok e
author__ N chapte_r: -_Z;.l-lthOI‘ -----) “chapter chapter
john o -Xl\l;IL- -...._hame ti1|;le section title
RS - john databases ™~ “XML queries
(©)

Fig. 1. (a) The tree @ corresponding to the query. (b) A fragment of the tree D. Can the tree @ be included
in the tree D? It can and an embedding is given in (c).

among the siblings of v. The tree inclusion problem is to determine if P can be included
in T and if so report all subtrees of 7' that include P.

Recently, the problem has been recognized as an important query primitive for XML
data and has received considerable attention, see, for example, Schlieder and Meuss
[2002], [Yang et al. 2003, 2004], Zezula et al. [2003], Schlieder and Naumann [2000],
and Termier et al. [2002]. The key idea is that an XML document can be viewed as
a tree and queries on the document correspond to a tree inclusion problem. As an
example consider Figure 1. Suppose that we want to maintain a catalog of books for a
bookstore. A fragment of the tree, denoted D, corresponding to the catalog is shown in
(b). In addition to supporting full-text queries, such as find all documents containing
the word “John”, we can also utilize the tree structure of the catalog to ask more specific
queries, such as “find all books written by John with a chapter that has something to
do with XML". We can model this query by constructing the tree, denoted @, shown in
(a) and solve the tree inclusion problem: is @ = D? The answer is yes and a possible
way to include @ in D is indicated by the dashed lines in (c). If we delete all the nodes in
D not touched by dashed lines the trees @ and D become isomorphic. Such a mapping
of the nodes from @ to D given by the dashed lines is called an embedding (formally
defined in Section 3). We note that the ordering of the XML document, and hence the
left-to-right order of siblings, is important in many cases. For instance, in the preceding
example, the relative order of contents of the chapters is most likely important. Also,
in biological databases, order is of critical importance. Consequently, standard XML
query languages, such as XPath [Clark and DeRose 1999] and XQuery [Boag et al.
2001], require the output of queries to be ordered.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:3

The tree inclusion problem was initially introduced by Knuth [1969, exercise 2.3.2-22]
who gave a sufficient condition for testing inclusion. Motivated by applications in
structured databases [Kilpeldinen and Mannila 1993; Mannila and Ré&ihd 1990]
Kilpeldinen and Mannila [1995] presented the first polynomial-time algorithm us-
ing O(npnr) time and space, where np and ny is the number of nodes in P and T,
respectively. During the last decade several improvements of the original algorithm of
Kilpeldinen and Mannila [1995] have been suggested [Kilpeldinen 1992; Alonso and
Schott 2001; Richter 1997; Chen 1998]. The previously best known bound is due to
Chen [1998] who presented an algorithm using O(/pnr) time and O(lp - min{dr, l7})
space. Here, [s and ds denote the number of leaves and the depth of a tree S, respec-
tively. This algorithm is based on an algorithm of Kilpeldinen [1992]. Note that the
time and space is still @(npny) for worst-case input trees.

In this article we present three algorithms which combined improve all of the pre-
viously known time and space bounds. To avoid trivial cases we always assume that
1 < np < nyp. We show the following theorem.

THEOREM 1.1. For trees P and T the tree inclusion problem can be solved in O(nr)
space with the following running time.

npnr
Togrm T T logny

lpnr
O | min { lplr loglogny + np

Hence, when P has few leaves we obtain a fast algorithm and even faster if both P and
T have few leaves. When both trees have many leaves and np = Q(log? nr), we instead
improve the previous quadratic time bound by a logarithmic factor. Most importantly,
the space used is linear. In the context of XML databases this will likely make it possible
to query larger trees and speed up the query time since more of the computation can
be kept in main memory.

The extended abstract of this article [Bille and Ggrtz 2005] contained an error. The
algorithms in the article [Bille and Ggrtz 2005] did not use linear space. The problem
was due to a recursive traversal of P which stored too many sets of nodes leading
to a worst-case space complexity of Q(dply). In this article we fix this problem by
recursively visiting the nodes such that the child with the largest number of descendant
leaves is visited first, and by showing that the size of the resulting stored node sets
exponentially decrease. With these ideas we show that all of our algorithms use O(nr)
space. Additionally, our improved analysis of the sizes of the stored node sets also leads
to an improvement in the running time of the algorithm in the second case given before.
In the previous paper the running time was O(nylr loglogny + nr).

1.1. Techniques

Most of the previous algorithms, including the best one [Chen 1998], are essentially
based on a simple dynamic programming approach from the original algorithm of
Kilpeldinen and Mannila [1995]. The main idea behind this algorithm is the following:

Let v be a node in P with children vy, ..., v; and let w be a node in 7'. Consider the
subtrees rooted at v and w, denoted by P(v) and T (w). To decide if P(v) can be included
in T'(w) we try to find a sequence wy, ..., w; of left-to-right ordered descendants of w

such that P(v;) C T (wy) for all 2, 1 < k < i. The sequence is computed greedily from
left-to-right in T'(w) effectively finding the leftmost inclusion of P(v) in T (w). Applying
this approach in a bottom-up fashion we can determine, if P(v) C T (w), for all pairs of
nodes vin P and win T'.

In this article we take a different approach. The main idea is to construct a data
structure on 7' supporting a small number of procedures, called the set procedures, on

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

384 P. Bille and I. L. Gortz

subsets of nodes of T'. We show that any such data structure implies an algorithm for
the tree inclusion problem. We consider various implementations of this data structure
which all use linear space. The first simple implementation gives an algorithm with
O(lpny) running time. As it turns out, the running time depends on a well-studied
problem known as the tree color problem. We show a direct connection between a data
structure for the tree color problem and the tree inclusion problem. Plugging in a data
structure of Dietz [1989] we obtain an algorithm with O(lply loglogny + ny) running
time.

Based on the simple algorithms given earlier we show how to improve the worst-
case running time of the set procedures by a logarithmic factor. The general idea
used to achieve this is to divide 7" into small trees called clusters of logarithmic size
which overlap with other clusters in at most 2 nodes. Each cluster is represented by
a constant number of nodes in a macro tree. The nodes in the macro tree are then
connected according to the overlap of the cluster they represent. We show how to
efficiently preprocess the clusters and the macro tree such that the set procedures
use constant time for each cluster. Hence, the worst-case quadratic running time is
improved by a logarithmic factor.

Our algorithms recursively traverse P top-down. For each node v € V(P) we com-
pute a set of nodes representing all of the subtrees in T that include P(v). To avoid
storing too many of these node sets the traversal of P visits the child with the largest
number of descendant leaves first. For the first two algorithms this immediately im-
plies a space complexity of O(lr loglp), however, by carefully analyzing the sizes of
stored node sets we are able to show that they decrease exponentially leading to the
linear space bound. In the last algorithm the node sets are compactly encoded in
O(nr /logny) space and therefore our recursive traversal alone implies a space bound of
O(nr /logny -loglp) = O(ny).

Throughout the article we assume a unit-cost RAM model of computation with word
size O(lognr) and a standard instruction set including bitwise boolean operations,
shifts, addition, and multiplication. All space complexities refer to the number of words
used by the algorithm.

1.2. Related Work

For some applications considering unordered trees is more natural. However, in
Matousek and Thomas [1992] and Kilpeldinen and Mannila [1995] this problem was
proved to be NP-complete. The tree inclusion problem is closely related to the tree
pattern matching problem [Hoffmann and O’Donnell 1982; Kosaraju 1989; Dubiner
et al. 1990; Cole et al. 1999]. The goal is here to find an injective mapping f from
the nodes of P to the nodes of T' such that for every node v in P the ith child of v is
mapped to the ith child of f(v). The tree pattern matching problem can be solved in

(np + nT)logO(l)(np + nr) time. Another similar problem is the subtree isomorphism
problem [Chung 1987; Shamir and Tsur 1999], which is to determine if 7' has a sub-
graph isomorphic to P. The subtree isomorphism problem can be solved efficiently for

ordered and unordered trees. The best algorithms for this problem use 0(?2’;2: + nT)

time for unordered trees and O(l’(‘)}é—';; + nT) time for ordered trees [Chung 1987; Shamir

and Tsur 1999]. Both use O(npny) space. The tree inclusion problem can be considered
a special case of the tree edit distance problem [Tai 1979; Zhang and Shasha 1989;
Klein 1998; Demaine et al. 2007]. Here one wants to find the minimum sequence of
insert, delete, and relabel operations needed to transform P into 7. Currently the best
algorithm for this problem uses O(nyn%(1 + log ;‘—ITJ)) time [Demaine et al. 2007]. For

more details and references see the survey [Bille 2005].

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:5

1.3. Outline

In Section 2 we give notation and definitions used throughout the article. In Section 3
a common framework for our tree inclusion algorithms is given. Section 4 presents
two simple algorithms and then, based on these results, we show how to get a faster
algorithm in Section 5.

2. NOTATION AND DEFINITIONS

In this section we define the notation and definitions we will use throughout the article.
For a graph G we denote the set of nodes and edges by V(G) and E(G), respectively.
Let T be a rooted tree. The root of T' is denoted by root(T"). The size of T', denoted by
nr, is |V(T')|. The depth of a node v € V(T'), depth(v), is the number of edges on the
path from v to root(7') and the depth of T', denoted dr, is the maximum depth of any
node in T'. The parent of v is denoted parent(v) and the set of children of v is denoted
child(v). We define parent(root(7")) = 1, where L ¢ V(T') is a special null node. A node
with no children is a leaf and otherwise an internal node. The set of leaves of T is
denoted L(T') and we define 7 = |I(T')|. We say that T is labeled if each node v is a
assigned a character, denoted label(v), from an alphabet ~ and we say that T is ordered
if a left-to-right order among siblings in T is given. Note that we do not require that
the size of the alphabet is bounded by a constant. All trees in this article are rooted,
ordered, and labeled.

Ancestors and Descendants. Let T (v) denote the subtree of T' rooted at a node v €
V(T).If w € V(T (v)) then v is an ancestor of w, denoted v < w, and if w € V(T (v))\{v}
then v is a proper ancestor of w, denoted v < w. If v is a (proper) ancestor of w then w is
a (proper) descendant of v. A node z is a common ancestor of v and w if it is an ancestor
of both v and w. The nearest common ancestor of v and w, nca(v, w), is the common
ancestor of v and w of greatest depth. The first ancestor of w labeled «, denoted fl(w, «),
is the node v such that v < w, label(v) = «, and no node on the path between v and w
is labeled «. If no such node exists then fllw, a) = 1.

Traversals and Orderings. Let T be a tree with root v andlet vy, ..., v; be the children
of v from left-to-right. The preorder traversal of T is obtained by visiting v and then
recursively visiting T'(v;), 1 < i < k, in order. Similarly, the postorder traversal is
obtained by first visiting T'(v;), 1 <i < k, in order and then v. The preorder number and
postorder number of a node w € T (v), denoted by pre(w) and post(w), are the number
of nodes preceding w in the preorder and postorder traversal of T, respectively. The
nodes to the left of w in T is the set of nodes u € V(T') such that pre(u) < pre(w) and
post(u) < post(w). If u is to the left of w, denoted by u < w, then w is to the right of u. If
u<woru < wor w < uwe write u < w. The null node L is not in the ordering, that is,
L < v for all nodes v.

Minimum Ordered Pairs. A set of nodes X C V(T') is deep if no node in X is a proper
ancestor of another node in X. For %k deep sets of nodes Xj, ..., X} let &(Xy, ..., X}) C
(Xy x --- x Xp), be the set of tuples such that (xq,...,x:) € Xy, ..., Xp)iff x1 < -+ - <.
If (x1, ..., %) € ®(Xy, ..., X}) and there is no (x], ..., x;) € ®(Xy, ..., X;), where either
x1 <x) <x;, < x or x1 Jx; <x;, <xp, then the pair (x1, x;) is a minimum ordered pair.
Intuitively, (x1, x;) is a closest pair of nodes from X; and X}, in the left-to-right order
for which we can find xg, ..., xx_1 such that x; < --- <x. The set of minimum ordered
pairs for X, ..., X}, is denoted by mop(Xj, ..., X3). Figure 2 illustrates these concepts
on a small example.

For any set of pairs Y, let Y|; and Y|, denote the projection of Y to the first and
second coordinate, that is, if (y1,y2) € Y then y; € Y|; and y» € Y|,. We say that
Y is deep if Y|; and Y|, are deep. The following lemma shows that given deep sets

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:6 P. Bille and I. L. Gortz

V4

(a) (b)
® =5 ® =55 © =53 =5,

Flg 2. In (a) we have {(vl,vg,vg,ve,w), (vl,vz,v5,v6,v7),(v1,v4,v5, vg,v7),(v3, v4,v5,v6,v7)}
®(S1, Sg, S1, S3,S4) and thus mop(Si, Se, S1,S3, Sy) = {(vs, v7)}. In (b) we have ®(S1, Sg, S1, S3, S1)
{(v1, v2, v3, V5, v7), (v1, Vg, Ve, Vs, V9), (V1, Vg, V3, Vs, V), (V1, V2, V3, V5, Vg), (v1, V4, V6, Vs, V9), (V3, V4, V6, VS, U9)}
and thus mop(Sl, S2, Sl, S3, S4) = {(Ul, v7), (v3, Ug)}.

Xi, ..., X, we can compute mop(Xy, ..., X}) iteratively by first computing mop(X;, X5)
and then mop(mop(Xi, X2)|s, X3) and so on.

Lemma 2.1. For any deep sets of nodes Xi,...,Xp, kB > 2, we have, (x1,x:) €
mop(Xy, ..., Xp) iff there exists a node x,_1 such that (x1,x,_1) € mop(Xy, ..., Xp_1)
and (xz—1, %) € mop(mop(Xy, ..., Xp_1)lg, Xz).

Proor. We start by showing that if (x1,x;) € mop(Xi,...,X:) then there
exists a node x_; such that (x;,x,-1) € mop(Xy,...,Xr1) and (xp_1,2) €
mop(mop(Xjy, ..., Xp-1)lg, X&)

First note that (z1,...,2;) € ®(Xy,..., X;) implies (z1,...,2,1) € ®(Xq, ..., Xp_1).
Since (x1, xz) € mop(Xy, ..., X;) there must be a minimum node x;_; such that the tu-
ple (x1,...,x;_1)isin ®(Xy, ..., X;_1). We have (x1, x_1) € mop(Xj, ..., X3_1). We need
to show that (x;_1, xz) € mop(mop(Xy, ..., Xz_1)|g, Xz). Since (x1, xz) € mop(X, ..., Xz)
there exists no node z € X; such that x,_1 <z<x. If such a z existed we would
have (x1,...,x,.1,2) € ®(Xy,...,X}), contradicting that (x1,x;) € mop(Xjy,..., Xz).
Assume there exists a node z € mop(Xj, ..., Xr_1)|y such that x;_1 <z<x;. Since
(21, xp_1) € mop(Xy, ..., Xp_1) this implies that there is a node 2’ > x; such that (z/, z)
mop(Xj, ..., Xz_1). But this implies that the tuple (z, ..., z, ;) is in ®(Xj, ..., X}) con-
tradicting that (x1, xz) € mop(Xy, ..., X3).

We will now show that if there exists a node x,_; such that (x;,x,_1) €
mop(Xi, ..., Xr—1) and (xx_1, xz) € mop(mop(Xy, ..., Xz_1)|y, Xz) then the pair (x1, xz) €
mop(Xi, ..., Xz). Clearly, there exists a tuple (x1, ..., x;_1,2) € ®(Xq, ..., Xp). Assume
that there exists a tuple (z1,...,2;) € ®(Xy, ..., X}) such that x; <z; <zp < x,. Among
the tuples satisfying these constraints let (yi, ..., yz_1, y2) be the one with maximum
y1, minimum y,_;, and maximum y,. It follows that (y;,y:_1) € mop(Xy, ..., Xp_1).
Since (x1,x;_1) € mop(Xi,..., Xy 1) we must have x;_; <y,_;. But this contradicts
(xp—1, x%) € mop(mop(Xy, ..., Xz_1)|g, Xp), since node yr_1 € mop(Xy, ..., Xp_1)ls-

Assume that there exists a tuple (z1, ..., z;) € ®(Xy, ..., X) such that x; <z; <z <xp.
Since (x1, x_1) € mop(Xy, ..., X;_1) we have x;_1 <2z;_1 and thus x;_1 <z, <x; contra-
dicting (xp_1,) € mop(mop(Xj, ..., X1y, Xr). O

The following lemma is the reverse of the previous lemma and shows that given deep
sets Xi, ..., X}, we also can compute mop(Xy, ..., X}) iteratively from right-to-left. The
proof is similar to the proof of Lemma 2.1.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:7

LEmMa 2.2. For any deep sets of nodes Xi,...,Xp, k > 2, we have, (x1,x;) €
mop(Xy, ..., Xy) iff there exists a node xo such that (xg,x;) € mop(Xs,..., X)) and
(1, x2) € mop(Xy, mop(Xy, ..., Xp)|p).

Heavy Leaf Path Decomposition. We construct a heavy leaf path decomposition of P
as follows. We classify each node as heavy or light. The root is light. For each internal
node v we pick a child v; of v with maximum /p(,) and classify it as heavy. The remaining
children of v are light. An edge to a light node is a light edge, and an edge to a heavy
node is a heavy edge. The heavy child of a node v is denoted heavy(v). Let ldepth(v)
denote the number of light edges on the path from v to root(P).

Note that a heavy leaf path decomposition is the same as the classical heavy path
decomposition [Harel and Tarjan 1984] except that the heavy child is defined as the
child with largest number of the descendant leaves and not the child with the largest
number of descendants. This distinction is essential for achieving the linear space
bound of our algorithms. Note that heavy path decompositions have previously been
used in algorithms for the related tree edit distance problem [Klein 1998].

LemMa 2.3. For any tree P and node v € V(P),

lp
lP(”) = 9ldepth(v) *

Proor. By induction on ldepth(v). For ldepth(v) = 0 it is trivially true. Let
Idepth(v) = ¢. Assume without loss of generality that v is light. Let w be the unique
light ancestor of v with ldepth(w) = ¢ — 1. By the induction hypothesis Ip(,) < Ip/2"1.
Now v has a sibling heavy(parent(v)) and thus at most half of the leaves in P(parent(v))
can be in the subtree rooted at v. Therefore, Ip(,) < lpw,)/2 <lp/2¢. O

CoroLLARY 2.4. For any tree P and node v € V(P), ldepth(v) < loglp.

Notation. When we want to specify which tree we mean in the preceding relations
we add a subscript. For instance, v <7 w indicates that v is an ancestor of w in T'.

3. COMPUTING DEEP EMBEDDINGS
In this section we present a general framework for answering tree inclusion queries.
As in Kilpeldinen and Mannila [1995] we solve the equivalent tree embedding problem.

Let P and T be rooted labeled trees. An embedding of P in T is an injective function
f : V(P) — V(T) such that for all nodes v, u € V(P):

(i) label(v) = label(f(v)). (label preservation condition)
(i) v < wiff f(v) < f(w). (ancestor condition)
(iii) v<uiff f(v)< f(w). (order condition)

An example of an embedding is given in Figure 1(c).

LeEmMa 3.1. [KILPELAINEN AND MANNILA 1995]. For any trees P and T, P T T iff there
exists an embedding of P in T.

We say that the embedding f is deep if there is no embedding g such that f(root(P)) <
g(root(P)). The deep occurrences of P in T', denoted emb(P, T') is the set of nodes

emb(P, T) = {f(root(P)) | f is a deep embedding of P in T'}.

By definition the set of ancestors of nodes in emb(P, T') is exactly the set of nodes
{u| P C T(w)}. Hence, to solve the tree inclusion problem it is sufficient to compute
emb(P, T') and then, using additional O(nr) time, report all ancestors of this set. We
note that Kilpeldinen and Mannila [1995] used the similar concept of left embeddings

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:8 P. Bille and I. L. Gortz

in their algorithms. A left embedding of P in T is an embedding such that the root of
P is mapped to the node in 7" with the smallest postorder number, that is, the deepest
node among the nodes furthest to the left. Our definition of emb(P, T') only requires
that the root is mapped to a deepest node.

In the following we show how to compute deep embeddings. The key idea is to build
a data structure for 7' allowing a fast implementation of the following procedures. For
al XCV(T),Y CcV(T)x V(T), and o € X define:

PARENT(X): Return the set {parent(x) | x € X}.
Nca(Y): Return the set {nca(y1, y2) | (y1, y2) € Y}.
DeerP(X): Return the set {x € X | there is no z € X such that x < z}.

MorRiGcHT(Y, X): Return the set of pairs R such that for any pair (y1, y2) € Y, (y1,x) € R
iff (yg, x) € mop(Y|q, X).

MoprLEFT(X, Y): Return the set of pairs R such that for any pair (y;, y2) € Y, (x, y2) € R
iff (x, y1) € mop(X, Y 7).

FL(X «): Return the set DEep({fl(x, o) | x € X}).

Collectively we call these procedures the set procedures. The procedures PARENT and
Nca are self-explanatory. DEEP(X) returns the set of all nodes in X that have no descen-
dants in X. Hence, the returned set is always deep. MopPRiGHT and MoPLEFT are used
to iteratively compute minimum ordered pairs. FL(X, «) returns the deep set of first
ancestors with label « of all nodes in X. If we want to specify that a procedure applies to
a certain tree 7' we add the subscript T'. With the set procedures we can compute deep
embeddings. The following procedure EmMB(v), v € V(P), recursively computes the set of
deep occurrences of P(v) in T'. Figure 3 illustrates how EMB works on a small example.

Procedure EvmB(v)

1 Letovy, ..., v, be the sequence of children of v ordered from left-to-right. There are three
cases:

2 casel.k=0 // visaleaf

3 Compute R := FL(I(T), label(v)).

4 case2. k=1

5 Recursively compute R; := EmMB(v;).

6

7

8

Compute R := FL(DEeP(PARENT(R))), label(v)).
case3. k> 1
Let v; be the heavy child of v.

9 Recursively compute R; := EmMB(v;) and set U; := {(r,7) | r € R;}.
10 fori:=j+1tokdo
11 \ Recursively compute R; := EmB(v;) and set U; := MopPRicHT(U;_1, R;).
12 end

13 Set U; := Uy.

14 fori := j —1downto 1 do

15 \ Recursively compute R; := EmB(v;) and set U; := MoPLEFT(R;, U;1).
16 end

17 Compute R := FL(DEEP(Nca(U1)), label(v)).

18 if R = ¢ then

19 | stop and report that there is no deep embedding of P(v)in T'.

20 else
21 | Return R.
22

To prove the correctness of the EMB procedure we need the following two propositions.
The first proposition characterizes for node v € V(P) the set emb(P(v), T') using mop,

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:9

(a)

(e))

Fig. 3. Computing the deep occurrences of P into T" depicted in (a) and (b) respectively. The nodes in P are
numbered 1—4 for easy reference. (c) Case 1 of EMB: The crossed nodes are the nodes in the set EMB(3). Since
3 and 4 are leaves and label(3) = label(4) we have EMB(3) = EmB(4). (d) Case 2 of EMB: The black nodes are
the nodes in the set EMB(2). Note that the middle child of the root of T' is not in the set since it is not a deep
occurrence. (e) and (f) illustrate the computation of EMB(1) and case 3 of EMB: (e¢) The two minimal ordered
pairs of the sets from (d) and (c). In the procedure R; is the set from (d) and Ry is the set from (c). The set
U; = {(v,v) | v € R} and the set Uy = MopPRIiGHT(U1, Rg) which corresponds to the pairs shown in (e). The
black nodes in the pairs are the nodes from R; and the crossed nodes are the nodes from Ry. Since & = 2 we
set U; = Us. (f) The nearest common ancestors of both pairs shown in (e) is the root node of 7' which is the
only (deep) occurrence of P.

nca, and fl. The second proposition shows that the set U; computed in case 3 of the EmMB
procedure is the set mop(EMB(v1), ..., EMB(uvp)).

ProrosiTioN 3.2. Let v be a node in P and let v, ..., vy be the sequence of children
of v ordered from left-to-right, where k > 2. For any node w € emb(P(v), T'), there

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:10 P. Bille and I. L. Gortz

w

w3

Wy

(a) (b)

Fig. 4. (a) For all i, w; and u; are roots of occurrences of P(v;) in T', and w and u is the nearest common
ancestor of (w1, w3) and (uq, ug), respectively. Since wi; <u; and ug l|wg we cannot have u < w. (b) For all i,
w; is an embedding of P(v;) in T, (w1, w4) is @ minimum ordered pair, and w is the nearest common ancestor
of all the w;’s. The number of leaves in T (w) is at least Y7, Ipawy) = Y Ip(y)-

exists a pair of nodes (w1, wi) € mop(emb(P(v1), T),...,emb(P(v;), T)) such that w =
filnca(wi, w), label(v)).

Proor. Since w is the root of an occurrence of P(v) in T' there must exist a set
of disjoint occurrences of P(vy),..., P(vg) in T (w) with roots wi < ... <ws, such that
w is an ancestor of wi, ..., wi. Since the w;’s are ordered w must be an ancestor of
nca(wi, wg). Since w is the root of a deep occurrence of P(v) in T it follows that w =
filnca(wi, wy), label(v)).

It remains to show that we can assume (wq, wy) € mop(emb(P(v1), T'), ..., emb(P(vg),
T)). It follows from the previous discussion that (wi,...,wi) € ®(emb(P(vq),
T),...,emb(P(vs), T)). Assume for the sake of contradiction that (w1, wy) is not a min-
imum ordered pair. Then there exists a set of disjoint occurrences of P(vq), ..., P(v;) in
T (w) with roots u; < ... <ug, such that either wi <u; <up, <wp, or wi <uy <up <wp, and
(u1, u) € mop(emb(P(v1),T),...,emb(P(uvg), T)). Therefore u = flinca(u;, uz), label(v))
is an embedding of P(v) in T'. Now either w < u contradicting the assumption that w is
a deep embedding or w = u in which case (u1, u) satisfies the properties of the lemma
(see also Figure 4(a)). O

ProrosiTion 3.3. For j+1 <[<k,
U; = mop(EMB(vj), ..., EMB(v;)), (1)
Forl<l<j-1,
U; = mop(EMB(vy), . .., EMB(uvp)). (2)

Proor. We first show Eq. (1) by induction on . For [= j + 1 it follows from the
definition of MoPRIGHT that U; is the set of minimum ordered pairs of EmB(v;) and
EwmB(vj11), that is, U; = mop(EMB(v;), EMB(v;)). Hence, assume that [> j + 1. By the
induction hypothesis we have

U; = MopRIGHT(U;_1, EMB(v;)) = MoPRI1GHT(mop(EMB(v;), ..., EMB(v;_1)), Ry).

By definition of MoprRicHT, U; is the set of pairs such that for any
pair (rj,r—1) € mop(EMB(v)),...,EMB(v_1)), @rj,r) € U iff (n_i,m) €
mop(mop(EmMB(vj), ..., EMB(v;_1))|,, R;). By Lemma 2.1 it follows that (r;,r;) € U iff
(rj, r)) € mop(EMB(v;), ..., EMB(v;)).

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:11

We can now similarly show Equation (2) by induction on j' = j — . By Equation (1)
we have U; = mop(EMB(v;), ..., EMB(v;)) when we begin computing U;_;. For j/ =1
(I = j—1)it follows from the definition of MopPLEFT that U;_; = mop(EmB(v;_1), EMB(v;)).
Hence, assume that j' > 1. Using Lemma 2.2 the Equation follows similarly to the proof
of Equation (1). O

By Proposition 3.3, U; = mop(EMB(v1), ..., EMB(v;)). We can now show the correctness
of procedure EmB.

LEmMa 3.4. For trees P and T and node v € V(P), EMB(v) computes the set of deep
occurrences of P(v)in T.

Proor. By induction on the size of the subtree P(v). If v is a leaf, emb(v, T') is the
deep set of nodes in 7' with label label(v). It immediately follows that emb(v, T') =
FL(L(T), label(v)) and thus case 1 follows.

Suppose that v is an internal node with 2 > 1 children vy, ..., v,. We show that
emb(P(v), T') = EMB(v). Consider cases 2 and 3 of the algorithm.

For £ = 1 we have that w € EMB(v) implies that label(w) = label(v) and there is a node
w1 € EMB(v1) such that fl(parent(w;), label(v)) = w, that is, no node on the path between
w1 and w is labeled label(v). By induction EMB(v1) = emb(P(v1), T') and therefore w is
the root of an embedding of P(v) in T'. Since EMB(v) is the deep set of all such nodes it
follows that w € emb(P(v), T'). Conversely, if w € emb(P(v), T') then label(w) = label(v),
there is a node w; € emb(P(v1), T') such that w < w1, and no node on the path between
w and w; is labeled label(v), that is, fl(wy, label(v)) = w. Hence, w € EMB(v).

Next consider the case 2 > 1. By Proposition 3.3 and the induction hypothesis

U1 = mop(emb(P(vy), T'), ..., emb(P(vy), T)).

We first show that w € emb(P(v), T') implies that w € EmB(v). By Proposition 3.2
there exists a pair of nodes (w1, wr) € mop(emb(P(vy), T'), ..., emb(P(v;), T')) such that
w = fl(nca(wi, wg), label(v)). We have (w1, wg) € Uy and it follows directly from the
implementation that w € EmB(v). To see that we do not loose w by taking DEEP of
Nca(U;) assume that w’ = nca(w, wy) is removed from the set in this step. This means
there is a node u in Nca(U;) which is a descendant of w’ and which is still in the set.
Since w is the root of a deep occurrence we must have w = fl(w’, label(v)) = fl(u, label(v)).

Let w € EMB(v). Then w is the first ancestor with label label(v) of a nearest common
ancestor of a pair in U;. That is, label(w) = label(v) and there exists nodes (w1, wg) €
mop(emb(P(vy), T'),...,emb(P(v;), T')) such that w = fl(nca(wy, w), label(v)). Clearly,
w is the root of an embedding of P(v) in T'. Assume for contradiction that w is not a
deep embedding, that is, w < u for some node u € emb(P(v), T'). We have just shown
that this implies © € EMB(v). Since EMB(v) is a deep set this contradicts w € EmMB(v). O

The set I(T) is deep and in all three cases of EMB(V') the returned set is also deep. By
induction it follows that the input to ParenT, FL, Nca, and MoPRIcHT is always deep.
We will use this fact to our advantage in the following algorithms.

4. A SIMPLE TREE INCLUSION ALGORITHM

In this section we a present a simple implementation of the set procedures which leads
to an efficient tree inclusion algorithm. Subsequently, we modify one of the procedures
to obtain a family of tree inclusion algorithms where the complexities depend on the
solution to a well-studied problem known as the tree color problem.

4.1. Preprocessing

To compute deep embeddings we require a data structure for 7' which allows us, for
any v,w € V(T), to compute ncar(v, w) and determine if v < w or v<w. In linear

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:12 P. Bille and I. L. Gortz

time we can compute pre(v) and post(v) for all nodes v € V(T'), and with these it is
straightforward to test the two conditions. Furthermore, we have the next lemma.

LemmA 4.1. [HAREL AND TARJAN 1984]. For any tree T there is a data structure using
O(nr) space and preprocessing time which supports nearest common ancestor queries
in O(1) time.

Hence, our data structure uses linear preprocessing time and space (see also Bender
and Farach-Colton [2000] and Alstrup et al. [2004] for more recent nearest common
ancestor data structures).

4.2. Implementation of the Set Procedures

To answer tree inclusion queries we give an efficient implementation of the set proce-
dures. The idea is to represent sets of nodes and sets of pairs of nodes in a left-to-right
order using linked lists. For this purpose we introduce some helpful notation. Let
X = [x1,...,x:] be a linked list of nodes. The length of X, denoted |X], is the number
of elements in X and the list with no elements is written []. The ith node of X, de-
noted X[i], is x;. Given any node y the list obtained by appending y to X, is the list
Xoy=1[x1,...,a%,y]. Ifforalli, 1 <i < |X] — 1, X[i]<X[i + 1] then X is ordered and if
X[i]1< X[i + 1] then X is semiordered. Recall that X[i] < X[i + 1] means that we can have
X[i1<X[i + 1] or either of the nodes can be an ancestor of the other (X[i]<X[i + 1] or
X1 < Xli +1]or X[i] > Xli +11). Alist Y = [(x1, 2p), ..., (xz, 2z)] is a node pair list. By
analogy, we define length, append, etc., for Y. For a pair Y[i] = (x;, ;) define Y[i]; = x;
and Y[ily = z;. If the lists [Y[1]4, ..., Y[k]1] and [Y[1]s, ..., Y[k]2] are both ordered or
semiordered then Y is ordered or semiordered, respectively.

The set procedures are implemented using node lists. All lists used in the procedures
are either ordered or semiordered. As noted in Section 3 we may assume that the inputs
to all of the procedures, except DEEP, represent deep sets, that is, the corresponding
node list or node pair list is ordered. We assume that the input list given to DEEP is
semiordered and the output, of course, is ordered. Hence, the output of all the other set
procedures must be semiordered. In the following let X be a node list, Y a node pair
list, and « a character in . The detailed implementation of the set procedures is given
next. We show the correctness in Section 4.3 and discuss the complexity in Section 4.4.

Procedure PARENT(X)
1 Return the list [parent(X[1]), ..., parent(X[|X]])].

Procedure Nca(Y)
1 Return the list [nca(Y[1]), ..., nca(Y[|Y|D].

Procedure DEepP(X)

1 Initially, set x := X[1] and R :=[].

2 fori :=2to |X| do

3 Compare x and X[i]. There are three cases:
4 case 1. x <X[i]

5 | Set R:= Rox andx:=X[i]

6

7

8

case 2. x < X[i]
| Setx:= X[l
case 3. X[i] < «x
9 | Do nothing.
10
11 end
12 Return Ro x.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:13

The implementation of procedure DEEp takes advantage of the fact that the input
list is semiordered. In case 1 the node X[i]is to the right of our “potential output node”
x. Since any node that is a descendant of x must also be to the left of X[i] it cannot
appear later in the list X than X[i]. We can thus safely add x to R at this point. In case
2 the node x is an ancestor of X[i] and thus x cannot be in DEEP(X). In case 3 the node
X[i]is an ancestor of x and can therefore not be in DEEP(X).

Procedure MorRicHT(Y ,X)

1 Initially, set R :=[].

2 Find the smallest j such that Y[1]; <X[j] and set y := Y[1];, x := X[j]. If no such j exists
stop and return R.

3 fori:=2¢to|Y|do

4 until Y[i]; <X[jlor j > |X| do

5 set j:=j+1.

6 if j > |X| then

7

8

| stop and return R := Ro (y, x).

else
9 Compare X[j] and x. There are two cases:
10 case 1. x < X[/]
11 | set R:=Ro(y,x),y:=Yl[il,and x := X[j].
12 case 2. If x = X[j]
13 | sety:=Ylil.
14
15
16 end

17 Return R := Ro (y, x).

In procedure MoPRIGHT we have a “potential pair” (y, x) where y = Y[i']; for some i’
and Y[i'ls <x. In case 1 we have x < X[j] and also Y[i']l; <Y[ils since the input lists are
ordered and i’ < i (see Figure 5(a)). Therefore, (y, x) is inserted into R. In case 2 we
have x = X[j], that is, Y[ils <x, and as before Y[i'l; <Y[ils (see Figure 5(b)). Therefore
(y, x) cannot be in MoprRIcHT(Y, X), and we set (Y[i]1, x) to be the new potential pair.

We can implement MopLEFT(X,Y) similarly to MopPRIGHT replacing smallest by
largest, <1 by >, and traversing the lists backwards.

Procedure MorPLEFT(X,Y)

1 Initially, set R :=[].

2 Find the largest j such that Y[|Y|l; > X[j] and set y := Y[|Y|]z and x := X[j]. If no such j
exists stop and return R.

3 fori.=|Y|—1to1ldo

4 until Y[i]; > X[j]lor j < 1do
5 setji=j—1.
6 if j < 1then
7 | stop and return R := (x,y)o R.
8 else
9 compare X[j] and x. There are two cases:
10 case 1. x > X[j]
11 | set R:=(x,y)oR,y:=Yl[ily, and x := X[j].
12
13 case 2. x = X[J]
14 | sety:=Ylil.
15
16 end
17 end

18 Return R := (x,y)o R.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:14 P. Bille and I. L. Gortz

(a) (b)

Fig. 5. Case 1 and 2 from the implementation of MopRIcHT. (a) We have x <\X[j] and therefore Y[ile 4 x.
So (y, x) is inserted in R. (b) We have Y[i'le <Y[ilo <x = X[j].

Procedure FL(X,«)

1 Initially, set L .= X, Z := L.

2 while Z # [1 do

3 fori:=1to |Z| do

4 case 1. label(Z[i]) = «

5 | Delete Z[i] from Z (but keep it in L).
6

7

8

case 2. label(Z[i]) # a and parent(Z[i]) # L
| Replace Z[i] with parent(Z[i]) in both Z and L.
case 3. label(Z[i]) # o and parent(Z[i]) = L

9 | Delete Z[i] from both Z and L.
10
11 end
12 Set (Z, L) := DEeP*(Z, L).
13 end
14 Return L.

The procedure FL computes the set DEEp({fl(x, a)|x € X}) bottom-up. The list Z con-
tains ancestors of the elements of X for which we have not yet found an ancestor with
label «. In each step it considers each node z in the list Z. If it has the right label then
x € FL(X, @) and we remove it from Z but keep it in L. Otherwise we replace it with its
parent (unless it is the root). Thus L contains both the elements in Z and the part of
FL(X, @) found until now.

To keep the running time down we wish to maintain the invariant that L is deep
at the beginning of each iteration of the outer loop. To do this procedure FL calls an
auxiliary procedure DEEP*(Z, L) which takes two ordered lists Z and L, where Z C L,
and returns two ordered lists representing the set DEEp(L) N Z and DEeEP(L), that is,
DeEP*(Z, L) = ([z € Z|$x € L : z < x], DEEP(L)). If we use the procedure DEEP to calculate
DEEp* it takes time O(|Z| + |L|) = O(|L)). Instead we will show how to calculate it in
time O(|Z]) using a linked list representation for Z and L. We will need this in the
proof of Lemma 4.9, which shows that the total running time of all calls to FL from EmB
takes time O(nr). Next we describe in more detail how to implement FL together with
the auxiliary procedures.

We use a doubly linked list to represent L and extra pointers in this list to represent
Z. Each element in the list has pointers Succy and Predy, pointing to its predecessor
and successor in L. Similarly, each element in Z has pointers Succz and Predz pointing
to its predecessor and successor in Z (right after the initialization these are equal to
Succy, and Predy). In the for loop we use the Succyz pointers to find the next element
in Z. To delete Z[i] from Z in case 1 we set Succz(Predz(Z[i])) = Succz(Z[i]) and

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:15

Predz(Succz(Z[i])) = Predz(Z[i]). The L pointers stay the same. In case 2 we simply
replace Z[i] with its parent in the linked list. The Succ and Pred pointers stay the
same. To delete Z[i] from both Z and L in case 3 we set Succ;(Pred;(Z[i])) = Succ;(Z[i])
and Pred;(Succ;(Z[i])) = Pred;(Z[i]) for j € {Z, L}. Finally, to compute DEep*(Z, L) walk
through Z following the Succy pointers. At each node z compare Pred(z) and Succy(z)
with z. If one of them is a descendant of z remove z from the doubly linked list Z and
L as in case 3. Note that instead of calling Deep*(Z, L) this comparison can also be
done directly in step 2, which is the only place where we insert nodes that might be
an ancestor of another node in L. We will show in the next section that it is enough to
compare z to its neighbors in the list L.

4.3. Correctness of the Set Procedures

Clearly, PARenNT and Nca are correct. The following lemmas show that Deep, FL, and
MorRIGHT are also correctly implemented. For notational convenience we write x € X,
for a list X, if x = X[i] for some i, 1 <i < |X].

LEMMA 4.2. Procedure DEEP(X) is correct.

Proor. Let x be the variable in the procedure. We will first prove the following
invariant on x.

INVARIANT. At the beginning of each iteration of the for loop in line 2 we have x # X[j]
foranyl<j<i-—1.

Proor. We prove the invariant by induction on i. The invariant obviously holds for
the base casei = 2.
For the induction step let i > 3. Let iteration £ denote the iteration of the for loop
when i = k. By the induction hypothesis we have x 4 X[j] for any 1 < j <i — 2 at the
beginning of iteration i — 1.

Let x’ denote the value of the variable x at the beginning of iteration i — 1. Consider
the value of variable x at the beginning of the iteration i. There are two cases.

(1) If x = x’ then by the induction hypothesis x = x’ £ X[j]for any 1 < j <i — 2. Since
x was not changed in iteration i — 1 we have X[i — 1] < x (case 3 of the procedure)
and thus x 4 X[jlforany1l<j<i-—1.

(2) If x # x’ then x was set in either case 1 (x'<x) or case 2 (x’ < x) in iteration
i — 1. Therefore, x = X[i — 1] and by the induction hypothesis x' £ X[j] for any
1 < j <i — 2. There are two subcases.

(a) If x' < x it follows immediately from the induction hypothesis that x £ X[j] for
any 1 < j <i — 1, since all descendants of x also are descendants of x'.

(b) If x’ <x we note that x is the first node to the left of x’ occuring after x’ in
X (otherwise x would have been reset in case 1 of the procedure in an earlier
iteration, contradicting that x’ is the value of variable x at the beginning of
iteration i — 1). Since X is semiordered no node X[;] with smaller index in X
than x’ can be to the right of x". Thus no node X[j1,1 < j <i — 2, can be to the
right of x’. Since all descendants of x must be to the right of x’ we have x £ X[j]
foranyl<j<i-1.

We are now ready to prove that y € DEep(X) iff there exists no z € X such that y < z.
We first argue that if y € DEep(X) then 7z € X such that y < 2. Let y be an element
in DEEP(X). Only elements that have been assigned to x during the procedure are in
the output. Consider the iteration where x = y is appended to R. This only happens in
case 1 of the procedure and thus y = x <X[i]. Since X is semiordered this implies that
x<1X[j] fori < j < |X]|, and therefore y = x £ X[j] for i < j < |X]. By the preceding

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:16 P. Bille and I. L. Gortz

invariant it follows that y = x # X[jl1for 1 < j <i — 1. Thus if y € DEEp(X) then #iz € X
such that y < z.

Let y € X be an element such that XN V(T (y)) = {y}. Let j be the smallest index
such that X[j] = y. When comparing y and x during the iteration where i = j we are
in case 1 or 2, since j is the smallest index such that X[j] = y (implying x # y) and
XN V(T(y)) = {y} implying y #4 x). In either case x is set to y. Since there are no
descendants of y in X, the variable x remains equal to y until added to R. If y occurs
several times in X we will have x = y each time we meet a copy of y (except the first)
and it follows from the implementation that y will occur exactly once in R. O

To show that the implementation of MopPRIGHT is correct we will use the following
proposition.

ProrosiTioN 4.3. Before the first iteration of the for loop in line 3 of MoPRIGHT we
have y = Y[1l}, x = X[jl and either X[j — 11<Y[1le<X[j1Gf j > 1) or Y[1le <X[j1if
(J=1.

At the end of each iteration of the for loop then, unless Y[ilo A X[|X|], we have
y=Ylily, x = X[j]l and either X[j — 11<Y[ilo<XIj1(Gf j > Dor Y[ilo<Xjlif (j = 1).

Proor. The first statement (y = Y[1];, x = X[j] and either X[j — 11 <Y [1]s < XI ;] Gif
J > Dor Y[l <Xl]if (j = 1)) follows immediately from the implementation of the
procedure line 2 and the fact that the input lists are ordered.

We prove the second statement by induction on i. Base case i = 2. By the first
statement we have y = Y[1];, x = X[j] and either X[j — 11<Y[1]o <X[j]Gf j > 1) or
Y[1le <X[jlif (j = 1) before this iteration. Let j' be the value of j before this iteration.
It follows immediately from the implementation that y = Y[2]; since y is set to this
in both case 1 and 2. If Y[2], <X[;'] then j = j'. Since Y is ordered it follows that
XIj — 119Y 1l < Y2l <X 1 G j > 1) or ¥[2], A XTj1if = 1). If Y[2]y 4Xj'] then
J is increased until Y[2]s < X[j] implying X[j — 1]1<1Y[2]s < X[j] unless j > |X], since X
is ordered.

Induction step i > 2. It follows immediately from the implementation that y = Y[i];
since y is set to this in both case 1 and 2. By the induction hypothesis we have y =
Ylil;, x = X[j] and Y[ilo <X[j] right before this iteration. Let j/ be the value of j
before this iteration. If Y[ilo <X[;’] then j = j'. Since Y is ordered it follows that
X[j—11<Y[E -1l <Y[ile<X[j1Gf j > Dor Y[ilo<X[jlif (j = 1. If Y[i]lp #X[;'] then
J isincreased until Y[i]lo < X[j] implying X[j — 11 <Y [i]lo <X[j]l unless j > |X]. O

Lemma 4.4. Procedure MopRIGHT(Y, X) is correct.
Proor. We want to show that forany 1 <i’ <|Y|,1 < < |X:
Y[li'h.X[j/DeR < (Y[i'le, XIj']D € mop(Y |z, X).
Since Y|, and X are ordered lists we have (Y[i'ly, X[j']) € mop(Y |2, X) if and only if:

(1) argmin; Y[i'ls <X[j] =’
(2) argmax; Y[ilo<X[j'1=17".

We will first show that (1) and (2) implies (Y[i'ls, X[j']) € R. We start by showing

that when i is about to be incremented to i’ + 1 then y = Y[i'l; and x = X[j']. There
are two cases to consider.

—i’ = 1. After line 2 is executed, y is set to Y[1]y, j is set to j’ and x is set to X[j'].
—i’ > 1. Consider the step in the iteration when i = i’. At the beginning of this
iteration, y = Y[i’ — 1] and j is the minimal index such that Y[’ — 1] < X[j]. By (1)

this implies that j < j’, and that after line 4 and 5 are executed, j is set to j'. At the

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:17

end of the iteration y = Y [i'] (y is assigned to Y[i'] in both cases) and x = X[;']. If
Jj = J' then x set to X[j'] in case 1, otherwise we had j = j’ (case 2) and then x was
set to X[;'] already).

We have established that when i is about to be incremented toi’ + 1 then y = Y[i'];
and x = X[j']. To show that (Y[i']ls, XIj']) € R we consider the following two cases.

—1i' < |Y|. Consider the (i’ +1)" iteration. By condition (2) X[j'1<Y[i’+ 1], and therefore
J is increased in line 5. So now j > j'. If j > |X] then (y, x) = (Y [i']ly, XIj']) is added
to R in line 7. Otherwise, since X is ordered, x = X[j']<1X[j]. We are therefore in
case 1 and (y, x) = (Y[i'ls, XIj']) is added to R.

—i’ =Y. Then (y, x) = (Y[i'le, XIj']) is added to R in line 15.

We will now show that (Y[i']l;, XIj']) € R implies (1) and (2). Since (Y[i'l;, X[j']) € R
we had (y, x) = (Y[i']ly, X[j']) at some point during the execution. The pair (y, x) can be
added to R only in the for loop before changing the values of y and x or at the execution
of the last line of the procedure. Therefore (y,x) = (Y[i']ly, X[j']) at the beginning
of some execution of the for loop, or after the last iteration (i = |Y|). It follows by
Proposition 4.3 that X[j — 1]<Y[ilo<X[jlif j > 1or Y[ile <X[j]if j = 1. It remains to
show that X[j'1<Y[i’ + 1]s for i’ < |Y|. It follows from the implementation that (y, x)
only is added to R inside the for loop if j is increased. Thus j was increased in the next
iteration ¢ =i’ + 1) implying X[j'1<Y[i' + 1ls. O

LemMma 4.5. Procedure MoPLEFT(X, Y) is correct.
Proor. Similar to the proof of Lemma 4.4. O
To show that FL is correct we need the following proposition.

ProrosiTiON 4.6. Let X be an ordered list and let x be an ancestor of X[i] for some
1 €{1,...,k}). If x is an ancestor of some node in X other than X[i] then x is an ancestor

of X[i — 1] or XIi + 11.

Proor. Recall that u <v iff pre(u) < pre(v) and post(u) < post(v). Since x < X[i] we
have pre(x) < pre(X[i]) and post(X[i]) < post(x). Assume there exists a descendant
X[jlofx suchthat j ¢ {{ —1,i,i + 1}. If j <i — 1 we have

pre(x) < pre(X[j]) < pre(X[i — 1]),

where the first inequality follows from x < X[j] and the second from X being ordered.
And

post(X[i — 1]) < post(X[i]) < post(x),
where the first inequality follows from X being ordered and the second from x < X[i].
Thus x < X[i — 1].
Similarly, for j > i +1, we have pre(x) < pre(X[i]) < pre(X[i +1]) and post(X[i +1]) <
post(X[j]) < post(x) implying that x < X[i + 1]. O
Proposition 4.6 shows that the doubly linked list implementation of DEEP* is correct.
Since all changes to the list are either deletions or insertions of a parent in the place

of its child, the list L (and thus also Z) is ordered at the beginning of each iteration of
the outer loop.

LEMMA 4.7. Procedure FL(X,) is correct.

Proor. Let F = {fi(x, @) | x € X}. We first show that FL(X «) C F. Consider a node
x € FL(X «). Since x is in L after the final iteration, x was deleted from Z during some
iteration. Thus label(x) = «. For any y € X we follow the path from y to the root and

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:18 P. Bille and I. L. Gortz

stop the first time we meet a node with label « or even earlier since we keep the list
deep. Thus x € F'.

The set FL(X, «) is a deep set, and therefore DEEp(F') C FL(X,) C F = DEEP(F) =
FL(X «). Hence, it remains to show that DEepP(F') C FL(X, «). Let x be a node in DEEp(F'),
let z € X be a node such that x = fl(z, @), and let z = x1, xo, ..., x, = x be the nodes on
the path from z to x. We will argue that after each iteration of the algorithm we have
x; € L for some i. Since label(x;) # « for i < k this is the same as x; € Z fori < k.
Before the first iteration we have x; € X = Z. As long as i < k we replace x; with x; 1
in case 2 of the for loop, since label(x;) # «. When i = k& we remove x;, from Z but keep
it in L. It remains to show that we do not delete x; in the computation of DEEP*(Z, L)
in any iteration. If x; is removed then there is a node y € L that is a descendant of «;
and thus also a descendant of x. We argued earlier that L\ Z C F and thus y € Z since
x € DEEP(F). But since x € DEEP(F') no node on the path from y to x can have label «
and therefore x; will eventually be reinserted in Z. O

4.4. Complexity of the Set Procedures

For the running time of the node list implementation observe that, given the data
structure described in Section 4.1, all set procedures, except F1, perform a single pass
over the input using constant time at each step. Hence we have the next lemma.

LemmA 4.8. For any tree T there is a data structure using O(nr) space and prepro-
cessing which supports each of the procedures PARENT, DEEP, MopPRiGHT, MOPLEFT, and
Nca in linear time (in the size of their input).

The running time of a single call to FL might take time O(ny). Instead we will divide
the calls to FL into groups and analyze the total time used on such a group of calls. The
intuition behind the division is that for a path in P the calls made to F1.. by EMB are
done bottom-up on disjoint lists of nodes in 7.

Lemma 4.9. For disjoint ordered node lists Xi, ..., X} and labels ay, ..., ap, such
that any node in X;,1 is an ancestor of some node in FLp (X, o), 1 <1 < k, all of
FLp(Xy, a1), ..., FLp(Xy, ap) can be computed in O(nr) time.

Proor. Let Z and L be as in the implementation of the procedure. Since DeEEP* takes
time O(]Z]) and each of the steps in the for loop takes constant time, we only need to
show that the total length of the lists Z—summed over all the calls—is O(nr) to analyze
the total time usage. We will show that any node in T' can be in Z at the beginning of
the while loop at most twice during all calls to Fr. The size of Z cannot increase in the
iterations of the for loop (line 3—10), and thus the size of Z when DEEP* is called (line
11) is at most the size of Z at the beginning of this iteration of the while loop.

Consider a single call to FL. Except for the first iteration, a node can be in Z only
if one of its children were in Z in the last iteration. Note that Z is ordered at the
beginning of each for loop. Thus if a node is in Z at the beginning of the while loop none
of its children is in Z and thus in one call to FL a node can be in Z only once.

Look at a node z the first time it appears in Z at the beginning of an execution of the
while loop. Assume that this is in the call FL(X;, o;).

—If z € X; then z cannot be in Z in any later calls, since no node in X; where j > i can
be a descendant of a node in X;.

—If label(z) # «; then z is removed from Z in case 2 or case 3 of the procedure and
cannot be in Zin any of the later calls. To see this consider the time when z is removed
from Z (case 2 or case 3). Since the set L is deep at the beginning of the while loop
and Z C L, no descendant of z will appear in Z later in this call to Fr, and no node in
the output from FL(X;, o;) can be a descendant of z. Since any node in Xj, j > i, is an

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:19

ancestor of some node in FL(X;, ;) neither z or any descendant of z can be in any X,
Jj > i. Thus z cannot appear in Z in any later calls to Fr.

—Now if label(z) = «; then we might have z € X;,;. In that case, z will appear in Z in
the first iteration of the procedure call FL(X;, 1, «;), but not in any later calls since
the lists are disjoint, and since no node in X; where j > i + 1 can be a descendant of
anode in X; ;1. If label(z) = ¢; and z ¢ X;1; then clearly z cannot appear in Z in any
later call.

Thus a node in T is in Z at the beginning of an execution of the while loop at most
twice during all the calls. O

4.5. Complexity of the Tree Inclusion Algorithm
Using the node list implementation of the set procedures we get the following.

LEmMa 4.10. For trees P and T the tree inclusion problem can be solved in O(lpny)
time.

Proor. By Lemma 4.8 we can preprocess T' in O(nr) time and space. Let g(n) denote
the time used by FL on a list of length n. Consider the time used by EmB(root(P)). We
bound the contribution for each node v € V(P). If v is a leaf we are in case 1 of EMB. The
cost of computing FL(L(T), label(v)) is O(g(l7)), and by Lemma 4.9 (with & = 1) we get
O(g(l7)) = O(nr). Hence, the total cost of all leaves is O(lpny). If v has a single child w
we are in case 2 of EMB, and by Lemma 4.8 the cost is O(g(JEMB(w)|)). If v has more than
one child the cost of MopPRIGHT, Nca, and DEEP is bounded by . piia) OUEMB(w))).
Furthermore, since the length of the output of MoPRIGHT (and thus Nca) is at most
z = minycchildw) |EMB(w)| the cost of FL is O(g(z)). Hence, the total cost for internal
nodes is

2 0<g <we£?§ﬁ(v>'EMB(“’)'>+ 2 IEMB<w>I>= Y OG(BvE)). 3)

veV(P)\L(P) wechild(v) veV(P)

Next we bound (3). For any w € child(v) we have that EMB(w) and EmB(v) are disjoint
ordered lists. Furthermore we have that any node in EMB(v) must be an ancestor
of some node in FL(EMB(w), label(v)). Hence, by Lemma 4.9, for any leaf-to-root path
8§ =v1,..., v in P, we have that), _; g(|[EMB(x)|) = O(nr). Let A denote the set of all
root-to-leaf paths in P. It follows that

Y g(EMB@)) < YY" g(Emw)) = Olpny).
veV(T) PEA uep
Since this time is the same as the time spent at the leaves the time bound follows. O

To analyze the space used by the algorithm we first bound the size of EmB(v) for each
node v € V(P). We then use this to bound the total the size of embeddings stored in the
recursion stack in the computation of EMB(root(P)), that is, the total size of embeddings
stored by recursive calls during the computation.

LEmMa 4.11. For any tree P we have Yv € V(P):

Exmr(v)] < -2

P

Proor. By Lemma 3.4 EmB(v) is the set of deep occurrences of P(v) in T'. By the
definition of deep the occurrences are disjoint and no node in one occurrence can be an
ancestor of a node in another occurrence. Each occurrence has at least [p(,) descendant

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:20 P. Bille and I. L. Gortz

wo

heavy(parent(w))

heavy(parent(ws2))

heavy(parent(ws))

heavy(parent(w,)) U= 1wy

Fig. 6. Path from root to v. The heavy nodes are black and the light nodes are white. The heavy edges are
the thick edges and the light edges are thin.

leaves and each of these leaves is an ancestor of at least one distinet leafin T' (see also
Figure 4(b)). Thus the number of occurrences is bounded by I /lpy). O

LeEmma 4.12. The total size of saved embeddings on the recursion stack at any time
during the computation of EMB(root(P)) is at most O(lr).

Proor. Let node v be the node for which we are currently computing EMB. Let p
be the path from the root to v and let wy, ..., w, be the light nodes on this path.
Let ¢ = ldepth(v). There is one embedding on the stack for each light node on the
path (see Figure 6): For the heavy nodes on the path there can be no saved embed-
dings in the recursion as the algorithm always recurses on the heavy child first. For
each light node w; on the path p except the root wy the stack will contain either
EmB(heavy(parent(w;))), or U; = MopRiGHT(U;_1, R;), where v; is w;’s left sibling, or
U; = MoprLErT(U;_1, R;), where v; is w;’s right sibling. The computation of U; is a
series of MopRIGHT (or MoPLEFT) computations that started with the pair of node lists
(EmB(heavy(parent(w;))), EMB(heavy(parent(w;)))) as the first argument to MorRIGHT
(or MopPLEFT). As the output of MoPRIGHT (or MoPLEFT) can be no larger than the input
to the procedure we have |U;| = O(|EMB(heavy(parent(w;))))| and thus the total space
used at any time during the recursion is

ldepth(v)
(0] Z |EmB(heavy(parent(w;)))|
i=1
By Lemma 4.11 we have

l
|EmB(heavy(parent(w;)))| < T

lP(heavy(parent(wi))) ’

and thus
1depth(v) 1depth(v) 1
Y |Emsheavy(parentw)))| <lp) ——. 4)
i—1 i—1 lP(heavy(parent(wi)))

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:21

By the definition of heavy the node heavy(parent(w;)) has more leaves in its subtree
than w;, that is,

ZP(wi) =< lP(heavy(parent(wi)))- (5)

Obviously, heavy(parent(w;)) has no more leaves in its subtree than its parent, that is,

lP(heavy(parent(wi) = lP(parent(wi). (6)

Since w; is light it has at most half the number of leaves in its subtree as its parent,
that is

Lpawy) < Up(parent(w;)/2. (7

Combining this with the fact that w; is an ancestor of w; 1 and heavy(parent(w; 1)) we
get

lP(heavy(parent(wj)) = lP(parent(wj)) by (6)
<Ipw, 1) since w;_; is an ancestor of w;
= lP(parent(u)j_l))/2 by (7)
<Ilpw, »/2 since w;_g is an ancestor of parent(w;_1)

= lP(heavy(parent(w_,'_z)))/2a by 6))

for any 2 < j < ldepth(v). Let {; = Ipeavy(parent(w;) for all i. To bound the sum in (4) we
will use that li < li,2/2, li < li—l, and lldepth(v) > 1. We have

ldepth(v) 1 ldepth(v) 1
- <2 - <2.-2=4,
2 5= 2 gF
i=1 1=2,i odd

since the /;’s in the last sum are decreasing with a factor of 2. Combining this with
Eq. (4) we get

1depth(v) ldepth(v) 1
Y [Ems(heavy(parent(w)| <lp) ———— <4ir. O
i—1 ie1 lP(heavy(parent(wi)))

THEOREM 4.13. Fortrees P and T the tree inclusion problem can be solved in O(lpnr)
time and O(nr) space.

Proor. The time bound follows from Lemma 4.10. Next consider the space used by
EmB(root(P)). The preprocessing of Section 4.1 uses only O(ny) space. By Lemma 4.12
the space used for the saved embeddings is O(l7) = O(ny). O

4.6. An Alternative Algorithm

In this section we present an alternative algorithm. Since the time complexity of the
algorithm in the previous section is dominated by the time used by FL, we present
an implementation of this procedure which leads to a different complexity. Define a
firstlabel data structure as a data structure supporting queries of the form fl(v,),
v e V(T),« € . Maintaining such a data structure is known as the tree color problem.
This is a well-studied problem; see for example, Dietz [1989], Muthukrishnan and
Miiller [1996], Ferragina and Muthukrishnan [1996], and Alstrup et al. [1998]. With
such a data structure available we can compute FL as follows.

FL(X, a): Return the list DEEP([I(X]1], @), ..., (XT| X]], &)D.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:22 P. Bille and I. L. Gortz

THEOREM 4.14. Let P and T be trees. Given a firstlabel data structure using s(nr)
space, p(nr) preprocessing time, and q(ny) time for queries, the tree inclusion problem
can be solved in O(p(ny) + lply - q(nr)) time and O(s(nr) + ny) space.

Proor. Constructing the firstlabel data structures uses O(s(nr)) space and O(p(nr))
time. The total cost of the leaves is bounded by O(,Ir - ¢(nr)), since the cost of a single
leaf is O(lr - g(nr)). As in the proof of Theorem 4.13 we have that the total time used
by the internal nodes is bounded by " v p)g(IEMB(v)]), where g(n) is the time used by
FL on a list of length n, that is, g(n) < n-q(nr). By Lemma 4.8 and Lemma 4.12 for any
leaf-to-root path 6 = vq,..., vz in P, we have that), _; |[EMB(w)| < O(l7). Let A denote
the set of all root-to-leaf paths in P. It follows that

Y g(EmB)) < Y) " g(EMB@)) < Y Olr - q(ny) < OUply - q(ng)).

veV(P) PEA uep peA
Since this time is the same as the time spent at the leaves the time bound follows. O

Several firstlabel data structures are available, for instance, if we want to maintain
linear space we have the next lemma.

Lemma 4.15. [Dietz 1989]. For any tree T there is a data structure using O(ny) space,
O(nr) expected preprocessing time which supports firstlabel queries in O(loglognr)
time.

The expectation in the preprocessing time is due to perfect hashing. Since our data
structure does not need to support efficient updates we can remove the expectation
by using the deterministic dictionary of Hagerup et al. [2001]. This gives a worst-case
preprocessing time of O(nr lognr). However, using a simple two-level approach this
can be reduced to O(nr) (see, e.g., Thorup [2003]). Plugging in this data structure we
obtain the next corollary.

COROLLARY 4.16. For trees P and T the tree inclusion problem can be solved in
O(lply loglogny + ny) time and O(ny) space.

5. A FASTER TREE INCLUSION ALGORITHM

In this section we present a new tree inclusion algorithm which has a worst-case
subquadratic running time. As discussed in the Introduction, the general idea is to
divide T into clusters of logarithmic size which we can efficiently preprocess and then
use this to speed up the computation with a logarithmic factor.

5.1. Clustering

In this section we describe how to divide 7' into clusters and how the macro tree
is created. For simplicity in the presentation we assume that 7' is a binary tree. If
this is not the case it is straightforward to construct a binary tree B, where ng <
2nr, and a mapping g : V(T') — V(B) such that for any pair of nodes v, w € V(T),
label(v) = label(g(v)), v < w iff g(v) < g(w), and v <w iff g(v) <g(w). The nodes in the
set U = V(B)\{g(v) | v € V(T')} are assigned a special label g ¢ X. It follows that for
any tree P, PC T iff PC B.

Let C be a connected subgraph of T'. A node in V(C) adjacent to a node in V(T)\V(C)
is a boundary node. The boundary nodes of C are denoted by §C. We have root(T') € §C
if root(T) € V(C). A cluster of C is a connected subgraph of C with at most two
boundary nodes. A set of clusters CS is a cluster partition of T iff V(T') = UcccsV(C),
E(T) = chcsE(C), and for any Cl, C2 (S CS, E(Cl)ﬂE(Cz) = @, |E(Cl)| > 1. If |SC| =1
we call C a leaf cluster and otherwise an internal cluster.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:23

We use the following recursive procedure CLUSTERT (v, s), adopted from Alstrup and
Rauhe [2002], which creates a cluster partition CS of the tree T (v) with the property
that |CS| = O(s) and |V(C)| < [nr/s] for each C € CS. A similar cluster partitioning
achieving the same result follows from Alstrup et al. [2000, 1997] and Frederickson
[1997].

CLUSTERT (v, 8): For each child u of v there are two cases.
(1) |[V(T(w)|+1 < [np/s]. Let the nodes {v} U V(T (v)) be a leaf cluster
with boundary node v.
(2) |[V(T(w)| > [nr/s]. Pick a node w € V(T (1)) of maximum depth
such that |V(Tw)| + 2 — |V(T'(w))] < [nr/s]. Let the nodes
V(T @)\V(T(w)) U {v,w} be an internal cluster with boundary
nodes v and w. Recursively, compute CLUSTERy (w, S).

LEmMA 5.1. Given a tree T with ny > 1 nodes, and a parameter s, where [ny/s] > 2,
we can build a cluster partition CS in O(nr) time, such that |CS| = O(s) and |V(C)| <
[nr/s] for any C € CS.

Proof. The procedure CLUSTER7(root(T'), s) clearly creates a cluster partition of T
and it is straightforward to implement in O(ny) time. Consider the size of the clusters
created. There are two cases for u. Incase 1, |V(T (u))|+1 < [ny/s] and hence the cluster
C = (v}UV (T (w) hassize |[V(C)| < [ny/s].Incase 2, |V(T (w)|+2— |V (T (w))| < [nr/s]
and hence the cluster C = V(T (w))\V (T (w)) U {v, w} has size |V (C)| < [ny/s].

Next consider the size of the cluster partition. Let ¢ = [nr/s]. We say that a cluster
C is bad if |[V(C)| < ¢/2 and good otherwise. We will show that at least a constant
fraction of the clusters in the cluster partition are good. It is easy to verify that the
cluster partition created by procedure CLUSTER has the following properties.

(i) Let C be a bad internal cluster with boundary nodes v and w (v < w). Then w has
two children with at least ¢/2 descendants each.

(i1) Let C be a bad leaf cluster with boundary node v. Then the boundary node v is
contained in a good cluster.

By (ii) the number of bad leaf clusters is at most twice the number of good internal
clusters and by (i) each bad internal cluster has two child clusters. Therefore, the
number of bad internal clusters is bounded by the number of leaf clusters. Let b; and
g; denote the number of bad and good internal clusters, respectively, and let ; and g;
denote the number of bad and good leaf clusters, respectively. We have

b <bi+g <28 +48.
and therefore the number of bad clusters is bounded by
bi+b; <2g;+g +2g =4g + 48

Thus the number of bad clusters is at most 4 times the number of good clusters, and
therefore at most a constant fraction of the total number of clusters. Since a good cluster
is of size more than c¢/2, there can be at most 2s good clusters and thus [CS| = O(s). O

Let C € CS be an internal cluster with v, w € §C. The spine path of C is the path
between v, w excluding v and w. A node on the spine path is a spine node. A node to
the left and right of v or of any node on the spine path is a left node and right node,
respectively. If C is a leaf cluster with v € §C then any proper descendant of v is a leaf
node.

Let CS be a cluster partition of T' as described in Lemma 5.1. We define an or-
dered macro tree M. Our definition of M may be viewed as an “ordered” version

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:24 P. Bille and I. L. Gortz

v v
®
s(vew)
I(ve g})/(\(ov‘ w)

[J
w w

(a) (b)
v v

1(v)

(©) (d)

Fig. 7. The clustering and the macro tree. (a) An internal cluster. The black nodes are the boundary nodes
and the internal ellipses correspond to the boundary nodes, the right and left nodes, and spine path. (b) The
macro tree corresponding to the cluster in (a). (c) A leaf cluster. The internal ellipses are the boundary node
and the leaf nodes. (d) The macro tree corresponding to the cluster in (c).

of the macro tree defined in Alstrup and Rauhe [2002]. The node set V(M) con-
sists of the boundary nodes in CS. Additionally, for each internal cluster C € CS
with v,w € 6C, v < w, we have the nodes s(v, w), I(v,w) and r(v, w) and edges
(v, s(v, w)), (s(v, w), {(v, w)), (s(v, w), w), and (s(v, w), r(v, w)). That is, the nodes I(v, w),
r(v, w)and w are all children of s(v, w). The nodes are ordered so that (v, w) <w <r(v, w).
For each leaf cluster C, v € §C, we have the node /(v) and edge (v, [(v)). Since root(7T") is
a boundary node, M is rooted at root(T'). Figure 7 illustrates these definitions.

With each node v € V(T') we associate a unique macro node denoted c(v). Let u €
V(C), where C € CS.

u if u is boundary node,
l(v) if u is a leaf node and v € §C,
c(w) = {s(v,w) ifuis a spine node, v, w € §C, and v < w,

l(v,w) ifuis aleft node, v,w € 8C,and v < w,
r(v,w) ifwuis aright node, v, w € §C, and v < w.

Conversely, for any macro node i € V(M) define the micro forest, denoted C(i), as the
induced subgraph of T' of the set of nodes {v | v € V(T'), i = c(v)}. We also assign a set of
labels to i given by label(i) = {label(v) | v € V(C(7))}. If i is a spine node or a boundary
node the unique node in V(C(7)) of greatest depth is denoted by first(i). Finally, for any
set of nodes {i1, ..., 1z} € V(M) we define C(iy, ..., i) as the induced subgraph of the
set of nodes V(C(@1)) U --- U V(C(3p)).

The following propositions state useful properties of ancestors, nearest common an-
cestor, and the left-to-right ordering in the micro forests and in 7'. The propositions
follow directly from the definition of the clustering. See also Figure 8.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:25

Fig. 8. Examples from the propositions. In all cases v’ and w’ are top and bottom boundary nodes of
the cluster, respectively. (a) Proposition 5.23ii). Here c(v) = s(v/, w’) and c(w) = I(v/, w’) (solid ellipses).
The dashed ellipse corresponds to C(c(w), s(v/, w’), v'). (b) Proposition 5.3(1) and 5.4(ii). Here c(v) = c(w) =
1(v', w’) (solid ellipse). The dashed ellipse corresponds to C(c(w), s(v', w’), v'). (¢) Proposition 5.3(ii) and 5.4(3).
Here c(v) = c(w) = I(v') (solid ellipse). The dashed ellipse corresponds to C(c(v), v’). (d) Proposition 5.3(iii).
Here c(v) = I(v/, w’) and c¢(w) = s(v/, w’) (solid ellipses). The dashed ellipse corresponds to C(c(v), c(w), v').
(e) Proposition 5.3(iv). Here c(v) = s(v/, w’) and c¢(w) = r(v’, w’) (solid ellipses). The dashed ellipse corresponds
to C(c(v), c(w), v'). (f) Proposition 5.4(iv). Here c(v) = I(v', w’) and c(w) = r(v’, w’) (solid ellipses). The dashed
ellipse corresponds to C(c(v), c(w), s(v', w’), v'). (g) Proposition 5.4(v). Here c(v) = I(v', w’) (solid ellipse) and
w’ <pr c¢(w). The dashed ellipse corresponds to C(c(v), s(v', w’), v/, w’)).

ProrosITION 5.2 (ANCESTOR RELATIONS). For any pair of nodes v, w € V(T'), the follow-
ing hold:

1) If c(v) = c(w) then v <7 w Iff v <C(cw)) W-
(i) If c(v) # c(w), and for some boundary nodes v', w we have c(v) = s(v', w’), and
c(w) € {{(v', w), r(V', w"}, then v <1 W iff v <c(cw) s .w).v) W-
(iii) In all other cases, v <7 w iff c(v) < c(w).

Case (i) says that if v and w belong to the same macro node then v is an ancestor of w
iff v is an ancestor of w in the micro forest for that macro node. Case (ii) says that if v
is a spine node and w is a left or right node in the same cluster then v is an ancestor of
w iff v is an ancestor of w in the micro tree induced by that cluster (Figure 8(a)). Case
(iii) says that in all other cases v is an ancestor of w iff the macro node v belongs to is
an ancestor of the macro node w belongs to in the macro tree.

ProposiTioN 5.3 (LEFT-OF RELATIONS). For any pair of nodes v, w € V(T'), the following
hold:

1) If c(v) = c(w) € {r(v', w"),l(v', w")} for some boundary nodes v', w', then v<lw iff
U < Ce), v, s, w) W-
(1) If c(v) = e(w) = L(v') for some boundary node v', then v <w iff v < ¢((v).v)W-

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:26 P. Bille and I. L. Gortz

(i) If c(v) = I1(v', w’) and c(w) = s(v', w’) for some boundary nodes v', w', then v<w iff
V) .elw).on W .
@{iv) If c(v) = s(v', w') and c(w) = r(v’, w’) for some boundary nodes v', w', then v<w iff

U < C(e(w).cw).v)W-)
(v) In all other cases, v <w iff c(v) < pre(w).

Case (i) says that if v and w are both either left or right nodes in the same cluster then
v is to the left of w iff v is to the left of w in the micro tree induced by their macro node
together with the spine and top boundary node of the cluster (Figure 8(b)). Case (ii)
says that if v and w are both leaf nodes in the same cluster then v is to the left of w iff
v is to the left of w in the micro tree induced by that leaf cluster (Figure 8(c)). Case (iii)
says that if v is a left node and w is a spine node in the same cluster then v is to the left
of w iff v is to the left of w in the micro tree induced by their two macro nodes and the
top boundary node of the cluster (Figure 8(d)). Case (iv) says that if v is a spine node
and w is a right node in the same cluster then v is to the left of w iff v is to the left of w
in the micro tree induced by their two macro nodes and the top boundary node of the
cluster (Figure 8(e)). In all other cases v is to the left of w if the macro node v belongs
to is to the left of the macro node of w in the macro tree (Case (v)).

ProposiTion 5.4 (Nca RELATIONS). For any pair of nodes v, w € V(T), the following
hold:

1) If c(v) = c(w) = I(v') for some boundary node v, then ncar(v, w) = ncac(w).,H (v, w).
(1) If c(v) = c(w) € {{(v', w'), r(v/, w)} for some boundary nodes v', w', then
ncar (v, w) = NCAC(c(w) s .w).v) (Vs W).
(i) If c(v) = c(w) = s/, w’) for some boundary nodes v',w’, then ncar(v,w) =
neac(c((v, w).
@iv) If c(v) # c(w) and c(v), c(w) € {{(V, w), r(’, w’), s(v', w')} for some boundary nodes
v, w', then
near (v, w) = NCAC(c(w),c(w),sw',w),v)(V; W).
) Ife(v) # c(w), c(w) € {{(V, w'), r@, w), s, w')}, and w’ <y c(w) for some boundary
nodes v', w', then ncar(v, w) = ncac(w). st .w).v'.w) (Vs W).
(vi) In all other cases, ncap(v, w) = ncay(c(v), c(w)).

Case (i) says that if v and w are leaf nodes in the same cluster then the nearest common
ancestor of v and w is the nearest common ancestor of v and w in the micro tree induced
by that leaf cluster (Figure 8(c)). Case (ii) says that if v and w are both either left nodes
or right nodes then the nearest common ancestor of v and w is the nearest common
ancestor in the micro tree induced by their macro node together with the spine and
top boundary node of the cluster (Figure 8(b)). Case (iii) says that if v and w are both
spine nodes in the same cluster then the nearest common ancestor of v and w is the
nearest common ancestor of v and w in the micro tree induced by their macro node.
Case (iv) says that if v and w are in different macro nodes but are right, left, or spine
nodes in the same cluster then the nearest common ancestor of v and w is the nearest
common ancestor of v and w in the micro tree induced by that cluster (we can omit
the bottom boundary node) (Figure 8(f)). Case (v) says that if v is a left, right, or spine
node, and the bottom boundary node w’ of v’s cluster is an ancestor in the macro tree
of the macro node containing w, then the nearest common ancestor of v and w is the
nearest common ancestor of v and w’ in the micro tree induced by the macro node of v,
the spine node, and the top and bottom boundary nodes of v’s cluster (Figure 8(g)). In
all other cases the nearest common ancestor of v and w is the nearest common ancestor
of their macro nodes in the macro tree (Case (vi)).

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:27

5.2. Preprocessing

In this section we describe how to preprocess 7T'. First build a cluster partition CS of
the tree T with clusters of size s, to be fixed later, and the corresponding macro tree
M in O(nr) time. The macro tree is preprocessed as in Section 4.1. However, since
nodes in M contain a set of labels, we now store a dictionary for label(v) for each
node v € V(M). Using the deterministic dictionary of Hagerup et al. [2001] all these
dictionaries can be constructed in O(nr logny) time and O(nr) space. Furthermore, we
extend the definition of fl such that fly;(v, «) is the nearest ancestor w of v such that
a € label(w).

Next we show how to preprocess the micro forests. For any cluster C € CS, deep sets
XY, ZCV(C),ieN,and « € T define the following procedures.

S1ZE(X): Return the number of nodes in X.
LEFT(Z, X): Return the leftmost i nodes in X.
RIGHT(Z, X): Return the rightmost i nodes in X.

LEFTOF(X, Y): Return all nodes of X to the left of the leftmost nodein Y.

RIGHTOF(X, Y): Return all nodes of X to the right of the rightmost node in Y.

MATCH(X, Y, Z), where X = {m<---<mp}, Y = {v1<--- <}, and Z € Y. Return
R = {mj | Vj € Z}

MoP(X,Y) Return the pair (R;, Re), where R; = mop(XY)|; and Ry =
mop(X, Y)|s.

If we want to specify that a procedure applies to a certain cluster C we add the subscript
C. In addition to these procedures we also define the set procedures on clusters, that
is, PARENT, NCA, DEEP, and FL, as in Section 3. Collectively, we will call these the cluster
procedures. We represent the input and output sets in the procedures as bit strings
indexed by preorder numbers. Specifically, a subset X in a cluster C is given by a bit
string b; ... bs, such that ; = 1 iff the ith node in a preorder traversal of C is in X. If C
contains fewer than s nodes we set the remaining bits to 0.

The procedure size(X) is the number of ones in the bit string. The procedure LEFT(, X)
corresponds to setting all bits in X larger than the ith set bit to zero. Similarly,
RIGHT(Z, X) corresponds to setting all bits smaller than the ith largest set bit to zero.
Similarly, the procedures LEFTOF(X, Y), RIcHTOF(X, Y), MOoP(X, Y), and MATCH(X, Y, Z) only
depend on the preorder of the nodes and thus only on the bit string and not any other
information about the cluster.

Next we show how to implement the cluster procedures efficiently. We precompute
the value of all procedures, except FL, for all possible inputs and clusters. By definition,
these procedures do not depend on any specific labeling of the nodes in the cluster.
Hence, it suffices to precompute the value for all rooted, ordered trees with at most
s nodes. The total number of these is less than 2% (consider, e.g., an encoding using
balanced parenthesis). Furthermore, the number of possible input sets is at most 2°.
Since at most 3 sets are given as input to a cluster procedure, it follows that we can
tabulate all solutions using less than 2% . 225 = 25 bits of memory. Hence, choosing
s < 1/10logn we use O(221gn) — O(/n) bits. Using standard bitwise operations each
solution is easily implemented in O(s) time giving a total time of O(\/nlogn).

Since the procedure FL depends on the alphabet, which may be of size ny, we cannot
efficiently apply the same trick as before. Instead define for any cluster C € CS,
XCV(C),andua € X:

ANCESTOR(X): Return the set {x | x is an ancestor of a node in X}.
EQc(a): Return the set {x | x € V(C), label(x) = «}.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:28 P. Bille and I. L. Gortz

Clearly, ANCESTOR can be implemented as done earlier. For EQc note that the total
number of distinct labels in C is at most s. Hence, EQc can be stored in a dictionary
with at most s entries each of which is a bit string of length s. Thus, (using again
the result of Hagerup et al. [2001]) the total time to build all such dictionaries is
O(nr logny).

By the definition of FL we have that

FLc(X, o) = DEEPC(ANCESTORC(X) N EQe()).

Since intersection can be implemented using a binary and-operation, FL¢(X, @) can be
computed in constant time. Later, we will also need to compute union of sets represented
as bit strings and we note that this can be done using a binary or-operation.

To implement the set procedures in the following section we often need to “restrict”
the cluster procedures to work on a subtree of a cluster. Specifically, for any set of
macro nodes {ii,...,i;} in the same cluster C (hence, £ < 5), we will replace the
subscript C with C(i;,...,iz). For instance, PARENTC(s(v.w).100.w)(X) = {parent(x) | x €
XN V(C(s(v, w), (v, w)} N V(C(s(v, w), (v, w)). To implement all restricted versions of
the cluster procedures, we compute for each cluster C € CS a bit string representing
the set of nodes in each micro forest. Clearly, this can be done in O(ny) time. Since
there are at most 5 micro forests in each cluster it follows that we can compute any
restricted version using an additional constant number of and-operations.

Note that the total preprocessing time and space is dominated by the construction of
deterministic dictionaries which use O(nr logny) time and O(nr) space.

5.3. Implementation of the Set Procedures

Using the preprocessing from the previous section we show how to implement the set
procedures in sublinear time. First we define a compact representation of node sets. Let
T be a tree with macro tree M. For simplicity, we identify nodes in M with a number
almost equal to their preorder number, which we denote their macro tree number: All
nodes nodes except spine and left nodes are identified with their preorder number.
Spine nodes are identified with their preorder number +1 if they have a left node as a
child and with their preorder number otherwise, and left nodes are identified with their
preorder number —1. Hence, we swap the order of left and spine nodes in the macro
tree numbering. We will explain the reason for using macro tree numbers shortly. Note
that the macro tree numbers are the same as the preorder numbers would be if we had
let I(v, w) and r(v, w) be children of v instead of children of s(v, w) in the definition of
the macro tree.

Let S € V(T') be any subset of nodes of T'. A micro-macro node array (abbreviated
node array) X representing S is an array of size ny. The ith entry, denoted X[i],
represents the subset of nodes in C(2), that is, X[i] = V(C({))NS. The set X[i]is encoded
using the same bit representation as in Section 5.2. By our choice of parameter in the
clustering the space used for this representation is O(ny/lognr).

We can now explain the reason for using macro tree numbers to identify the nodes
instead of preorder numbers. Consider a node array representing a deep set. If a left
node and the corresponding spine node are both nonempty, then all nodes in the left
node are to the left of the node in the spine node. Formally, we have the next proposition.

ProposiTioN 5.5. Consider a node array X representing a deep set X. For any pair of
nodes v, w € X, such that v e X[iland w € X[j], i # j, we have

v<dw &1 < .

Proor. By Proposition 5.3(v) the claim is true for i <j. The remaining cases are
i =10, w) and j = s(v/, w’) (Proposition 5.3 (iii)) and { = s(v', w’) and j = r(v/, w’)

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:29

(Proposition 5.3(iv)). In both cases i < j and it follows immediately that v<w =i < J.
For the other direction, it follows from the structure of the macro tree that in both cases
either v <w or w < v. But X is deep and thus v<w. O

Thus, by using macro tree numbers we encounter the nodes in X according to their
preorder number in the original tree T'. This simplifies the implementation of all the
procedures except DEEP, since they all get deep sets as input.

We now present the detailed implementation of the set procedures on node arrays. As
in Section 4 we assume that the input to all of the procedures, except DEEP, represent
a deep set. Let X be a node array.

Implementation of PARENT. Procedure PARENT takes a node array X representing a
deep set as input.

Procedure PARENT(X)

Initialize an empty node array R of size ny; (R[i] ;=@ fori =1,...ny) and seti := 1.
while i < ny do

1
2
3 while X[i]=0doi: =i+ 1.
4 There are three cases depending on the type of i:
5 case 1.1 € {{(v, w), r(v, w)}
6 Compute N = PARENTC(i.S(U,w)’U)(X[i]).
7 foreach j < {i, s(v, w), v} do
8 | RLjl:=RI[jIUNNVC).
9 end
10
11 case 2.1 = [(v)
12 Compute N := PARENT((;, ,(X[Z]).
13 foreach j < {i, v} do
14 | RLjl:=RI[jIUNNVC).
15 end
16
17 case 3.1 ¢ {{(v, w), r(v, w),l(v)}
18 Compute N := PARENT¢(;)(X[Z]).
19 if N # ¢ then
20 | set R[i]:= R[JUN.
21 else if j := parent, (i) # L then
22 | set R[j]1:= RI[j]U {first(;)}.
23 end
24 Seti:=1i+1.
25 end
26 Return R.

Procedure PARENT has three cases. Case 1 handles the fact that left or right nodes
may have a node on a spine or the top boundary node as parent. Since no left or right
nodes can have their parent outside their cluster there is no need to compute parents
in the macro tree. Case 2 handles the fact that a leaf node may have the boundary
node as parent. Since no leaf node can have its parent outside its cluster there is no
need to compute parents in the macro tree. Case 3 handles boundary and spine nodes.
In this case there is either a parent within the micro forest or we can use the macro
tree to compute the parent of the root of the micro tree. Since the input to PARENT is
deep we only need to do one of the two things. If the computation of parent in the micro
tree returns a nonempty set, this set is added to the output (line 18). Otherwise (the
returned set is empty), we compute parent of i in the macro tree (line 19). If the
computation of parent in the macro tree returns a node j, this will either be a spine

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:30 P. Bille and I. L. Gortz

node or a boundary node. To take care of the case where j is a spine node, we add the
lowest node (first(j)) in j to the output (line 20). If j is a boundary node this is just j
itself.

Implementation of Nca. We now give the implementation of procedure Nca. The
input to procedure NcaA is two node arrays X and Y representing two subsets
X,Y € V(T), |X| = |Y| = k. The output is a node array R representing the set
Deer({nca(X;,);) | 1 < i < k}), where &; and); is the ith element of X and
Y, with respect to their preorder number in the tree, respectively. We also as-
sume that we have X; <); for all i (since Nca is always called on a set of mini-
mum ordered pairs). Note, that X; and), can belong to different clusters/nodes in
the macro tree, that is, we might have A} € X[i] and); € YI[j] where i # j.

Procedure Nca(X)Y)

Initialize an empty node array R of size nys, seti := 1 and j := 1.
while i < ny and j < ny do

1
2
3 while X[i]=0doi:=i+ 1.
4 while Y[jl=0do j:=j+ 1.
5 Set n := min(size(X[i]), size(Y [1)), X; := LEFT(n, X[i]), and Y := LEFT(n, Y[j]).
6 Compare i and j. There are two cases:
7 casel.i = .
8 Set
S C@,v), ifi =1(v),
T CG, s(v, w), v), ifi e {{(v, w), r(v, w)}.
9 Compute N := Ncag(X;, Y;).
10 foreach macro node h = c(s) where s € V(S) do
11 | set R[A] := R[A]U (N NV (C(h))).
12 end
13
14 case 2.1 # j.
15 Compute A := Ncay(Z, j). There are two subcases:
16 case (a) his a boundary node
17 | Set R[A]:=1.
18 case (b) & is a spine node s(v, w)
19 There are three subcases:
20 casei.i € {{(v, w), s(v, w)} and j € {s(v, w), r(v, w)}
21 ‘ Compute N = NCAC(i‘j.s(U,w),U)()(is Y])
22
23 caseii.i =Il(v,w)and w < J
24 | Compute N := NCAC(,s(v,u).0,)(RIGHT(1, X;), w).
25 caseiii. j =r(v,w)and w < i
26 | Compute N := NCAC(;j,s(v,u).w,0)(w, LEFT(1, Y})).
27
28 Set R[A] := R[R]U (N NV(C(h))) and R[v] := R[v]U NN NV (CW))).
29
30 Set X[i]:= X[[]1\ X; and Y[j] :=Y[j]I\ Y;.
31 end

32 Return DEeP(R).

In the main loop of procedure Nca (line 2-27) we first find the next nonempty en-
tries in the node arrays X[i] and Y[j] (line 3 and 4). We then compare the sizes
of X[i] and Y[;] and construct two sets of equal sizes X; and Y; consisting of the
min(size(X[i]), size(Y [j])) leftmost nodes from X[i] and Y[;] (line 5). In Section 5.4 we

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:31

prove the following invariant on X; and Y.
LEFT(1, X;) = &} and LEFI(1, Y;) =) for some [.

The procedure has two main cases.

—Ifi = j (Case 1), then i is either a leaf, left, or right node due to the invariant and
the assumption on the input that &} <) (for a formal proof see Section 5.4). If i is a
leaf node the nearest common ancestors of all pairs in X; and Y; are in the leaf node
or the boundary node. If i is a left or right node the nearest common ancestors of all
the pairs are in 7, on the spine, or in the top boundary node. In line 9 we compute
NcaA in the appropriate cluster depending on the type of i.

—If i # j (Case 2), we first compute the nearest common ancestor 4 of i and j in
the macro tree (line 14). Due to the structure of the macro tree 4 is either a spine
node or a boundary node (left, right, and leaf nodes have no descendants). If 4 is a
boundary node all pairs in X; and Y; have the same nearest common ancestor, namely
h (Case 2(a)). If h is a spine node there are three cases depending on the types of i
and j.

In Case 2(b)(i), we have i = I(v, w) and j € {s(v, w), r(v, w)} (see Figure 8(d) and
(f), ori = s(v, w) and j = r(v, w) (see Figure 8(e)). In this case we compute Nca
in the cluster containing i, j, s(v, w), v.

In Case 2(b)(ii), i is a left node /(v, w) and j is a (not necessarily proper) descendant
of w (see Figure 8(g)). In this case we compute Nca on the rightmost node in X;
and w in the cluster containing i, v, w, s(v, w). We can restrict the computation
to RIGHT(1, X;) because we always run DEEP on the output from Nca before using
it in any other computation and all nearest common ancestors of the pairs in
X; and Y; will be on the spine, and the deepest one will be the nearest common
ancestor of the rightmost nodes in X; and Y; (see Section 5.4 for a formal proof).

Case 2(b)(iii) is similar to Case 2(b)(ii).

In the end of the iteration we have computed the nearest common ancestors of all the
pairs in X; and Y; and the nodes from these pairs are removed from X[i] and Y[;].

Implementation of DEEP. The implementation of DEEP resembles the previous imple-
mentation, but takes advantage of the fact that the input list is in macro tree order.

The procedure DEEP has three cases. In case 1 node i is to the right of our “potential
output node” j. Since any node [/ that is a descendant of j must be to the left of i (I < i)
it cannot appear later in the list X than i. We can thus safely add peeps(X]j]) to R at
this point. To ensure that the cluster we compute DEEP on is a tree we include the top
boundary node if j is a leaf node and the top and spine node if j is a left or right node.
We add the result to R and set i to be our new potential output node.

In case 2 node j is an ancestor of i and therefore no node from C(j) can be in the
output list unless j is a spine node and i is the corresponding right node. If this is
the case we compute DEEP of X[j] and X[i] in the cluster containing i and j and add
the result for j to the output and set i to be our new potential output node.

In case 3 node i is an ancestor of j. This can only happen if j is a left node and i the
corresponding spine node. We compute DEEP of X[j] and X[i] in the cluster containing
i and j and add the result for j to the output. We restrict X[i] to the nodes both in X[i]
and the result N of the DEEP computation, and let i be our potential output node. The
results for X[i] cannot be added directly to the input since there might be nodes later
in the input that are descendants of i. Since a left node has no children we can safely
add the result for j to the output.

After iterating through the whole node array X we add the last potential node j to
the output after computing DEEP of it as in Case 1.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:32 P. Bille and I. L. Gortz

Procedure DEEpP(X)

1 Initialize an empty node array R of size ny,.

2 Find the smallest j such that X[;] # @. If no such j exists stop. Seti := j + 1.
3 while i < n; do

4 while X[i]=0doi:=i+ 1.

5

6

7

Compare j and i. There are three cases:
case 1. j <i.
Set
C(j,v), if j = 1(v),
S :=1C(,s(v,w),v), ifje{llv,w),rl, w),
C(y), otherwise.
8 Set R[j] := pEEPs(XIj]).
9 case 2. j < i.
10 if j =s(v,w)and i =r(v, w) then
11 ComPUte N = DEEPC(r(v‘u,'),s(v.w)‘v)(X[i]) X[J])
12 Set R[j1:= X[jINN.
13 end
14 case 3.1 < j (can happen if i = s(v, w) and j = I(v, w)).
15 Compute N := DEEPc((y,v),s.w)0)(X[E] U X[j1).
16 Set R[j]:= X[j1N N, X[i]:= X[i1N N.
17 Set j:=iandi: =i+ 1.
18 end
19 Set R[j]:= pEEPg(X[j]), where S is set as in Case 1.
20 Return R.

Implementation of MopPRIGHT. We now give the implementation of procedure
MoprRicHT. Procedure MoPRIGHT takes a pair of node arrays (X, Y) and another node
array Z as input. The pair (X, Y) represents a set of minimum ordered pairs, where the
first coordinates are in X and the second coordinates are in Y. To simplify the imple-
mentation of procedure MopPRIGHT it calls two auxiliary procedures MorSim and MATcH
defined shortly. Procedure MopPSiM computes mop of Y and Z, and procedure MarcH
computes the first coordinates from X corresponding to the first coordinates from the
minimum ordered pairs of Y and Z computed by MorSim.

Procedure MorRicHT((X)Y),Z)
1 Compute M := MoprSmm(Y, Z).
2 Compute R := Marcu(X, Y, M|,).
3 Return (R, M]|,).

Procedure MorSiv takes two node arrays as input and computes mop of these.

Procedure MoprSim is somewhat similar to the previous implementation of the proce-
dure MopPRIGHT from Section 4.2. As in the previous implementation we have a “poten-
tial pair” ((r1, re), (s1, Ss2)), where r; and s; are macro nodes, ro € X[r1], so € Y[s1], where
rg = {rt<... <rk} and sy = {s! < --- <s*} such that r! <s for I = 1, ... k. Furthermore,
for any [there exists no node y € Y[j], for j < s, such that ’ <y <is’ and no node
x € X[i], for i < rq, such that r! <x <st.

We have the following invariant at the beginning of each iteration.

#x € X[i], such that x < x’, for any x’ € ry (8)

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster

38:33

Procedure MorSmM(X)Y')
1 Initialize two empty node arrays R and S of size ny,.
2 Seti:=1,j:=1, @, re) :=(0,0), (s1,s) := (0, D).
3 repeat
4 while X[i]| =@ do seti:=i+ 1.
5 There are four cases:
6 case L. i = [(v, w) for some v, w.
7 | Until Y[j]# 0 and eitheri<j,i = j, or j =s(v, w) do set j := j+ 1.
8 case IL. i = s(v, w) for some v, w.
9 | Until Y[j]# ¢ and either i <j or j =r(v, w) do set j := j + 1.
10 case IIlL. i € {r(v, w), [(v)} for some v, w.
11 | Until Y[j]# ¢ and eitheri<\j ori = j doset j :=j+1.
12 case IV.i is a boundary node.
13 | Until Y[j]l# ¢ andi<jdosetj:=j+1.
14
15 Compare i and j. There are two cases:
16 case 1.1 <.
17 if s; < j then
18 | set Rlri]:= Rlri]lUry, Sls1] := Sls1]1U sy, and (s1, s2) := (j, LEFTc(;(1, Y[j])).
19 end
20 Set (r1, r2) := (i, RIGHT¢((1, X[i])) and i =i + 1.
21
22 otherwise // case 2.
23 Compute (7, s) := MOP((; j,,»(X[i], Y[j]), where v is the top boundary node in the
cluster i and j belong to.
24 if r # ¢ then
25 if 51 < _] orifs; = J and LEFTOFC(L‘J)(X[I:], s9) = () then
26 | set Rlri]:= Rlri1Ury, Sls;]:= S[s1]1Us;.
27 end
28 Set (r1,re) := (i,r) and (s, s2) := (J, 9).
29 end
30 There are two subcases:
31 case (a)i = j,ori =I(v,w) and j = s(v, w).
32 \ Set X[i] := RIGHT¢;)(1, RIGHTOF¢(;)(X[i],r)) and j := j + 1.
33 case (b) i =s(v,w)and j =r(v, w).
34 | ifr =@ thensetj:=j+1lelseseti:=j.
35
36 endsw

37 until i > ny or j > nyy;
38 Set R[r1] := R[r;]Urs and S[s;] := S[s1] U ss.
39 Return (R, S).

We first find the next nonempty macro node i. We then have 4 cases depending on

which kind of node i is.

In Case I, i is a left node. Due to Proposition 5.3 we can have mop in i (case (i),
see Figure 8(b)), in the spine (case (iii), see Figure 8(d)), or in a node to the right of i

(case(v)).

In Case II, i is a spine node. Due to Proposition 5.3 we can have mop in the right

node (case (iv), see Figure 8(e)) or in a node to the right of i (case(v)).

In Case III, i is a right node or a leaf node. Due to Proposition 5.3 we can have mop

in i (case (i) and (ii), see Figure 8(b)—(c)) or in a node to the right of i (case(v)).

In Case IV, i must be a boundary node and mop must be in a node to the right

of i.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:34 P. Bille and I. L. Gortz

We then compare i and j. The case where i <1 is similar to the previous implemen-
tation of the procedure. We compare j with our potential pair (line 16). If s; < j then
s1 <J since the input is deep, and we can insert 5 and sy into our output node arrays
R and S, respectively. We also set s; to j and sy to the leftmost node in Y[j] (if s = j
we already have (s1, s2) = (J, LEFT¢(j)(1, Y[j]))). Then—both if s; <j or s = j—we set
r1 to i and ry to the rightmost node in X[i] (line 19). That we only need the rightmost
node in X[i] and the leftmost node in Y[] follows from the definition of mop and the
structure of the macro tree.

Case 2 (i 41 j)is more complicated. In this case we first compute mop in the cluster ;
and j belong to (line 21). If this results in any minimum ordered pairs (r #) we must
update our potential pair (line 22—-27). Otherwise we leave the potential pair as it is
and only update i and j. If r #) we compare s; and j (line 23). As in Case 1 of the
procedure we add our potential pair to the output and update the potential pair with r
and sifs; < j, since this implies s; < j. If s; = j and no nodes in X[i] are to the left of the
leftmost node in s we also add the potential pair to the output and update it. We show
in the next section that in this case |sz| = 1. Therefore we can safely add the potential
pair to the output. In all other cases the pair (r, s) # (4, ¥#) shows a contradiction to our
potential pair and we update the potential pair without adding anything to the output.

Finally, in Case 2, we update X[i],7, and j (line 28-32). There are two cases depending
on i and j. In Case (a) either i = j or i is a left node and j is the corresponding spine
node. In both cases we can have nodes in X[i] that are not to the left of any node in
Y[j]. These nodes could be in a minimum ordered pair with nodes from another macro
node. We show in the next section that this can only be true for the rightmost node in
X[i]. X[i] is updated accordingly. After this update all nodes in Y[j] are to the left of
all nodes in X[i] in the next iteration and therefore j is incremented. In Case (b) i is a
spine node and j is the corresponding right node. Since the input lists are deep, there
is only one node in X[i]. If r = @ then no node in Y[j] is to the right of the single node
in X[i]. Since the input arrays are deep, no node later in the array X can be to the left
of any node in Y[j] and we therefore increment j. If r # ¢ then (r1,r2) = (i, X[i]) and
we update i. Instead of incrementing i by one we set i := j, this is correct since all
macro nodes with macro node number between i and j are descendants of i, and thus
contains no nodes from X, since X is deep.

When reaching the end of one of the arrays we add our potential pair to the output
and return (line 35-36).

As in Section 4.2 we can implement MoPLEFT similarly to MoPRIGHT.

Recall that proceudre MoprRiGHT calls MatcH to find the first coordinates from X
corresponding to the first coordinates from the minimum ordered pairs computed by
MopSmm. Procedure MatcH takes three node arrays X, Y, and Y’ representing deep sets
X,Y,and), where |X| = |)|,and)’ C). The output is a node array representing the
set {XJ‘ | yj € y/}

Procedure MatcH proceeds as follows. First we find the first nonempty entries in the
two node arrays X[i] and Y[j] (line 4-5). We then compare Y[j] and Y’[j] (line 7).

If they are equal we keep all nodes in X with the same rank as the nodes in Y[;]
(case 1). We do this by splitting into three cases. If there are the same number of nodes
X[i]and Y[j] we add all nodes in X[i] to the output and increment i and j (case 1(a)).
If there are more nodes in Y[j] than in X[i] we add all nodes in X[i] to the output and
update Y[j] and Y’[j] to contain only the y — x leftmost nodes in Y[;] (case 1(b)). We
then increment i and iterate. If there are more nodes in X[i] than in Y[j] we add the
first y nodes in X[i] to the output, increment j, and update X[i] to contain only the
nodes we did not add to the output (case 1(c)).

IfY[j]+# Y'[j] we call the cluster procedure MATCH (case 2). Again we split into three
cases depending on the number of nodes in X[i] and Y[j]. If they have the same number

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:35

of nodes we can just call maTcH on X[i], Y[/j], and Y’[j] and increment i and j (case
2(a)). If size(Y [j]) > s1ize(X[i]) we call match with X[i] the leftmost size(X[i]) nodes of
Y[j] and with the part of Y'[j] that are a subset of these leftmost size(X[i]) nodes of
Y[j] (case 2(b)). We then update Y[j] and Y'[j] to contain only the nodes we did not
use in the call to MaTcH and increment i. If size(Y[j]) < size(X[i]) we call MmATCH with
the leftmost size(Y'[j]) nodes of X[i], Y[j], and Y'[j] (case 2(c)). We then update X[i] to
contain only the nodes we did not use in the call to MmaTCcH and increment j.

Procedure MaTca(X)Y,Y')

1 Initialize an empty node array R of size ny,.

2 Set Xy, :=0,Y,:=0,Y, =0,x:=0,y:=0,i:=1and j :=1.
3 repeat

4 while X[i] =0 doseti:=i+ 1.

5 while Y[j]=0doset j:=j+ 1.
6

7

8

Set x := size(X[i]) and y := size(Y[j]).
Compare Y[j] and Y'[]. There are two cases:
case 1.Y[j1=Y'[/]

9 Compare x and y. There are three subcases:
10 case (a) x = y.
11 | Set R[i]:=REIUX[i],i:=i+1,and j:=j+1
12
13 case (b) x < y.
14 | Set Rli1:= R[]UXI[i], Y[jl:=ricuT(y —x,Y[jD, Y'[jl:=Y[jl,and i :=i + 1.
15
16 case (c) x > y.
17 | Set Xy :=vLerr(y, X[i]), Rli] := R[]V X, X[i] := X[i]1\ Xz, and j := j + 1.
18
19 case 2. Y[jl1 #Y'[/]
20 Compare x and y. There are three subcases:
21 case (a) x = y.
22 | Set R[i]:= R]UMaTcH(X[I], Y[, Y'[jD,i:=i+1,and j:=j+ 1
23
24 case (b) x < y.
25 Set Y7, := LEFN(x, Y[j]), Y] :=Y'[j1N Yy, Ri] := R[I]U MatcB(X[i], Y1, Y]),
26 Y[jl:=Y[jI\YL, Y'[jl:=Y'[jI\Y;,and i :=i + 1.
27
28 case (¢) x > y.
29 Set X;, := LEF1(y, X[i]), Rli] := R[i1UMmarcu(Xz, Y71, Y'[j]),
30 X[i]l:= X[i]1\ Xz, and j := j + 1.
31
32
33 untili > ny or j > nyy;
34 Return R.

Implementation of FL. Procedure FL takes as input a node array X representing a
deep set and a label «.

The FL procedure is similar to PARENT. The cases 1, 2 and 3 compute FL on a micro
forest. If the result is within the micro tree we add it to R and otherwise we store in
a node list L the node in the macro tree which contains the parent of the root of the
micro forest. Since we always call DEEP on the output from FL(X, @) there is no need to
compute FL in the macro tree if N is nonempty. We then compute FL in the macro tree
on the list L, store the results in a list S, and use this to compute the final result.

Consider the cases of procedure FL. In case 11 is a left or right node. Due to Proposi-
tion 5.2 case (i) and (ii) fl of a node in i can be in i or on the spine or in the top boundary

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:36 P. Bille and I. L. Gortz

node. If this is not the case it can be found by a computation of FL of the parent of the
top boundary node of i’s cluster in the macro tree (Proposition 5.2 case (iii)). In case 2 i
is a leaf node. Then fl of a node in i must either be in i, in the top boundary node, or can
be found by a computation of FL of the parent of the top boundary node of i’s cluster in
the macro tree. If i is a spine node or a boundary node (case 3), then fl of a node in i is
either in i or can be found by a computation of FL of the parent of i in the macro tree.

Procedure FL(X, «)

1 q Initialize an empty node array R of size ny and two node lists L and S.
2 repeat
3 while X[i] =0 doseti:=i+ 1.
4 There are three cases depending on the type of i:
5 case 1.1 € {{(v, w), r(v, w)}
6 Compute N = FLC(i.s(v.w),u)(X[iL a).
7 if N # () then
8 | foreach j e {i, s(v, w), v} do set R[j]l = R[j1U (N N V(C())).
9 else set L := L o parent,,(v).
10 case 2.1 =I(v)
11 Compute N = FLC(i_U)(X[i], O[).
12 if N # ¢ then
13 | foreach j € {i, v} do set R[j]:= R[j1U (N NV(C())).
14 else set L := L o parent,,(v).
15 case 3.1 ¢ {{(v, w), r(v, w), [(v)}
16 Compute N := FL¢)(X[i], @).
17 if N # () then
18 | set R[i]:= R[I]JUN.
19 else set L := Lo parent;, (7).
20

21 until i > ny;

22 Compute the list S := rLy(L, o).

23 foreach node i € S do set R[i] := R[] U FL¢()(first(@),).
24 Return DEeep(R).

5.4. Correctness of the Set Procedures
The following lemmas show that the set procedures are correctly implemented.

LeEmMA 5.6. Procedure PARENT is correctly implemented.

Proor. We will prove that in iteration i the procedure correctly computes the parents
of all nodes in the macro node i. There are four cases depending on the type of i.

—Consider the case i € {{(v, w), r(v, w)}, that is, i is a left or right node. For all nodes x
in C(i), parent(x) is either in C(i), on the spine s(v, w), or is the top boundary node
v. The parents of all input nodes in C(i) is thus in N computed in Case 1 in the
procedure. The last line in Case 1 (“For each j € {i, s(v, w), v}, ...”) adds the set of
parents to the appropriate macro node in the output array.

—If i is a leaf node /(v) then for any node x € C(i), parent(x) is either in C(i) or is the
boundary node v. The parents of all input nodes in C(i) is thus in N computed in
Case 2 in the procedure. The last line in Case 2 (“For each j € {i, v}, ...”) adds the set
of parents to the appropriate macro node in the output array.

—Ifi is a spine node s(v, w) then the input contains at most one node in C(i), since the
input to the procedure is deep. For any x € C(i), parent(x) is either a node on the
spine or the top boundary node v. This is handled by Case 3 in the procedure. Let x be
the node in X[i]. If parent(x) = v, then N = ¢, and we compute j, which is the parent

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:37

v of f in the macro tree, and add j to the output array (since j = v is a boundary node
first(j) = v). If parent(x) is another node y on the spine, then N = {y} # @ and y is
added to the output array.

—If i is a boundary node v, then parent(v) is either another boundary node v’, the
bottom node on a spine, or L if v is the root. This is handled by Case 3 in the
procedure. In all three cases N = and we compute the parent j of i in the macro
tree. If i is the root, then j = 1 and we do nothing. Otherwise, we add first(j) to the
output. If parent(v) is a boundary node then first(j) = j. If j is a spine node then
first(j) is the bottom node on j.

In each iteration of the procedure we might add nodes to the output, but we never
delete anything written to the output in earlier iterations. Procedure PARENT thus
correctly computes the parents of all nodes in X. O

Before proving the correctness of procedure Nca we will prove the following invariant
on the variables X; and Y; in the procedure.

Lemma 5.7. In procedure Nca we have the following invariant of X; and Y;:
LEFT(1, X;) = &} and LEFT(1,Y;) =) for some [.

Proor. The proof is by induction on the number of iterations of the outer loop. After
the while loop on X in the first iteration (line 3), i is the smallest integer such that
X[i]l # 0. Due to the macro tree order of the array X, X[i] contains the first nodes
from X with respect to the preorder of the original tree (Proposition 5.5). Similarly,
Y[j] contains the leftmost node in). The invariant now follows immediately from the
assignment of X; and Y;.

For the induction step consider iteration m and let i’ and ;' be the values of
i and j after the while loops in the previous iteration, that is, after line 4. By
the induction hypothesis LEFI(1, X;) = A; and LEFT(1,Y;) =) for some . Let n’ =
min(size(X[i']), size(Y'[j'])). Then X; contains &}, ..., Aj4y and Y contains Y, ..., Viyw.
We will show that LEFT(1, X;) = A}, 41. In the end of the previous iteration we removed
X; from X[i’] (line 26). There are two cases depending on wether X[i'] is empty or not
at the beginning of iteration m.

—If X[i’] # @ then it clearly contains A}, ;1 as its leftmost node. Since a spine node
can only contain one node from X, i’ cannot be a spine node. Thus i = i/, when we
get to line 5 in the current iteration It follows that LEFT(1, X;) = Aj1vy1.

—X[i'] = @. It follows from the macro tree order of X that X[i] contains A}, .1 as its
leftmost node.

It follows by a similar argument that LEFT(1, Y;) = Vi4pi1. O

LEmMA 5.8. Let X and Y be two node arrays representing the deep sets X and),
|X| = |Y| =k, and let X; and)); denote the ith element of X and Y, with respect to their
preorder number in the tree, respectively. For alli =1, ..., k, assume X; <));. Procedure
Nca(X, Y) correctly computes DEEP({nca(X;, V;)|1 <i < k}).

Proor. We are now ready to show that the procedure correctly takes care of all
possible cases from Proposition 5.4. The proof is split into two parts. First we will
argue that some of the cases from the proposition cannot occur during an iteration of
the outer loop of Nca. Afterwards we prove that the procedure takes care of all the
cases that can occur.

Case (iii) cannot happen since if i = j is a spine node then Aj is either a descendant
or an ancestor of)) contradicting the assumption on the input that X; <)). Case (vi)
can only happen ifi # j: Ifi = j and we are in case (vi) then i = j is a boundary node,

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:38 P. Bille and I. L. Gortz

and this would imply that C(i) only consists of one node, that is, X = X[i1=Y[jl1=),
contradicting the assumption on the input that A; <));. Due to this assumption on the
input we also have that in case (iv) of the proposition i is either a left node or a spine
node and j is a spine node or a right node. For case (v) either i is a left node and j is
a descendant of the bottom boundary node of i’s cluster or j is a right node and i is a
descendant of the bottom boundary node of j’s cluster. All the other cases from case (v)
would contradict the assumption that X; <)).

The procedure first constructs two sets X; and Y; containing the elements &A;, ..., Aj4,
and), ..., V. for some [, respectively, where n = min(size(X[i]), size(Y [j1)). The pro-
cedure Nca has two main cases depending on whether i = j or not. Case 1 i = j) takes
care of cases (i)—(ii) from Proposition 5.4. Case 2 (i # j) takes care of the remaining
cases from Proposition 5.4 (iv)—(vi) that can occur.

First consider Case 1. We compute nearest common ancestors N of the n nodes in X;
and Y; in a cluster S depending on what kind of node i is. We need to show that Case
1 handles Case (i) and (ii) from the Proposition correctly.

Case (i). i = j is a leaf node. By the Proposition the nearest common ancestors of the
pairs in (A7, Y)), ..., (Xijn, Vitn) from X; and Y is either in ¢(i) or in the boundary node,
that is, in C(, v).

Case (i1). i = jis aleft or right node. By the Proposition the nearest common ancestors
of the pairs in {(X},), ..., (Xi4n, Vitn)} from X; and Y is either in ¢(i), on the spine, or
in the top boundary node, that is, in C(Z, s(v, w), v).

Thus S is correctly set in both cases. After the computation of N in line 9 the output is
then added to the entries in the output array R for each of the macro nodes belonging
to nodes in V(S) (line 10-12). Case 1 thus handles Case (i)-(ii) (and only these two
cases) from Proposition 5.4.

Next consider Case 2 (i # j). We first compute the nearest common ancestor A of i
and j in the macro tree. The macro node 4 is either a boundary node or a spine node
due to the structure of the macro tree (see also Proposition 5.4). We will show that
Case 2 takes care of the remaining cases.

Case (iv). From the previous discussion it follows that we have one of the three
following cases. i = [(v, w) and j = s(v, w), i =I(v, w) and j = r(v, w), or i = s(v, w) and
J =r(v, w). All three cases are handled in Case 2(b)(i) of the procedure. It follows from
the proposition that Nca is computed in the correct cluster.

Case (v). It follows from the discussion preceding that either i = [(v, w) and w < j,
or j = r(v,w) and w < i. These two cases are handled by Case 2(b)(ii) and 2(b)(iii)
of the procedure. It follows from the Proposition that Nca is computed in the correct
cluster. We need to argue that we can restrict the computation of Nca to the pair
(ricHT(1, X;), w) instead of computing Nca for all nodes in {A, ..., X.,}. Consider the
case where i = I(v, w) and w =< j (Case 2(b)(ii) of the procedure). Since w <), for
allr =1,...1 +n,and X;<X;,1<... <X, then nca(X,,),) < nca(X,,, Viin) for all
r =1,...l+n. Thus we do not need to compute nca(X,,),) for r # n+1, since the output
of the procedure is DEEP({nca(X;, V;)|1 <i < k}). A similar argument shows that we can
restrict the computation to (w, LEFT(1, Y;)) in Case 2(b)(iii).

Case (vi). It follows from the preceding discussion and the proposition that i # j and
i and j are in different clusters, and we are not in any of the cases from (iv) and (v).
Thus A must be a boundary node and all the pairs {(A7,))), ..., (Xin, Viin)} have the
same nearest common ancestor, namely 4. This is handled by Case 2(a).

We have now argued that the procedure correctly takes care of all possible cases
from Proposition 5.4. It remains to show that all pairs from {nca(X;,);)|1 <i < k} are
considered during the computation. It follows from the invariant that we only consider

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:39

pairs from the input. In the last lines we remove the nodes from the input that we have
computed the ncas of in this iteration. It follows from the proof of the invariant that no
entry in the input arrays is left nonempty. Thus all pairs are taken care of. O

To prove that procedure DEEP is correctly implemented we will use the following fact
about preorder and postorder numbers in the macro tree.

ProrosiTioN 5.9. Let i and j be nodes in the macro tree identified by their macro tree
number such that i < j. For all x € C(@),y € C(j) we have:

(1) pre(x) < pre(y) unlessi =Il(v, w) and j = s(v, w).
(2) post(y) > post(x) unlessi = s(v, w) and j =r(v, w).

ProposiTioN 5.10. Let x1, ..., x, be nodes from the macro tree associated with their
macro tree number such that x1 < xz < --- < x,. If x; <x; for some i and j then x; <xp
for all x;, > x;.

Proor. From x; <lx; we have pre(x;) < pre(x;) and post(x;) < post(x;). Since x; > x;
we have pre(x;) < pre(x;) unless xx = s(v, w) and x; = [(v, w). In that case, pre(x;)+1 =
pre(x;) > pre(x;). Since x; <x; we have x; # x; and thus pre(x;) > pre(x;).

It remains to show that post(x;) < post(x;). Assume for the sake of contradiction that
post(xz) < post(x;) < post(x;). This implies x; < xz and x; < x; contradicting x; <x;. O

We will first prove the following invariants on i and j in procedure DEEP.

LemMa 5.11. In line 5 of procedure DEEP we have the following invariant on i and j:
For all l such that j <l < i we have X[I] = 0.

Proor. Let i’ be the value of i in line 5 of the previous iteration of the outer loop (line
3-18). Then i is the smallest index greater than i’ such that the corresponding entry in
X is nonempty. This is true since i was set to i’ + 1 in the end of the previous iteration
(line 17), and in line 4 of this iteration i was incremented until we found a nonempty
entry. Since j = i’ (this was also set in line 17 of the previous iteration), i is the first
nonempty entry greater than j and the claim follows. O

LEMMA 5.12. At the beginning of each iteration of the main loop of procedure DEEP
(line 3) we have the following invariant on j: For all nodes x € X[jl and y € Xll], where
1<l < j, wehavex £ y.

Proor. Recall that x < y < pre(x) < pre(y) and post(y) < post(x). By Proposition 5.9
the only case where we can have pre(x) < pre(y) is if [= I(v, w) and j = s(v, w) for
some v, w. Assume this is the case. If X[I] = @ the claim follows trivially. Otherwise,
let i’ and j’ be the values of i and j in the previous iteration, respectively (since l < j
and X[/] # ¢ there must be such an iteration). We have j =1+ 1,7 = j = s(v, w) and
Jj' =1 =1(v, w). Thus in the previous iteration the procedure entered case 3, where X[i']
was set to X[i'] N DEEPC (v, w).s(v.w),0)(X[I'1 U X[j']), and thus X[j] contains no nodes that
are ancestors of nodes in X[;'] = X[/]. D

LeEmMMA 5.13. Procedure DEEP is correctly implemented.

Proor. We will prove that x € DEep(X) iff x € X and there exists no y € X such that
x < y.

Assume x € DEEP(X). Consider the iteration when x is assigned to the output. There
are three cases depending on which case we are in when x is added to the input. If j <
(Case 1 of the procedure) then x € DEEPs(X[j]) and it follows from the invariant on j
(Lemma 5.12) that x has no descendants in any nodes y € X[I],l < j. For j <l < i the
claim follows directly from Lemma 5.11. It remains to show that x has no descendants

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:40 P. Bille and I. L. Gortz

in X[/] for [> i. By Proposition 5.10 we have j </ for all [> i and the claim follows
from Proposition 5.2.

If j < i (Case 2 of the procedure) then j is a spine node s(v, w) and i is the corre-
sponding right node r(v, w), and we compute N := DEEP¢ (. u).s(0.w).0)(X[2]1U X[j]). Since
x € DEEP(X) we have x € R[j] = X[jIN N. It follows from the invariant (Lemma 5.12)
and the computation of N that x has no descendants in X[/] for any ! < j. For [> j it
follows from the structure of the macro tree that for any! > i we have j</.For j <[l <1
the claim follows directly from Lemma 5.11. The claim follows from Proposition 5.2.
For j <1 < i the claim follows directly from Lemma 5.11.

If i < j (Case 3 of the procedure) then i is a spine node s(v, w) and j is the corre-
sponding left node /(v, w), and we compute N := DEEPc((y.u).sv.w).0»)(X[2] U X[j]). Since
x € DEEP(X) we have x € R[j] = X[jl N N. It follows from the computation of N that x
has no descendants in X[i]U X[j]. Since [(v, w) has no descendants in the macro tree it
follows from Proposition 5.2 that x has no descendants in X[/] for any [# j.

If x is assigned to the output in line 19 then it follows from the invariant on j
(Lemma 5.12) and the computation of DEEPs(X]j]) that x has no descendants in X.

For the other direction let x € X be a node such that XN V(T (x)) = {x}. Let [be the
index such that x € X[/]. All nonempty entries in X are i in line 5 at some iteration.
Consider the iteration when i = [. Unless i = I(v, w) and j = s(v, w) (Case 3 of the
procedure) X[i]is not changed in this iteration. If we are in Case 3, then N is computed
and X[i] is set to X[i] N N. Since x has no descendants in X we have x € N and thus
x € X[i] after the assignment. At the end of this iteration j is set to i. Consider the
next iteration when j = [. If j<i or i > ny then x € DEEPg(X[j]) = RI[jI. If j < i we
have j = s(v, w) and i = r(v, w) since x has no descendants in X. For the same reason
we have x € N and thusx € X[jINN = R[j]. Ifi < j we havei = s(v, w) and j = I(v, w).
Againx € N and thusx € X[j/INN = R[j]. O

We now consider procedures MorSiMm and MATCH.

Lemma 5.14. Let ((r, r2), (s1, S2)) be as defined in procedure MorSmM. Then ri and s;
are macro nodes, rs € X[r1], so C Ys1], wherers = {r1 < --. <rf}and sy = {s1 < --- <1s*).
Foranyl=1,...,kwe have:

1) r«é,
(2) for all j < s; there exists no node y € Y[j] such that r' <y <s!,
(3) for all i < r, there exists no node x € X[i] such that r' <\x <st.

Proor. It follows immediately from the code that r; and s; are macro nodes and that
ro € Xlril, s2 C Y[s1], where ro = {r1 < ... <rf} and sy = {s! <1 --- <s*2}. Due to the
macro tree order of the tree and the fact that X represents a deep set, no node in X[i]
can be to the right of any node in X[r;] for i < r;. To prove condition 3 it is thus enough
to prove it for i = r;. We proceed by induction on the number & of iterations of the outer
loop (line 3—34). We consider the time right after the kth iteration of the loop, that is,
right before the (£ + 1)th iteration. The base case (k£ = 0) is trivially satisfied.

For the induction step let i* and j* be the values of i and j at line 14 in iteration k.
Let r{ and s; for i = 1, 2 be the values of r; and s;, respectively, after the (£ — 1)th round.
There are 3 cases.

—ry =rg and s;, = sy: the claim follows directly from the induction hypothesis.

—r1y # rz and s; = sp: condition 2 from the lemma follows directly from the induction
hypothesis. Since sy and thus also s; were not changed, ro was set in case 1 of the
procedure and j* = s;. Therefore, i* <j*, ry = i*, and |rs] = 1. Let ry = {r'} and
sp = {s'}. We have r; = i*<1j* = s; and thus r! <is! satisfying condition 1 from the
lemma. To prove condition 3 is satisfied we only have to consider the case i = r;.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:41

Since r, was set in case 1 of the procedure, r! is the rightmost node in X[r;] and it
follows immediately that there exists no node x € X[r;] such that r! <ix <is!.

—ry, # rp and s;, # sp: We first prove condition 1 and 3. If the potential pair was set in
case 1 (line 15-19) of the procedure then r; = i* <1 j* = s; and |ry| = 1 implying r! <is!
(condition 1). The node r! is the rightmost node in X[r;] (line 19) and it follows that
there exists nonode x € X[r;]such thatr! <tx <'s! proving condition 3. If the potential
pair was set in case 2 then both condition 1 and 3 follows from the correctness of
the implementation of mop and the computation (r,s) = mop¢ ;) (X[i*], Y[j*]) =
mopc; ;. »(X[i*], Y[s1]) in line 21.

Let y € Y[j], for j < s1, be a node such that y ¢ se. To prove condition 2 is satisfied
we will show that 7’ is not to the left of y. There are two cases

—J = s1. Since s;, # sy there are two cases depending on which case of the procedure the
potential pair was set in. If the potential pair was set in case 2 of the procedure the
claim follows from the correctness of the implementation of mop and the computation
(r,s) = mopc(i,j’v)(X[i*], Y[j*D) = mopc(i’j,v)(X[i*], Y[s;]) in line 21.

If the potential pair was set in case 1, then r; = i* <1 j* = s1. Since sy # s), 52 was
changed in the kth iteration and is therefore the leftmost node in Y[s;] (line 17). The
claim follows.

—J < s1. We will use that we just proved the claim for j = s;. Assume for the sake of con-
tradiction that there exists a y € Y[j] such that 7! <iy. Since Y is representing a deep
set and due to the macro tree order of Y this implies 7’ <ly <1y’ for all y’ € Y[s;] contra-
dicting that the claim is true for j = s;. O

LEmMmA 5.15. We have the following invariant at the beginning of each iteration of
the main loop (line 3) of MopSIiM:

Fx € X[il, such that x <x', for any x' € r.

Proor. By induction on the number of iterations of the outer loop. In the base case
ro = ¢ and the condition is trivially satisfied. Note that X is representing a deep set
and thus either x <x’ or " <x for all x € X[i]. For the induction step let i’, j’, and r;,
be the values of i, j, and ry respectively in the iteration before this. By the induction
hypothesis x’ <x for all x € X[i’'] and x" € . Due to the macro tree order of X and the
fact that X represents a deep set, all nodes in X[i'] are to the left of all nodes in X[i].
Thus, if ro = ry it follows from the induction hypotheses that x’ <lx for all x € X[i] and
x' € ry =rg. For rj # ry there are two cases: If i’ <’ then ry = RIGHT¢(;(1, X[i']) and
i > i’ and thus the condition is satisfied. Otherwise r, was set in case 2 of the procedure.
Since rp # r, we have r; = r C X[i'] and r # #. There are two subcases: If i = j or
1 =I(v,w)and j = s(v, w) (Case 2(a) of the procedure) then X[i] either contains a single
node, which is the rightmost of the nodes in X[i’] that are to the right of all nodes in
ro or if there are no such nodes X[i] = #. In both cases the condition is satisfied. If
I =s(v,w)and j = r(v, w) theni > i’ and the condition is satisfied. O

LEmMMA 5.16. Procedure MoPSIM is correctly implemented.

Proor. Let X and)Y be the sets represented by X and Y, respectively. Let R =
MorSM(X, Y)|; and S = MorSmM(X, Y)|,. For simplicity we will slightly abuse the
notation and write (x, y) € MopSmm(X, Y) iff there exists an i such that x € R[i] and
y € Sli]. We want to show that

(x,y) € MoPSIM(X, Y) & (x, y) € mop(X,).

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:42 P. Bille and I. L. Gortz

Assume (x, y) € MopSmM(X, Y). Consider the round where x and y were added to R
and S, respectively. We have x = r! € ry and y = s’ € s,. We want to show that there is
no node x’ € X[i] for any i such that x <x’ <y and no node y’ € Y[j] for any j such that
x <\y'<y. By Lemma 5.14 this is true for i < r; and j < s;. By the macro tree order
of Y we have that y <y’ for any y’ € Y[j] when j > s;. Let i’ be the value of i in the
round where x and y is added to the output. We will show that no node in X[i'] is to
the left of any node in s;. Due to the macro tree order of X this implies that no node
in X[i] is to the left of any node in sy for any i > i’. If i’ = r; then it follows directly
from Lemma 5.14. If i’ > ry it follows from the implementation of the procedure that i’
is the first nonempty entry in X greater than r;. Thus the claim follows for any j. We
now return to show that no node in X[i'] is to the left of any node in ss. There are two
cases depending on whether j = s; or j > s;7. If j > s then j was changed either in
one of the four cases I-IV, or in the previous iteration in case 2. If j was equal to s; at
the beginning of this iteration then j was incremented in one of the four cases I-IV.
Thus none of the cases applied to s;. By Proposition 5.3 no node in X[i'] can be to the
left of a node in X[s1]. Since sy € X[s1] the claim follows. If j = s; it follows from case 2
that LEFT(X[i'], s2) = ¥ (otherwise the potential pairs would not have been added to the
output in this iteration) and the claim follows immediately.

Now assume (x, y) € mop(X,)). We will deal with each of the cases from Proposi-
tion 5.3 separately.

(1) Case (i): c(x) = c(y) = r(v, w).

(2) Case (i): c(x) = c(y) = l(v, w).

(3) Case (ii): c(x) = c(y) = L(v).

(4) Case (iii): c(x) = I(v, w) and c(y) = s(v, w).

(5) Case (iv): c(x) = s(v, w) and c(y) = r(v, w).

(6) Case (v): c¢(x) =I(v, w) and c(y) = r(v, w).

(7) Case (v): c(x) <c(y) and c(x) and c(y) belong to different clusters.

Note that if ¢(x) <c(y) then x is the rightmost node in X[c(x)] and y is the leftmost node
in Y[c(y)]. We first show that in all cases we will have x = r! € rp and y = s’ € sp for
some [at some iteration. Consider the first iteration where either x € X[i]lor y € Y[/1.
Let i’ and ;' be the values of i and j, respectively, in this iteration. There are three
cases.

Case (a). x € X[i'] and y € Y[j'l. For case 1-5 the procedure goes into case 2. From
the correctness of MorP we get x € r and y € s. Thus r # @ and we set (r1,72) = (@', r)
and (sq, s2) = (', s) and the claim follows. For case 6—7 the procedure goes into case
1. Since this iteration is the first where y € Y[j] we have j' > s; and we set (r1,rg) =
(@', RIGHT () (1, X[i'])) and (sq, s2) = (j', LEFT¢(;»(1, Y[j']). Since x is the rightmost node
in X[i'] and y is the leftmost node in Y[c(j')] the claim follows.

Case (b). x € X[i'l and y € Y[j']. Since (x, y) € mop(X,) this implies j' < ¢(y) and
there exists no node y' € Y[;'] such that x <y'. Assume that there existed such a y'.
Then x <y’ <y due to the macro tree order of Y contradicting (x, y) € mop(X,)). Thus
i" A j. From case I-IV of the procedure it follows that either i’ = j/, i’ = l(v, w) and
J =s,w), ori’ =s(v,w)and j' = r(v, w). From this and ;' < c(y) it follows that we
are in case 4 or 7 from before.

The procedure enters case 2 in this iteration. If we are in case 4 then i’ = (v, w) = J’
and c(y) = s(v, w). If r = # theni =i’, X[i’] is unchanged, and j = j'+ 1 = s(v, w) = c(y)
at the end of this iteration. If r # ¢ then x must be to the right of all nodes in x’ € r.
Assume that there is a x’ € r such that x <x’. Since x’ € r there exists a node y’ € s such
that x’ <y’ <y. That y’ <y follows from y’ € (v, w) and y € s(v, w) and the assumption
that) is deep. Thus x <x' <y <y contradicting that (x,y) € mop(X,)). Therefore,

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:43

i=1,xeXli'land j = j' + 1 = s(v, w) = c(y) at the end of this iteration. From case I
of the procedure and the analysis of case (a) it follows that x =7/ € ry and y = ' € sy
for some /.

Now assume we are in case 7. By the same argument as before i = i’, x € X[i], and
J > J at the end of this iteration. Unless i’ = [(v, w) = j’ this implies that i <j at line
14 (“Compare i and j”) in the next iteration. If i’ = I(v, w) = j’ then either i <1 j after the
first loop in the next iteration (line 7), and the claim follows as before, or i = I(v, w) and
J = s(v, w). In the last case we get into case (b) again, but it follows from the analysis
that in the iteration after the next we will have i < j = ¢(y). The claim follows from the
analysis of case (a).

Case (c). x ¢ X[i'] and y € Y[j']. It follows by inspection of the cases that unless we
arein case 1 we havei’ < j'. If we arein case 1 (j = c(x) = r(v, w) = c¢(y)) we have either
1’<j" ori’ = s(v, w). First we consider the cases 2-7. Since i’ <’ the procedure enters
case 1 in this iteration. Thus i is incremented and j stays the same. This happens until
i = c(x). Now consider case 1. Ifi’ <1 j' the procedure enters case 1 in this iteration. Thus
I is incremented and j stays the same. In the next iteration either the same happens
ori = s(v,w). If i’ = s(v, w) the procedure enters case 2. Since i’ is a spine node and
X 1is deep, X[i] contains only one node x'. By the structure of the macro tree and the
assumption that X is deep x’ <x. Since x <y € Y[j'] this implies r # @. It follows from
case 2(b) of the procedure that i is incremented while j stays the same. At line 14
(“Compare i and j”) in the next iteration we will have j =i = r(v, w) since all entries
in X between j' and r(v, w) are empty due to the assumption that X is deep. The claim
follows from the analysis in case (a).

It remains to show that once x = 7! € r, and y = s’ € sy they will stay this way until

added to the output. Consider the iteration where x and y are assigned to ro and sg. At
the end of this iteration either i or j or both are incremented. Assume j is incremented
while the potential pairs are still unchanged. Since j is incremented we have s; < j
until s; is changed. It follows from case 1 and 2 of the procedure that in this case (r1, r3)
is only changed if at the same time (s, s3) are changed and right before that (1, r3) and
(s1, s2) are added to the output.

Consider first case 1-3. If i is incremented then j is incremented in one the cases
I-V in the next iteration since i’ = j’. By the previous argument x and y are added
to the output. For case 4 j is incremented (case 2(a) of the procedure) and the claim
follows as before. For case 5-7 first note that ro and sy contain only one node each, that
is, x = ro and y = sqo. For case 5 i is incremented (case 2(b) of the procedure). Since X
is deep we have i > r(v, w) = j’ at line 14 (“Compare i and j”) in the next iteration.
If i > r(v,w) then j > j’ and the claim follows. If i = r(v, w) the procedure enters
case 2. If r = () then j is incremented and the claim follows. If r # (J then s; = j and
(x,y) € mop(X,) implies LEFTc(; j)(X[i], s2) = LEFTOF¢(; j(X[i], y) = . Thus (r1, r2) and
(s1, s9) are added to the output. If we are in case 6 and 7, i is incremented. Consider case
6. Since (x, y) € mop(X,)) all entries in X between /(v, w) and r(v, w) are empty. Thus
at line 14 (“Compare i and j”) in the next iteration i > r(v, w). The proof is equivalent
to the one for case 5. Consider case 7. If j is a boundary node then all entries in X
between c(x) and j are empty. Thus j is incremented in the second loop of the next
iteration. For all other cases for j the proof is similar to the proof of case 5. O

LEmMa 5.17. In procedure MATCH we have the following invariant of X[i]l and Y[j]
in line 6:

LEFT(1, X[i]) = A} and LEFT(1, Y [j]) =), for some .

Proor. Induction on the number of iterations of the outer loop. Base case: In
the first iteration X[i] and Y[j] are the first nonempty entries in X and Y and

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:44 P. Bille and I. L. Gortz

thus LEFT(1, X[i]) = A7 and LEFT(1,Y[j]) =):. For the induction step let i’ and
j' be the values of i and j in the previous iteration. By the induction hypothesis
LEFT(1, X[i']) = &y and LEFT(1, Y[j']) = Vp. If x = | X[i']| = |Y[j']| both i and j were in-
cremented and LEFT(1, X[i]) = Ay, and LEFT(1, Y[j]) = V. If x = | X[']| < |YLJ]|
then i was incremented implying LEFT(1, X[i]) = Ap.,. In that case j = j’ and
Y[jl = LeFT(x, Y[j']) implying LEFT(1, Y[j]) = Vyyx. Similarly, if | X[i']] > |Y[j']] = y
we have LEFT(1, X[i]) = A}4,. In that case j = j" and LeFr(1, Y [j]) = Vpyy. O

LemmA 5.18. Procedure MATCH is correctly implemented.

Proor. We need to show that for all 1 < & < |X|: &, € MatcH(X,Y,Y') & X} €
{X;1Y; € V). Consider the iteration where X}, € X[i] and), € Y[j]. By Lemma 5.17
such an iteration exists. If Y[j] = Y[;'] then), € V' implying &} € {&;|Y; € V}. It
follows from the implementation of case 1(a) and 1(b) that if x < y all nodes in X[i]
are added to the output and thus &} € Marcu(X,Y,Y’). If x > y then X} € LEFT(y, X[i])
since)} € Y[j] and thus A, € Matca(X, Y, Y’).

If Y[j] # Y'[j] the procedure calls MmaTcH with some subset of X[i], Y[j], and Y'[]
depending on the size of x and y. By Lemma 5.17 and the correctness of maTcH it follows
that A, e MATCH(X, Y, Y") & A, € {X;|Y; € V). O

LemmA 5.19. Procedure MoPRIGHT is correctly implemented.

Proor. Follows from the correctness of MorSiM (Lemma 5.16) and MATcH
(Lemma 5.18). O

Finally, we consider correctness of the FL procedure.
LemmA 5.20. Procedure FL is correctly implemented.

Proor. Let X denote the set represented by X and let F = {fl(x, o)|x € X}. To show
FL(X, a) C F we will first show that for any node x added to R during the computation
x € F. Consider a node x € RJ[i] for some i. Either x was added directly to R after a
computation of N in one of the three cases of the procedure or it was added after the
computation of S. In the first case x € F follows from the correctness of Frc. If x was
added after the computation of S it follows from the correctness of Fry, that x € C(7)
for some i € S. Due to the correctness of FLc we have x € F'.

To show DEEP(F') C FL(X, o) we use Proposition 5.2. Let x be a node in DEEP(F') and
let x’ be a node in X such that fl(x’, o) = x. We have x’ € X[i] for some i. If i is a left
or right node then according to Proposition 5.2 x can be in i (case (i)), on the spine
(case (i1)), in the top boundary node (case (ii)), or in an ancestor of i in the macro
tree (case (iii)). If x is in the same cluster as x’ then it follows from the correctness
of FL¢c that x € N. Thus x is added to R and due to the correctness of DEEP we have
x € FL(X «). If e(x) is in a different cluster than c(x’) then c(x) is an ancestor of c(x’)
in the macro tree due to Proposition 5.2. Since x € DEEP(F') we have N = ¢ and thus
parent(v) <js c(x’) is added to L. It follows from the correctness of Frys that c(x) € S.
Due to the structure of the macro tree c(x) is either a boundary node or a spine node and
thus x = flge)(first(e(x)), @) = FLoew)firste(x)), o). The last equality follows from the
correctness of FL¢c. That x € FL(X, o) now follows from the preceding analysis showing
that only nodes from F' are added to R and the correctness of DEEP.

If i is a leaf node then x can be in i (case (i)), in the top boundary node (case (iii)), or
in an ancestor of i in the macro tree (case (iii)). The correctness follows by an analysis
similar to the one for the previous case. If i is a spine node or a boundary node, then x
is either in i (case (1)) or in an ancestor of i in the macro tree (case (iii)). The correctness
follows by an analysis similar to the one for the first case. DO

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:45

5.5. Complexity of the Tree Inclusion Algorithm

To analyze the complexity of the node array implementation we first bound the run-
ning time of the preceding implementation of the set procedures. All procedures scan
the input from left-to-right while gradually producing the output. In addition to this
procedure FL needs a call to a node list implementation of FL on the macro tree. Given
the data structure described in Section 5.2 it is easy to check that each step in the scan
can be performed in O(1) time giving a total of O(nr /logny) time. Since the number of
nodes in the macro tree is O(nr/logny), the call to the node list implementation of FL
is easily done within the same time. Hence, we have the following lemma.

LemMa 5.21. For any tree T there is a data structure using O(nr) space and
O(ny log ny) preprocessing time which supports all of the set procedures in O(nr /logny)
time.

Next consider computing the deep occurrences of P in T using the procedure EmB of
Section 3 and Lemma 5.21. The following lemma bounds the space usage.

LEmMA 5.22. The total size of the saved embeddings at any time during the compu-
tation of EMB(root(P)) is O(ny).

Proor. Let v be the node for which we are currently computing EmB. Let p be the
path from the root to v and let wy, ..., w; be the light nodes on this path. We have [=
Idepth(v). As in the proof of Lemma 4.12 it suffices to bound |EmB(heavy(parent(w;)))|
for all ;. Assume that [p < Iy (otherwise we can check this in linear time and conclude
that P cannot be included in T'). Each of the node arrays use O(ny/lognr) space and
therefore by Corollary 2.4 we have that 25:1 |EmB(heavy(parent(w;)))| = O(n/logny -
10glp) = O(nT) O

For the time complexity note that during the computation of EMB(root(P)) each node
v € V(P) contributes a constant number of calls to the set procedures. Hence, the total
time used by the algorithm is O(npny/logny + nrlognr). Thus we have shown the
following.

THEOREM 5.23. For trees P and T the tree inclusion problem can be solved in
O(npnr /logny + np logny) time and O(ny) space.

Combining the results in Theorems 4.13, 5.23 and Corollary 4.16 we have the main
result of Theorem 1.1.

6. CONCLUSION

We have presented three algorithms for the tree inclusion problem, which match or
improve the best known time complexities while using only linear space. We believe
that some of the new ideas are likely to be of both practical and theoretical value in
future work. From a practical perspective, space is a common bottleneck for processing
large datasets and hence reducing the space can significantly improve performance
in practice. From a theoretical perspective, we have introduced several non-trivial
algorithms to manipulate sets of nodes in trees that may have applications to other
problems. For instance, the Nca procedure from Section 5 computes multiple nearest
common ancestor queries in time sublinear in the size of input sets.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of earlier drafts of this article for many valuable comments
that greatly improved the quality of the work. We would also especially like to thank the reviewer who
discovered the error in the space complexity of the original draft.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

38:46 P. Bille and I. L. Gortz

REFERENCES

ALoNso0, L. AND ScHOTT, R. 2001. On the tree inclusion problem. Acta Inf. 37, 9, 653-670.

ALsTRUP, S., GavoILLE, C., KaprLaN, H., AND RausE, T. 2004. Nearest common ancestors: A survey and a new
algorithm for a distributed environment. Theory Comput. Syst. 37, 441-456.

AvstrUP, S., HoLM, J., DE LICHTENBERG, K., AND THORUP, M. 1997. Minimizing diameters of dynamic trees. In
Proceedings of the 24th International Colloquium on Automata, Languages and Programming. Springer,
270-280.

ALsTRUP, S., HoLM, J., AND THORUP, M. 2000. Maintaining center and median in dynamic trees. In Proceedings
of the 7th Scandinavian Workshop on Algorithm Theory. Springer, 46-56.

AvstrUP, S., HUusreLDT, T., AND RAUHE, T. 1998. Marked ancestor problems. In Proceedings of the 39th Sympo-
sium on Foundations of Computer Science. IEEE Computer Society, Los Alamitos, CA, 534-543.

ALSTRUP, S. AND RAUHE, T. 2002. Improved labeling schemes for ancestor queries. In Proceedings of the 13th
Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 947-953.

BeNDER, M. A. AND Faracu-Corton, M. 2000. The LCA problem revisited. In Proceedings of the 4th Latin
American Symposium on Theoretical Informatics. Springer, 88-94.

BILLE, P. 2005. A survey on tree edit distance and related problems. Theoret. Comput. Sci. 337, 1-3, 217-239.

BiLLE, P. AND GgRrTz, I. L. 2005. The tree inclusion problem: In optimal space and faster. In Proceedings of the
32nd International Colloquium on Automata, Languages and Programming. Springer, 66—77.

Boag, S., CHAMBERLIN, D., FERNANDEZ, M., FLoREScU, D., ROBIE, J., SIMEON, J., AND STEFANESCU, M. 2001. XML
query language (XQuery). http://www.w3.org/TR/xquery.
CHEN, W. 1998. More efficient algorithm for ordered tree inclusion. JJ. Algor. 26, 370-385.

CHuNG, M. J. 1987. O(n?%) algorithm for the subgraph homeomorphism problem on trees. J. Algo. 8, 1,
106-112.

CLARK, J. AND DEROSE, S. 1999. XML path language (XPath), http://www.w3.org/TR/xpath.

CoLE, R., HarmHARAN, R., AND INDYK, P. 1999. Tree pattern matching and subset matching in deterministic
O(nlog®n)-time. In Proceedings of the 10th Symposium on Discrete Algorithms. SIAM, 245-254.

DeMaINE, E. D., Mozgs, S., RossmaN, B., aND WEmMANN, O. 2007. An optimal decomposition algorithm for
tree edit distance. In Proccedings of the 34th International Colloquium on Automata, Languages and
Programming. Lecture Notes in Computer Science Series, vol. 4596. Springer, 146-157.

Dikrz, P. F. 1989. Fully persistent arrays. In Proceedings of the Workshop on Algorithms and Data Structures.
Springer, 67-74.

DUBINER, M., GALIL, Z., AND MAGEN, E. 1990. Faster tree pattern matching. In Proceedings of the 31st Sympo-
sium on the Foundations of Computer Science. IEEE Computer Society, Los Alamitos, CA, 145-150.

FERRAGINA, P. AND MUTHUKRISHNAN, S. 1996. Efficient dynamic method-lookup for object oriented languages.
In Proceedings of the 4th European Symposium on Algorithms. Springer, 107-120.

FRrEDERICKSON, G. N. 1997. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest span-
ning trees. SIAM J. Comput. 26, 2, 484-538.

Hagerup, T., MILTERSEN, P. B., AND PacH, R. 2001. Deterministic dictionaries. J. Algor. 41, 1, 69-85.

HagreL, D. anp Tarsan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J. Com-
put. 13, 2, 338-355.

Horrmany, C. M. aND O’DonNnNELL, M. J. 1982. Pattern matching in trees. J. ACM 29, 1, 68-95.

KiLPELAINEN, P. 1992. Tree matching problems with applications to structured text databases. Ph.D. thesis,
Department of Computer Science, University of Helsinki.

KILPELAINEN, P. AND MaNNILA, H. 1993. Retrieval from hierarchical texts by partial patterns. In Proceedings of
the 16th Conference on Research and Development in Information Retrieval. ACM, New York, 214-222.

KiLPELAINEN, P. AND ManniLa, H. 1995. Ordered and unordered tree inclusion. SIAM J. Comput. 24,
340-356.

KieIN, P. 1998. Computing the edit-distance between unrooted ordered trees. In Proceedings of the 6th
European Symposium on Algorithms. Springer, 91-102.

KnutH, D. E. 1969. The Art of Computer Programming, Vol. 1. Addison-Wesley.

Kosaragu, S. R. 1989. Efficient tree pattern matching. In Proceedings of the 30th Symposium on the Founda-
tions of Computer Science. IEEE Computer Society, Los Alamitos, CA, 178-183.

ManniLa, H. anp RATHA, K. J. 1990. On query languages for the p-string data model. Inf Modell. Knowl. Bases,
469-482.

MaTOoUSEK, J. AND THOMAS, R. 1992. On the complexity of finding iso- and other morphisms for partial k-trees.
Discr. Math. 108, 343-364.

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

The Tree Inclusion Problem: In Linear Space and Faster 38:47

MUTHUKRISHNAN, S. AND MULLER, M. 1996. Time and space efficient method-lookup for object-oriented pro-
grams. In Proceedings of the 7th Symposium on Discrete Algorithms. Springer, 42-51.

RicHTER, T. 1997. A new algorithm for the ordered tree inclusion problem. In Proceedings of the 8th Symposium
on Combinatorial Pattern Matching. Springer, 150-166.

ScHLIEDER, T. AND MEUSs, H. 2002. Querying and ranking XML documents. J. Amer. Soc. Inf. Sci. Technol. 53, 6,
489-503.

ScHLIEDER, T. AND NauManN, F. 2000. Approximate tree embedding for querying XML data. In Proceedings of
the Workshop On XML and Information Retrieval. ACM, New York.

SHAMIR, R. AND Tsur, D. 1999. Faster subtree isomorphism. J. Algor. 33, 267-280.
Tar, K.-C. 1979. The tree-to-tree correction problem. J ACM 26, 422-433.

TERMIER, A., RousseTt, M., AND SEBAG, M. 2002. Treefinder: A first step towards XML data mining. In Proceed-
ings of the 2nd International Conference on Data Mining. IEEE Computer Society, Los Alamitos, CA,
450.

TrHorUP, M. 2003. Space efficient dynamic stabbing with fast queries. In Proceedings of the 33rd Symposium
on Theory of Computing. ACM, New York, 649-658.

Yang, H., LEE, L., anpD Hsu, W. 2004. Finding hot query patterns over an XQuery stream. VLDB J. 13, 4,
318-332.

Yang, L. H., Leg, M. L., anp Hsu, W. 2003. Efficient mining of XML query patterns for caching. In Proceedings
of the 29th Conference on Very Large Data Bases. VLDB Endowment, 69-80.

ZEzZULA, P., AmaTo, G., DEBOLE, F., AND RaBITTI, F. 2003. Tree signatures for XML querying and navigation. In
Proceedings of the 1st International XML Database Symposium. Springer, 149-163.

ZuANG, K. AND SHAsHA, D. 1989. Simple fast algorithms for the editing distance between trees and related
problems. SIAM oJ. Comput. 18, 1245-1262.

Received September 2007; revised January 2011; accepted January 2011

ACM Transactions on Algorithms, Vol. 7, No. 3, Article 38, Publication date: July 2011.

