
Random Access to Grammar-Compressed Strings

Philip Bille ∗ Gad M. Landau † Rajeev Raman ‡ Kunihiko Sadakane §

Srinivasa Rao Satti ¶ Oren Weimann ‖

Abstract
Let S be a string of length N compressed into a context-
free grammar S of size n. We present two representa-
tions of S achieving O(logN) random access time, and
either O(n · αk(n)) construction time and space on the
pointer machine model, or O(n) construction time and
space on the RAM. Here, αk(n) is the inverse of the
kth row of Ackermann’s function. Our representations
also efficiently support decompression of any substring in
S: we can decompress any substring of length m in the
same complexity as a single random access query and ad-
ditional O(m) time. Combining these results with fast
algorithms for uncompressed approximate string match-
ing leads to several efficient algorithms for approximate
string matching on grammar-compressed strings without
decompression. For instance, we can find all approximate
occurrences of a pattern P with at most k errors in time
O(n(min{|P |k, k4 + |P |}+ logN) + occ), where occ is the
number of occurrences of P in S. Finally, we are able to
generalize our results to navigation and other operations
on grammar-compressed trees.

All of the above bounds significantly improve the cur-
rently best known results. To achieve these bounds, we
introduce several new techniques and data structures of
independent interest, including a predecessor data struc-
ture, two ”biased” weighted ancestor data structures, and
a compact representation of heavy-paths in grammars.

1 Introduction

Modern textual or semi-structured databases, e.g. for
biological and WWW data, are huge, and are typi-
cally stored in compressed form. A query to such

∗DTU Informatics, Technical University of Denmark, Den-

mark. phbi@imm.dtu.dk
†Department of Computer Science, University of Haifa,

Israel landau@cs.haifa.ac.il and Department of Computer

Science and Engineering, NYU-Poly, USA. Partially supported
by the National Science Foundation (award 0904246) Israel Sci-

ence Foundation (grants 35/05, 347/09), the Israel-Korea Sci-

entific Research Cooperation, Yahoo, and the United States-
Israel Binational Science Foundation (grant 2008217).
‡Department of Computer Science, University of Leicester,

UK. r.raman@mcs.le.ac.uk. Raman was supported by Royal
Society Travel Grant TG091629.
§National Institute of Informatics, Japan. sada@nii.ac.jp
¶School of Computer Science and Engineering, Seoul Na-

tional University, S. Korea. ssrao@cse.snu.ac.kr
‖Department of Computer Science and Applied

Mathematics, Weizmann Institute of Science, Israel.
oren.weimann@weizmann.ac.il

databases will typically retrieve only a small por-
tion of the data. This presents several challenges:
how to query the compressed data directly and effi-
ciently, without the need for additional data struc-
tures (which can be many times larger than the com-
pressed data), and how to retrieve the answers to the
queries. In many practical cases, the naive approach
of first decompressing the entire data and then pro-
cessing it is completely unacceptable – for instance
XML data compresses by an order of magnitude on
disk [25] but expands by an order of magnitude when
represented in-memory [22]; as we will shortly see,
this approach is very problematic from an asymptotic
perspective as well. Instead we want to support this
functionality directly on the compressed data.

We focus on two data types, strings and labelled
trees, and consider the former first. Let S be a
string of length N from an alphabet Σ, given in a
compressed representation S of size n. The random
access problem is to compactly represent S while
supporting fast random access queries, that is, given
an index i, 1 ≤ i ≤ N , report S[i]. More generally,
we want to support substring decompression, that is,
given a pair of indices i and j, 1 ≤ i ≤ j ≤ N , report
the substring S[i] · · ·S[j]. The goal is to use little
space for the representation of S while supporting
fast random access and substring decompression.
Once we obtain an efficient substring decompression
method, it can also serve as a basis for a compressed
version of classical pattern matching. For example,
given an (uncompressed) pattern string P and S, the
compressed pattern matching problem is to find all
occurrences of P within S more efficiently than to
naively decompress S into S and then search for P
in S. An important variant of the pattern matching
problem is when we allow approximate matching (i.e.,
when P is allowed to appear in S with some errors).

We consider these problems in the context of
grammar-based compression, where one replaces a
long string by a small context-free grammar (CFG)
that generates this string (and this string only, see
Fig. 1(a)). Such grammars capture many popular

a b

F1F2

F3F4

F5

F1 → b
F2 → a
F3 → F2F1

F4 → F3F2

F5 → F4F3

a b

F1F2

F3

a

F2

F5

F4

F3

F2

F1

a

b
(a) (b) (c)

F4

a b

F1F2

F3

a

F2

F6

F6 → F5F4

F6

Figure 1: (a) A context-free grammar generating the
string abaababa. (b) The corresponding parse tree.
(c) The acyclic graph defined by the grammar.

compression schemes including the Lempel-Ziv fam-
ily [58, 60, 61], Sequitur [50], Run-Length Encoding,
Re-Pair [41], and many more [6–8, 28, 37, 38, 55, 59].
All of these are or can be transformed into equiv-
alent grammar-based compression schemes with lit-
tle expansion [17, 52]. In general, the size of the
grammar, defined as the total number of symbols
in all derivation rules, can be exponentially smaller
than the string it generates. From an algorith-
mic perspective, the properties of compressed data
were used to accelerate the solutions to classical
problems on strings including exact pattern match-
ing [4, 36,42,44,56] and approximate pattern match-
ing [3, 9, 12,14,16,21,33,35,36,43,49].

We also consider the problem of representing an
ordered rooted tree T (of arbitrary degree) with N
nodes, where each node is labelled with a character
from Σ (called labelled trees [25]). We assume
that the tree T is compressed by sharing identical
subtrees, giving a DAG with n nodes (see Fig. 6 in
Section 8). This approach has recently been applied
successfully to compress XML documents [13, 15]
and [13] also note that this representation aids the
matching of XPath patterns, but their algorithm
partially decompresses the DAG. Indeed [15, p468]
specifically mention the problem of navigating the
XML tree without decompressing the DAG, and
present algorithms whose running time is linear in
the grammar size for randomly accessing the nodes
of the tree.

Our Results. We present new representations of
grammar-compressed strings and trees. We consider
two models, the pointer machine [57] and the word
RAM (henceforth just RAM) [31]. We further make
the assumption that all memory cells can contain
logN -bit integers – this many bits are needed just
to represent the input to a random access query. Let

αk(n) be the inverse of the kth row of Ackermann’s
function1. For strings, we show:

Theorem 1.1. For a CFG S of size n representing
a string of length N we can decompress a substring
of length m in time O(m+ logN)

(i) after O(n · αk(n)) preprocessing time and space
for any fixed k, or,

(ii) after O(n) preprocessing time and space on the
RAM model.

Next, we show how to combine Theorem 1.1 with any
black-box (uncompressed) approximate string match-
ing algorithm to solve the corresponding compressed
approximate string matching problem over grammar-
compressed strings. We obtain the following connec-
tion between classical (uncompressed) and grammar-
compressed approximate string matching. Let t(m)
and s(m) be the time and space bounds of some (un-
compressed) approximate string matching algorithm
on strings of lengths O(m), and let occ be the number
of occurrences of P in S.

Theorem 1.2. Given a CFG S of size n represent-
ing a string of length N and a string P of length m
we can find all approximate occurrences of P in S in
time O(n(m+ t(m) + logN) + occ) and

(i) in space O(n · αk(n) +m+ s(m)) on the pointer
machine model and

(ii) in space O(n + m + s(m) + occ) on the RAM
model.

Coming to the tree representation problem, sup-
pose that nodes of the uncompressed tree T are num-
bered 1, . . . , N in pre-order. We mainly consider the
operation access(i), which returns the symbol associ-
ated with node i, and also consider a number of “nav-
igation” operations, including parent(i) and lca(i, j),
which return the number of the node that the parent
of i or the LCA of i and j, respectively (a full list of
navigation operations can be found in Section 8). We
show:

Theorem 1.3. Given a compressed DAG with m
edges and n nodes that represents a labelled tree
with N nodes, we can support access, as well as
navigation, in O(logN) time using:

1The inverse Ackermann function αk(n) can be defined by
αk(n) = 1 +αk(αk−1(n)) so that α1(n) = n/2, α2(n) = logn,

α3(n) = log∗ n, α4(n) = log∗∗ n and so on. Here, log∗∗ n is the
number of times the log∗ function is applied to n to produce
a constant.

(i) O(mαk(m)) words and preprocessing time on the
pointer machine model;

(ii) O(m) words and preprocessing time on the RAM
model.

Related Work. We now describe how our work
relates to existing results. We assume without loss of
generality that the grammars are in fact straight-line
programs (SLPs) and so on the righthand side of
each grammar rule there are either exactly two
variables or one terminal symbol.

The Random Access Problem. If we use O(N)
space we can access any character in constant time by
storing S explicitly in an array. Alternatively, we can
compute and store the sizes of strings derived by each
grammar symbol in S. This only requires O(n) space
and allows to simulate a top-down search expanding
the grammar’s derivation tree in constant time per
node. Consequently, a random access takes time
O(h), where h is the height of the derivation tree and
can be as large as Ω(n). Although any SLP of size n
generating a string of length N can be converted into
an SLP with derivation tree height O(logN) [17,52],
the size of the SLP increases to O(n logN). Thus, the
simple top-down traversal either has poor worst-case
performance or uses non-linear space. Surprisingly,
the only known improvement to the simple top-
down traversal is a recent succinct representation of
grammars, due to Claude and Navarro [19]. They
reduce the space from O(n logN) bits to O(n log n)+
n logN bits at the cost of increasing the query time
to O(h log n).

The Substring Decompression Problem. Using
the simple random access trade-off we get an O(n)
space solution that supports substring decompression
in O(hm) time. Gasieniec et al. [29, 30] showed how
to improve the decompression time to O(h+m) while
maintaining O(n) space. Also, the representation
of [19] supports substring decompression in time
O((h+m) log n).

The Compressed Pattern Matching Problem.
In approximate pattern matching, we are given two
strings P and S and an error threshold k. The goal is
to find all ending positions of substrings of S that are
“within distance k” of P under some metric, e.g. the
edit distance metric, where the distance is the number
of edit operations needed to convert one substring to
the other.

In classical (uncompressed) approximate pattern
matching, a simple algorithm [54] solves this problem
(under edit distance) in O(Nm) time and O(m)
space, where N and m are the lengths of S and P
respectively. Several improvements of this result are
known (see e.g. [48]). Two well-known improvements
for small values of k are the O(Nk) time algorithm
of Landau and Vishkin [40] and the O(Nk4/m+N)
time algorithm of Cole and Hariharan [20]. Both of
these can be implemented in O(m) space. The use
of compression led to many speedups using various
compression schemes [3, 9, 12, 14, 16, 21, 33, 35, 36,
43, 49]. The most closely related to our work is
approximate pattern matching for LZ78 and LZW
compressed strings [12,35,49], which can be solved in
time O(n(min{mk, k4 + m}) + occ) [12], where n is
the compressed length under the LZ compression.

Theorem 1.2 gives us the first non-trivial algo-
rithms for approximate pattern matching over any
grammar compressed string. For instance, if we plug
in the Landau-Vishkin [40] or Cole-Hariharan [20] al-
gorithms in Theorem 1.2(i) we obtain an algorithm
with O(n(min{mk, k4 +m}+ logN) + occ) time and
O(n·αk(n)+m+occ) space. Note that any algorithm
(not only the above two) and any distance metric (not
only edit distance) can be applied to Theorem 1.2.
For example, under the Hamming distance measure
we can combine our algorithm with a fast algorithm
for the (uncompressed) approximate string matching
problem for the Hamming distance measure [5].

Overview. Before diving into technical details, we
give an outline of the paper and of the new techniques
and data structures that we introduce and believe to
be of independent interest. We first focus on the
string random acccess problem. Let S be a SLP
of size n representing a string of length N . We
begin in Section 2 by defining a forest H of size
n that represents the heavy paths [32] in the parse
tree of S. We then combine the forest H with an
existing weighted ancestor data structure2, leading
to a first solution with O(logN log logN) access time
and linear space (Lemma 2.1). The main part of the
paper focuses on reducing the random access time to
O(logN).

In Section 3, we observe that it is better to
replace the doubly-logarithmic weighted ancestor
search in Lemma 2.1 by a (logarithmic) biased an-
cestor search. In a biased search, we want to find the
predecessor of a given integer p in a set of integers

2A weighted ancestor query (v, p) asks for the lowest
ancestor of v whose weighted distance from v is at least p.

3

0 = l0 < l1 < . . . < lk = U , in O(log(U/x)) time,
where x = |successor(p) – predecessor(p)|.3. Using
biased search, the O(logN) predecessor queries on H
add up to just O(logN) time overall. Our main tech-
nical contribution is to design two new space-efficient
data structures that perform biased searches on sets
defined by any path from a node u ∈ H to the root of
u’s tree. In Section 3 we describe the central building
block of the first data structure – the interval-biased
search tree, which is a new, simple linear-time con-
structible, linear space, biased search data structure.
We cannot directly use this data structure on every
node-to-root path in H, since that would take O(n2)
preprocessing time and space. In Section 4 we first
apply a heavy path decomposition to H itself and
navigate between these paths using weighted ances-
tor queries on a related tree L. This reduces the
preprocessing time to O(n log n). To further reduce
the preprocessing, we partition L into disjoint trees
in the spirit of Alstrup et al. [2]. One of these trees
has O(n/ log n) leaves and can be pre-processed using
the solution above. The other trees all have O(log n)
leaves and we handle them recursively. However, be-
fore we can recurse on these trees they are modified so
that each has O(log n) vertices (rather than leaves).
This is done by another type of path decomposition
(i.e. not a heavy-path decomposition) of L. By care-
fully choosing the sizes of the recursive problems we
get Theorem 1.1(i) (for the case m = 1).

For the RAM model, in Section 5, we generalize
biased skip lists [10] to biased skip trees, where
every path from a node u ∈ H to u’s root is a
biased skip list, giving the required time complexity.
While a biased skip list takes linear space [34], a
biased skip tree may have Ω(n logN) pointers and
hence non-linear space, since in a biased skip list,
“overgrown” nodes (those with many more pointers
than justified by their weight) are amortized over
those ancestors which have an appropriate number
of pointers. When used in H, however, the parent
of an “overgrown” node may have many “overgrown”
children, all sharing the same set of ancestors, and
the amortization fails. We note that no node will
have more thanO(logN) pointers, and use a sequence
of O(logN) succinct trees [47] of O(|H|) = O(n)
bits each to represent the skip list pointers, using
O(n logN) bits or O(n) words in all. These succinct
trees support in O(1) time a new coloured ancestor

3Note that we need a slightly different property than so-
called optimum binary search trees [39, 45] – we do not want

to minimize the total external path length but rather ensure
that each item is at its ideal depth as in [11]

query – a natural operation that may find other uses
– using which we are able to follow skip list pointers
in O(1) time, giving the bounds of Theorem 1.1(ii)
(for the case m = 1).

We extend both random access solutions to the
substring decompression in Section 6, and in Sec-
tion 7 we combine our substring decompression result
with a technique of [12] to obtain an algorithm for
approximate matching grammar-compressed strings
(giving the bounds of Theorem 1.2). The algorithm
computes the approximate occurrences of the pattern
in a single bottom-up traversal of the grammar. At
each step we use the substring decompression algo-
rithm to decode a relevant small portion of string,
thus avoiding a full decompression.

Finally, in Section 8, we describe the differences
between the random access operation in trees and
that in strings.

2 Fast Random Access in Linear Space

In the rest of the paper, we let S denote an SLP of
size n representing a string of length N , and let T be
the corresponding parse tree (see Fig. 1(b)). In this
section we present an O(n) space representation of
S that supports random access in O(logN log logN)
time, which also introduces the general framework.
To achieve this we partition S into disjoint paths ac-
cording to a heavy path decomposition [32], and from
these form the heavy path forest, which is of size O(n).

Heavy Path Decompositions. Similar to Harel
and Tarjan [32], we define the heavy path decom-
position of the parse tree T as follows. For each node
v define T (v) to be the subtree rooted at v and let
size(v) be the number of descendant leaves of v. We
classify each node in T as either heavy or light based
upon size(v).4 The root is light. For each internal
node v we pick a child of maximum size and classify
it as heavy. The heavy child of v is denoted heavy(v).
The remaining children are light. An edge to a light
child is a light edge and an edge to a heavy child is a
heavy edge. Removing the light edges we partition T
into heavy paths. A heavy path suffix is a simple path
v1, . . . , vk from a node v1 to a leaf in T (v1), such that
vi+1 = heavy(vi), for i = 1, . . . , k − 1. If u is a light
child of v then size(u) ≤ size(v)/2 since otherwise u
would be heavy. Consequently, the number of light

4Note that our definition of heavy paths is slightly different
than the usual one. We construct our heavy paths according to

the number of leaves of the subtrees and not the total number
nodes.

edges on a path from the root to a leaf is at most
O(logN) [32].

We extend heavy path decomposition of trees to
SLPs in a straightforward manner. We consider each
grammar variable v as a node in the directed acyclic
graph defined by the grammar (see Fig. 1(c)). For a
node v in S let S(v) be the substring induced by the
parse tree rooted at v and define the size of v to be
the length of S(v). We define the heavy paths in S
as in T from the size of each node. Since the size of a
node v in S is the number of leaves in T (v) the heavy
paths are well-defined and we may reuse all of the
terminology for trees on SLPs. In a single O(n) time
bottom-up traversal of S we can compute the sizes of
all nodes and hence the heavy path decomposition of
S.

Fast Random Access in Linear Space. Our data
structure represents the following information for
each heavy path suffix v1, . . . , vk in S.

• The length size(v1) of the string S(v1).

• The index z of vk in the left-to-right order of the
leaves in T (v1) and the character S(v1)[z].

• A predecessor data structure for the left size
sequence l0, l1, . . . , lk, where li is the sum of 1
plus the sizes of the left and light children of the
first i nodes in the heavy path suffix.

• A predecessor data structure for the right size
sequence r0, . . . , rk, where ri is the sum of 1 plus
the sizes of the right and light children of the
first i nodes in the heavy path suffix.

With this information we perform a top down
search of T as follows. Suppose that we have reached
node v1 with heavy path suffix v1, . . . , vk and our goal
is to access the character S(v1)[p]. We then compare
p with the index z of vk. There are three cases (see
Fig. 2 for an example):

1. If p = z we report the stored character S(v1)[z]
and end the search.

2. If p < z we compute the predecessor li of p in
the left size sequence. We continue the top down
search from the left child u of vi+1. The position
of p in T (u) is p− li + 1.

3. If p > z we compute the predecessor ri of
size(v1) − p in the right size sequence. We
continue the top down search from the right
child u of vi+1. The position of p in T (u)

v1

v2

v3

v4

1

l0 = 1 r0 = 1

13 2

l1 = 4
l2 = 4
l3 = 5
l4 = 5

r1 = 1
r2 = 3
r3 = 3
r4 = 3

size(v1) = 7 z = 5

Figure 2: Ancestor search in H. The left and right
size sequences for a heavy path suffix v1, v2, v3, v4.
The dotted edges are to light subtrees and the
numbers in the bottom are subtree sizes. A search
for p = 5 returns the stored character for S(v1)[z]. A
search for p = 4 computes the predecessor l2 of 4 in
the left size sequence. The search continues in the left
subtree of v3 for position p− l2 + 1 = 4− 4 + 1 = 1.
A search for p = 6 computes the predecessor r1 of
7 − 6 = 1 in the right size sequence. The search
continues in the right subtree of v2 for position p−z =
6− 5 = 1.

is p − (z +
∑k

j=i+2 size(vj)) (note that we can
compute the sum in constant time as rk − ri+2).

The total length of all heavy path suffixes is
O(n2), thus making it unattractive to treat each
suffix independently. We show how to compactly
represent all of the predecessor data structures from
the algorithm of the previous section in O(n) space,
and introduce the heavy path suffix forest H of S.
The nodes of H are the nodes of S and a node u is
the parent of v in H iff u is the heavy child of v in S.
Thus, a heavy path suffix v1, . . . , vk in S is a sequence
of ancestors from v1 in H. We label the edge from
v to its parent u by a left weight and right weight
defined as follows. If u is the left child of v in S the
left weight is 0 and the right weight is size(v′) where
v′ is the right child of v. Otherwise, the right weight
is 0 and the left weight is size(v′) where v′ is the left
child of v. Heavy path suffixes in S consist of unique
nodes and therefore H is a forest. A heavy path suffix
in S ends at one of |Σ| leaves in S and therefore H
consists of |Σ| trees each rooted at a unique character
of Σ. The total size of H is O(n) and we may easily
compute it from the heavy path decomposition of S
in O(n) time.

A predecessor query on a left size sequence and
right size sequence of a heavy path suffix v1, . . . , vk

is now equivalent to a weighted ancestor query on
the left weights and right weights of H, respectively.
Farach-Colton and Muthukrishnan [24] showed how

5

to support weighted ancestor queries in O(log logN)
time after O(n) space and preprocessing time. Hence,
if we plug this in to our algorithm we obtain
O(logN log logN) query time with O(n) preprocess-
ing time and space. In summary, we have the follow-
ing result.

Lemma 2.1. For an SLP S of size n representing a
string of length N we can support random access in
time O(logN log logN) after O(n) preprocessing time
and space.

3 Interval-Biased Search Trees

In this section we reduce the O(logN log logN) ran-
dom access time on an SLP S in Lemma 2.1 to
O(logN). Recall that O(logN log logN) was a re-
sult of performing O(logN) predecessor(p) queries,
each in O(log logN) time. In this section, we intro-
duce a new predecessor data structure – the interval-
biased search tree. Each predecessor(p) query on this
data structure requires O(log U

x) time, where x =
successor(p) – predecessor(p), and U is the universe.

To see the advantage of O(log U
x) predecessor

queries overO(log logN), suppose that after perform-
ing the predecessor query on the first heavy path of T
we discover that the next heavy path to search is the
heavy path suffix originating in node u. This means
that the first predecessor query takes O(log N

|S(u)|)
time. Furthermore, the elements in u’s left size se-
quence (or right size sequence) are all from a uni-
verse {0, 1, . . . , |S(u)|}. Therefore, the second pre-
decessor query takes O(log |S(u)|

x) where x = |S(u′)|
for some node u′ in T (u). The first two predecessor
queries thus require time O(log N

|S(u)| + log |S(u)|
x) =

O(log N
x). The time required for all O(logN) pre-

decessor queries telescopes similarly for a total of
O(logN).

We next show how to construct an interval-biased
search tree in linear time and space. Simply using this
tree on each heavy path suffix of S already results in
the following lemma.

Lemma 3.1. For an SLP S of size n representing
a string of length N we can support random access
in time O(logN) after O(n2) preprocessing time and
space.

A Description of the Tree. We now define the
interval-biased search tree associated with n̂ integers
l1 ≤ . . . ≤ ln̂ from a universe {0, 1, . . . , N̂}. For
simplicity, we add the elements l0 = 0 and ln̂+1 = N̂ .
The interval-biased search tree is a binary tree that
stores the intervals [l0, l1], [l1, l2], . . . , [ln̂, ln̂+1] with a

single interval in each node. The tree is described
recursively:

1. Let i be such that (ln̂+1 − l0)/2 ∈ [li, li+1]. The
root of the tree stores the interval [li, li+1].

2. The left child of the root is the interval-
biased search tree storing the intervals
[l0, l1], . . . , [li−1, li], and the right child is
the interval-biased search tree storing the
intervals [li+1, li+2], . . . , [ln̂, ln̂+1].

When we search the tree for a query p and reach
a node corresponding to the interval [li, li+1], we
compare p with li and li+1. If li ≤ p ≤ li+1 then
we return li as the predecessor. If p < li (resp.
p > li+1) we continue the search in the left child (resp.
right child). Notice that an interval [li, li+1] of length
x = li+1 − li such that N̂/2j−1 ≤ x ≤ N̂/2j is stored
in a node of depth at most j. Therefore, a query p
whose predecessor is li (and whose successor is li+1)
terminates at a node of depth at most j. The query
time is thus j ≤ 1+log N̂

x = O(log N̂
x) which is exactly

what we desire as x = successor(p) – predecessor(p).
We now give an O(n̂) time and space algorithm for
constructing the tree.

A Linear-Time Construction of the Tree. We
describe an O(n̂) time and space top-down construc-
tion of the interval-biased search tree storing the
intervals [lj , lj+1], . . . , [lk, lk+1]. We focus on find-
ing the interval [li, li+1] to be stored in its root.
The rest of the tree is constructed recursively so
that the left child is a tree storing the intervals
[lj , lj+1], . . . , [li−1, li] and the right child is a tree stor-
ing the intervals [li+1, li+2], . . . , [lk, lk+1].

We are looking for an interval [li, li+1] such that
i is the largest value where li ≤ (lk+1 + lj)/2 holds.
We can find this interval in O(log(k − j)) time by
doing a binary search for (lk+1 +lj)/2 in the subarray
lj , lj+1, . . . , lk+1. However, notice that we are not
guaranteed that [li, li+1] partitions the intervals in
the middle. In other words, i − j can be much
larger than k − i and vice versa. This means that
the total time complexity of all the binary searches
we do while constructing the entire tree can amount
to O(n log n) and we want O(n). To overcome
this, notice that we can find [li, li+1] in min{log(i −
j), log(k − i)} time if we use a doubling search from
both sides of the subarray. That is, if prior to the
binary search, we narrow the search space by doing a
parallel scan of the elements lj , lj+2, lj+4, lj+8, . . . and
lk, lk−2, lk−4, lk−8, This turns out to be crucial

for achieving O(n) total construction time as we now
show.

To verify the total construction time, we need
to bound the total time required for all the binary
searches. Let T (n̂) denote the time complexity of
all the binary searches, then T (n̂) = T (i) + T (n̂ −
i) + min{log i, log(n̂ − i)} for some i. Setting d =
min{i, n̂− i} ≤ n̂/2 we get that T (n̂) = T (d)+T (n̂−
d) + log d for some d ≤ n̂/2, which is equal5 to O(n̂).

Final Tuning. We need one last important property
of the interval-biased search tree6. Suppose that right
before doing a predecessor(p) query we know that
p > lk for some k. We can reduce the query time to
O(log N̂−lk

x) by computing for each node its lowest
common ancestor with the node [ln̂, ln̂+1], in a single
traversal of the tree. Then, when searching for p, we
can start the search in the lowest common ancestor
of [lk, lk+1] and [ln̂, ln̂+1] in the interval-biased search
tree.

4 Closing the Time-Space Tradeoffs for
Random Access

In this section we will use the interval-biased search
tree to achieve O(logN) random access time but
near-linear space usage and preprocessing time (in-
stead of O(n2) as in Lemma 2.1). We design a novel
weighted ancestor data structure on H via a heavy
path decomposition of H itself. We use interval-
biased search trees for each heavy path P in this
decomposition: one each for the left and right size
sequences. It is easy to see that the total size of all
these interval-biased search trees is O(n). We focus
on queries of the left size sequence, the right size se-
quence is handled similarly.

Let P be a heavy path in the decomposition, let v
be a vertex on this path, and let w(v, v′) be the weight
of the edge between v and his child v′, We denote by
b(v) the weight of the part of P below v and by t(v)
the weight above v. As an example, consider the
green heavy path P = (v5-v4-v8-v9) in Fig. 3, then
b(v4) = w(v4, v8) + w(v8, v9) and t(v4) = w(v5, v4).
In general, if P = (vk-vk−1-· · · -v1) then v1 is a leaf in
H and b(vi+1) is the i’th element in P ’s predecessor

5By an inductive assumption that T (n̂) < 2n̂− log n̂−2 we
get that T (n̂) is at most 2d− log d−2 + 2(n̂−d)− log(n̂−d)−
2 + log d = 2n̂− log(n̂− d)− 4, which is at most 2n̂− log n̂− 3
since d ≤ n̂/2.

6In fact, there exist linear-time-constructable predecessor

data structures with query complexity only O(log log N̂
x

) [51].

They are more complicated than our tree, but more impor-
tantly, their query time cannot handle N̂ reducing to N̂ − lk.

data structure. The b(·) and t(·) values of all vertices
can easily be computed in O(n) time.

Recall that given any vertex u in H and any 0 ≤
p ≤ N we need to be able to find the lowest ancestor
v of u whose weighted distance from u is at least p. If
we want the total random access time to be O(logN)
then finding v should be done in O

(
log |S(u)|

w(v,v′)

)
time

where v′ is the child of v which is also an ancestor of u.
If both u and v are on the same heavy path P in the
decomposition, a single predecessor(p′) query on P

would indeed find v in O(log t(u)
w(v,v′)) = O

(
log |S(u)|

w(v,v′)

)
time, where p′ = p + b(u). This follows from the
property we described at the end of Section 3.

The problem is thus to locate v when, in the
decomposition of H, v is on the heavy path P but
u is not. To do so, we first locate a vertex w that is
both an ancestor of u and belongs to P . Once w is
found, if its weighted distance from u is greater than
p then v = w. Otherwise, a single predecessor(p′′)
query on P finds v in O(log t(w)

w(v,v′)) time, which is

O
(

log |S(u)|
w(v,v′)

)
since t(w) ≤ |S(u)|. Here, p′′ = p

- weight(path from u to w in H) + b(w). We are
therefore only left with the problem of finding w and
the weight of the path from u to w.

A Light Representation of Heavy Paths. In
order to navigate from u up to w we introduce the
light representation L of H. Intuitively, L is a (non-
binary) tree that captures the light edges in the
heavy-path decomposition of H. Every path P in the
decomposition of H corresponds to a single vertex P
in L, and every light edge in the decomposition of H
corresponds to an edge in L. If a light edge e in H
connects a vertex w with its child then the weight of
the corresponding edge in L is the original weight of e
plus t(w). (See the edge of weight w(v4, v3)+w(v5, v4)
in Fig. 3).

The problem of locating w in H now translates to
a weighted ancestor query on L. Indeed, if u belongs
to a heavy-path P ′ then P ′ is also a vertex in L and
locating w translates to finding the lowest ancestor of
P ′ in L whose weighted distance from P ′ is at least
p − t(u). As a weighted ancestor data structure on
L would be too costly, we utilize the important fact
that the height of L is only O(log n) – the edges of
L correspond to light edges of H – and construct, for
every root-to-leaf path in L, an interval-biased search
tree as its predecessor data structure. The total time
and space for constructing these data structures is
O(n log n). A query for finding the ancestor of P ′

in L whose weighted distance from P ′ is at least

7

v1

v2 = u

v3

v4 = v�

v5 = v

l0 l1

l2

l4

l1

l2 = l3

p�

p

p�

v6

v = v5

v� = v4 = w

w(v4, v3)

v3

u = v2

v1

w(v2, v1) = l1 − l0

v8

v9

w(v4, v3)
w(v5, v4)

+

Figure 3: The parse tree T of an SLP (left), the heavy path suffix forest H (middle), and the light
representation L of H (right). The heavy path decomposition of H is marked (in green) and defines the
vertex set of L.

p− t(u) can then be done in O(log |S(u)|
t(w)) time. This

is O
(

log |S(u)|
w(v,v′)

)
as w(v, v′) ≤ t(w). We summarize

this with the following lemma.

Lemma 4.1. For an SLP S of size n representing
a string of length N we can support random access
in time O(logN) after O(n log n) preprocessing time
and space.

As noted in the Introduction, the further reduc-
tion to O(nαk(n)) space and preprocessing time is
achieved through a further decomposition of L. Intu-
itively, we partition L into disjoint trees in the spirit
of Alstrup et al. [2]. One of these trees hasO(n/ log n)
leaves and can be pre-processed using the solution
above. The other trees all have O(log n) leaves and
we want to handle them recursively. However, for the
recursion to work we will need to modify these trees so
that each has O(log n) vertices (rather than leaves).
As described in the following subsection, this is done
by another type of path decomposition – a branching
decomposition.

An Inverse-Ackerman Type Bound. We have
just seen that after O(n log n) preprocessing we can
support random access in O(logN) time. This su-
perlinear preprocessing originates in the O(n log n)-
sized data structure that we construct on L for
O
(

log |S(u)|
w(v,v′)

)
-time weighted ancestor queries. We

now turn to reducing the preprocessing to be arbi-
trarily close to linear by recursively shrinking the size
of this weighted ancestor data structure on L.

In order to do so, we perform a decomposition
of L that was originally introduced by Alstrup, Hus-

feldt, and Rauhe [2] for solving the the marked ances-
tor problem: Given the rooted tree L of n nodes, for
every maximally high node whose subtree contains
no more than log n leaves, we designate the subtree
rooted at this node a bottom tree. Nodes not in a
bottom tree make up the top tree. It is easy to show
that the top tree has at most n/log n leaves and that
this decomposition can be done in linear time.

Notice that we can afford to construct, for every
root-to-leaf path in the top tree, an interval-biased
search tree as its predecessor data structure. This
is because there will be only n/log n such data
structures and each is of size height(L) = O(log n). In
this way, a weighted ancestor query that originates in
a top tree node takes O

(
log |S(u)|

w(v,v′)

)
time as required.

The problem is therefore handling queries originating
in bottom trees.

To handle such queries, we would like to recur-
sively apply our O(n log n) weighted ancestor data
structure on each one of the bottom trees. This
would work nicely if the number of nodes in a bot-
tom tree was O(log n). Unfortunately, we only know
this about the number of its leaves. We therefore use
a branching representation B for each bottom tree.
The number of nodes in the representation B is in-
deed log n and it is defined as follows.

We partition a bottom tree into disjoint paths
according to the following rule: A node v belongs to
the same path as its child unless v is a branching-
node (has more than one child). We associate each
path P in this decomposition with a unique interval-
biased search tree as its predecessor’s data structure.
The branching representation B is defined as follows.

Every path P corresponds to a single node in B.
An edge e connecting path P ′ with its parent-path
P corresponds to an edge in B whose weight is e’s
original weight plus the total weighted length of the
path P ′ (See Fig. 4).

log n nodeslog n leaves

3

2

7

5

17

Figure 4: A bottom tree and its branching represen-
tation B. On the left is some bottom tree – a weighted
tree with log n leaves. The bottom tree can be decom-
posed into log n paths (marked in red) each with at
most one branching node. Replacing each such path
with a single node we get the branching representa-
tion B as depicted on the right. The edge-weight 17
is obtained by the original weight 3 plus the weighted
path 2+7+5.

Each internal node in B has at least two children
and therefore the number of nodes in B is O(log n).
Furthermore, similarly to Section 4, our only remain-
ing problem is weighted ancestor queries on B. Once
the correct node is found in B, we can query the
interval-biased search tree of its corresponding path
in L in O

(
log |S(u)|

w(v,v′)

)
time as required.

Now that we can capture a bottom tree with its
branching representation B of logarithmic size, we
could simply use our O(n log n) weighted ancestor
data structure on every B. This would require an
O(log n log log n)-time construction for each one of
the n/log n bottom trees for a total of O(n log log n)
construction time. In addition, every bottom tree
node v stores its weighted distance d(v) from the root
of its bottom tree. After this preprocessing, upon
query v, we first check d(v) to see whether the target
node is in the bottom tree or the top tree. Then, a
single predecessor query on the (bottom or top) tree
takes O

(
log |S(u)|

w(v,v′)

)
time as required.

It follows that we can now support random access
on an SLP in time O(logN) after only O(n log log n)
preprocessing. In a similar manner we can use this
O(n log log n) preprocessing recursively on every B to

obtain an O(n log log log n) solution. Consequently,
we can reduce the preprocessing to O(n log∗ n) while
maintaining O(logN) random access. Notice that
if we do this naively then the query time increases
by a log∗ n factor due to the log∗ n d(v) values
we have to check. To avoid this, we simply use
an interval-biased search tree for every root-to-leaf
path of log∗ n d(v) values. This only requires an
additional O(n log∗ n) preprocessing and the entire
query remains O

(
log |S(u)|

w(v,v′)

)
.

Finally, we note that choosing the recursive sizes
more carefully (in the spirit of [1,18]) can reduce the
log∗ n factor down to αk(n) for any fixed k. This
gives Theorem 4.1:

Theorem 4.1. For an SLP S of size n representing
a string of length N we can support random access in
time O(logN) after O(n · αk(n)) preprocessing time
and space for any fixed k on the pointer machine
model.

5 Biased Skip Trees

In this section we give an alternate representation of
the heavy path forest H, that supports the “biased”
predecessor search of the biased interval search tree;
the space and preprocessing are both O(n), but the
data structure uses the more powerful word RAM
model with word size O(logN) bits. For convenience
of description, the predecessor search is expressed a
little differently: suppose that we aim to access the p-
th symbol of S(v) for some node v, and suppose that
u is an ancestor of v in H (i.e. u is a heavy descendant
of v in the parse tree); assume as previously that the
desired symbol is not the symbol associated with the
root of the tree in which v is. We say that a test
at u is “true” if the desired symbol is in u’s heavy
child, and “false” otherwise; this test is perfomed in
O(1) time by storing l and r values as before. Our
objective is to find the lowest ancestor u in H of v
such that the test at u is “false”; this search should
take O(log(Wv/wu) + 1) time, where for all nodes
u ∈ H, wu = size(u′), where u′ is the light child of u,
and Wu = size(u).

Our solution uses a static version of biased skip
lists [10], generalized to trees. The initial objective
is to assign a non-negative integral color cv to each
node in v ∈ H and there is a (logical) uni-directional
linked list that points up the tree, such that all nodes
on a leaf-to-root path whose color is at least c are
linked together by a series of color-c pointers. We
defer the implementation of color-c pointers to later,
but note here only that we can follow a pointer in
O(1) time.

9

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

�������� ���� ���� ���� ���� ���� ���� ����

������������ ������������ ������������
���������������������������� ����������������������������

��

������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

root leaf

Figure 5: Diagram showing the colors assigned to a
sequence of vertices with ranks 1 (root), 2, 1, 1, 1, 1,
1, 3, 1 (leaf). The unshaded portion of the tower of a
vertex represents its rank; the shaded portion is the
“additional” pointers added by the algorithm. Solid
pointers show explicit color-c pointers that would be
stored in a biased skip list; dotted pointers shown
are examples of pointers that are available implicitly
through the nca operation.

The biased search starting at a node v will
proceed essentially as in a skip list. Let cmax

v denote
the maximum color of any ancestor of v, and cmax

the maximum color of any node in H. The search
first tests v – if the answer is “false” we are done,
otherwise, we set c = cmax

v , and the current node to
u, and suppose v′ = nca(v, c). We test at v′; if the
outcome is “true” then we set the current node to v′;
otherwise we check that v′ is not the final answer by
testing the appropriate child of v′. If v′ is not the
final answer then we set c = c− 1 and continue.

We now describe how we select the colors of the
nodes in T . For any node v, denote the rank of v to be
rv = blog2 wvc+ 1. We perform a pre-order traversal
of each tree in H. When visiting v, we initially set
cv = rv. Then, while the nearest ancestor of v with
color greater than or equal to cv has color exactly cv,
we increment cv by one (see Figure 1 for an example).
We now show:

Lemma 5.1. (1) For 1 ≤ i ≤ cmax − 1, between any
two consecutive nodes of color i there is a node of
color > i; there is exactly one node of color cmax.
(2) cmax

v ≤ 1 + log2Wv; cmax ≤ 1 + log2N . (3)
For any vertex v and ancestor u of v, cmax

v − cu =
O(log(Wv/wu)).

Proof. (1) follows by construction. For (2) and (3),
consider any path in H from a node v to the root, and
as in [10], define Ni = |{u an ancestor of v : ru = i}|
and N ′i = |{u an ancestor of v : ru ≤ i and cu ≥ i}|.
It is easy to see that:

(5.1) N ′i+1 ≤ Ni+1 +
⌊
N ′i
2

⌋

From this (2) and (3) follow as in [10]. �

From parts (1) and (3) of Lemma 5.1, it follows
that a search that starts at a node v and ends in a
node u takes O(1 + log(Wv/wu)) time. The following
lemma shows that one can assign colors to all the
nodes in H in linear time.

Lemma 5.2. Given H and the weights of the nodes,
we can compute all node colors in O(n) time.

Proof. To assign the colors, keep a cmax-bit counter
(which fits into one word); the counter is initialized to
0. We perform a pre-order traversal of H, and when
we have visited a node v, the counter contains a 1 in
bit position i (the least significant bit is position 1
and the most significant is position cmax) if there is
an ancestor of v (including v itself) with color i, such
that there is no other node with color > i between v
and this ancestor. Upon arriving at a node v for the
first time, we first compute rv. Taking the value of
the counter at v’s parent to be x, we set the lowest-
order rv − 1 bits of x to 1, and add 1 to the result,
giving a value x′. The counter value for v is in fact x′,
and is stored with v. To compute the color of v, we
compute the bit-wise exclusive-OR of x and x′, and
find the position of the most significant 1 bit in the
result. The implementation of the above in constant
time requires standard O(1)-time bit-wise operations,
most notably the O(1)-time computation of the MSB
of a single word [23,26]. �

Nearest Colored Ancestor Problem. We con-
sider the following problem: Given a rooted ordered
tree T with n nodes, each of which is assigned a color
from {1, 2, . . . , σ}, preprocess T to answer the follow-
ing query in O(1) time:
nca(v, c): given a node v ∈ T and a color c, find the
lowest ancestor of v in T whose color is ≥ c.

We will use this data structure for every tree
in H; clearly, the nca operation simulates following
color-c pointers, thus enabling biased search. To
address our application, we consider the problem in
the setting where word size w is equal to the number
of colors, σ. Our goal is to preprocess T in O(n) time,
and store it in a data structure of size O(n) words
(i.e., O(nσ) bits) to support in O(1)-time not only
nca() but also navigation queries, such as finding the
distance between an ancestor and descendant, and
choosing the i-th level-ancestor of a given node.

We partition the string BP of length 2n that
stores the balanced parenthesis sequence of the given

n-node tree into blocks of size b = min{σ, lg n}.
Every node in the tree belongs to either one or
two different blocks. For each block we identify a
representative node which is the LCA of all the nodes
whose corresponding parentheses are in that block.
Thus there are O(n/b) representative nodes. Our
main idea is to preprocess each block so that queries
whose answer lies within the block can be answered
efficiently, as summarized in the following lemma. In
addition, in linear time we compute and store all the
answers for all the representative nodes.

Lemma 5.3. Given a block containing b nodes where
each node is associated with a color from the range
[1, σ], one can construct a O(n lg σ)-bit structure in
o(b) time such nca queries whose answer lies within
the same block can be answered in constant time.

Proof. Our first step is to reduce the set of colors
within a block from σ to O(b). (If σ = b, this
step is omitted.) For each block, we obtain a sorted
list of all colors that appear in that block. This
can be done in linear time by sorting the pairs
〈block number, colori〉, where colori is the color of
the i-th node (i.e., the node corresponding to the i-
th parenthesis) in the block, using radix sort.

Let c1 < c2 < · · · < ck, for some k ≤ b, be
the set of all distinct colors that appear in a given
block. Define succ(c) to be the smallest ci such that
ci ≥ c. Observe that nca(x, c) = nca(x, succ(c)), if
the answer is within the block. For each block, we
store the sorted sequence c1, c2, . . . , ck of all distinct
colors that appear in the block using an atomic
heap [27], to support succ() queries in constant time.

The range of colors in each block is now reduced
to at most b. Thus, we need to answer the nca() query
in a block of size b where the nodes are associated
with colors in the range [1, b]. Using b lg b bits, we
store the string consisting of the “reduced” colors
of the nodes, in the same order as the nodes in the
block. For each color c, 1 ≤ c ≤ b, we build a o(b)-
bit auxiliary structure that enables us to answer the
query nca(x, c) in constant time, for any node x in
the block if the answer lies within the block.

We divide each block (of size b = lg n) into sub-
blocks of size s = ε lg n/ lg lg n, for some positive
constant ε < 1. If the answer to an nca() query lies
in the same sub-block as the query node, then we can
find the answer using pre-computed tables, as all the
information related to a sub-block (the parenthesis
sequence and the ‘reduced’ color information of the
nodes) fits in O(lg n) bits – the constant factor can
be made less than 1/2 by choosing the parameter ε in
the sub-block size appropriately. If the answer to the

query does not lie in the same sub-block, but with
in the same block, then we first determine the sub-
block (within the block) which contains the answer.
To do this efficiently, we store the following additional
information, for each block.

Given a reduced color c in the block and a
position i within the block (corresponding to a node
x), we define the colored excess of the position (with
respect to the representative of the block) as the
number of nodes with color c in the path from x
to rep(x). For every reduced color in the range
[1 . . . b] and every sub-block, we compute and store
the minimum and maximum colored excess values
within the sub-block. Using this information for all
the sub-blocks within a block, and for any particular
color, we can find the sub-block containing the answer
to a query with respect to that color (in constant
time, using precomputed tables of negligible size).
As there are b/s sub-blocks and b colors within each
block, and the values stored for each sub-block are
in the range [0 . . . b], the information stored for each
block is O((b/s)b lg b) = O(b(lg lg n)2) bits. Thus,
over all the blocks, the space used is O(n(lg lg n)2)
bits, which is o(n) words. The computation of this
information for all the sub-blocks can be performed
in O(n) time as explained below.

The total size of the information we need to
store for each sub-block isO(s(lg lg n)2) = O(b lg lg n)
bits, and we need to be able to read the information
corresponding to all the sub-blocks within a block,
corresponding to any particular color, by reading
a constant number of O(lg n)-bit “words”. For
this, we divide the range of colors (i.e., the range
[1 . . . b]) into chunks of size d = s/ lg lg n, and write
down the information corresponding to all the sub-
blocks within a block, and of all the colors within a
chunk, which fits in O(lg n) bits. Thus we can read
the information corresponding to all the sub-blocks
within a block, corresponding to any particular color,
by reading these O(lg n)-bits. We use precomputed
tables to produce the information corresponding to
each sub-block, and for all the colors within each
chunk. Hence each sub-block has to be “processed”
O(b/d) times (as there are b/d chunks). Thus the
total time spent producing the information for all the
sub-blocks and for all the chunks for each block is
O((b/s)(b/d)) = O(lg lg n)3. Thus the overall time
spent for all the blocks is O((n/b)(lg lg n)3) = o(n).
�

For each representative node x, we will store an
array A of size σ such that Ax[c] = nca(x, c), for
1 ≤ c ≤ σ. As there are O(n/b) representative

11

nodes, and each entry in Ax takes lg n bits, the total
space used by arrays of all the representative nodes
is O((n/b)σ lg n) bits which is O(nσ). We will now
describe how these arrays can be constructed with
linear preprocessing time.

We first prove the following properties about the
representative nodes.

Lemma 5.4. For each node x, at least one of these
three statements is true: (i) nca(x, c) lies in the
(first) block to which x belongs, (ii) nca(x, c) =
rep(x), or (iii) nca(x, c) = nca(rep(x), c).

Proof. The lemma follows from the following two
observations:

• Either nca(x, c) = parent(x), or nca(x, c) =
nca(parent(x), c).

• rep(x) is either the highest ancestor of x that
is within the block containing x, or the lowest
ancestor of x that is outside the block containing
x. (This follows from the fact that any block that
contains nodes x and y also contains all the nodes
along the path between x and y in the tree.) �

Lemma 5.5. Each representative node (except the
root) has an ancestor within a height of at most b
from its level.

Proof. Consider the lowest b−1 ancestors of a repre-
sentative node x. Either the highest node, y, among
these which is within the same block as x, or y’s par-
ent, z is a representative. Note that y is the LCA of
all nodes between x and y, and if the block contains
a sibling of y, then z is the LCA of all nodes in the
block. �

The root of the tree is a representative node,
and the array for it consists of all null pointers.
Traverse the tree in preorder, skipping all the non-
representative nodes. When a representative node
x is reached, we will scan its ancestors starting
from x up to its lowest ancestor, y, that is also a
representative. Let Ay be the array stored at node y.
During this upward scan, we will generate an array
B of length σ as follows.

We keep track of the largest color value cmax

encountered at any point during the upward scan,
and the first cmax entries of the array B are filled. In
each step of the scan, if we encounter a node whose
color value is at most cmax, we simply skip this node.
On the other hand, if we encounter a node whose
color value, c, is larger than cmax, then we set the
entries B[cmax + 1], . . . , B[c] to be pointers to the

current node. We also update the value cmax to be
the new value c. We now copy Ay to another array,
and overwrite the first cmax values of Ay with the first
cmax values of B. The resulting array is the array Ax

that will be stored at node x. Generating the array B
takes O(lg n+ b) time, as the length of B is O(lg n),
and it is “extended” at most b times. Entries of B
are written using bit operations on words (note that
the word size is σ). Thus the overall running time to
generate all the arrays at the representative nodes is
O((n/b)(b+ lg n)) = O(n).

By plugging in this data structure in place of in-
terval biased search trees, we get part(ii) of Theo-
rems 1.1, 1.2 and 1.3.

6 Substring Decompression

We now extend our random access solutionsto effi-
ciently support substring decompression. Note that
we can always decompress a substring of length m
using m random access computations. In this sec-
tion we show how to do it using just 2 random access
computations and additional O(m) time. This imme-
diately implies Theorem 1.1.

We extend the representation of S as follows. For
each node v in S we add a pointer to the next descen-
dant node on the heavy path suffix for v whose light
child is to the left of the heavy path suffix and to
the right of the heavy path suffix, respectively. This
increases the space of the data structure by only a
constant factor. Furthermore, we may compute these
pointers during the construction of the heavy path de-
composition of S without increasing the asymptotic
complexity.

We decompress a substring S[i, j] of length m =
j−i as follows. First, we compute the lowest common
ancestor v of the search paths for i and j by doing
a top-down search for i and j in parallel. We then
continue the search for i and j independently. Along
each heavy-path on the search for i we collect all
subtrees to the left of the heavy path in a linked list
using the above pointers. The concatenation of the
linked list is the roots of subtrees to left of the search
path from v to i. Similarly, we compute the linked
list of subtrees to the right of the search path from v
to j. Finally, we decode the subtrees from the linked
lists thereby producing the string S[i, j].

With our added pointers we construct the linked
lists in time proportional to the length of the lists
which is O(m). Decoding each subtree uses time
proportional to the size of the subtree. The total
sizes of the subtrees is O(m) and therefore decoding
also takes O(m) time. Adding the time for the two

random access computations for i and j we obtain
Theorem 1.1.

7 Compressed Approximate String
Matching

We now show how to efficiently solve the compressed
approximate string matching problem for grammar-
compressed strings. Let P and be string of length m
and let k be an error threshold. We assume that the
algorithms for the uncompressed problem produces
the matches in sorted (as is the case for all solution
that we are aware of). Otherwise, additional time for
sorting should be included in the bounds.

To find all approximate occurrences of P within
S without decompressing S we combine our substring
decompression solution from the previous section
with a technique for compressed approximate string
matching on LZ78 and LZW compressed string [12].

We find the occurrences of P in S in a single
bottom-up traversal of S using an algorithm for
(uncompressed) approximate string matching as a
black-box. At each node v in S we compute the
matches of P in S(v). If v is a leaf we decompress
the single character string S(v) in constant time
and run our approximate string matching algorithm.
Otherwise, suppose that v has left child vl and right
child vr. We have that S(v) = S(vl) · S(vr). We
decompress the substring S′ of S(v) consisting of the
min{|S(vl)|,m + k} last characters of S(vl) and the
min{|S(vr)|,m+ k} first characters of S(vr) and run
our approximate string matching algorithm on P and
S′. We compute the set of matches of P in S(v)
by merging the list of matches from the matches
of P in S(vl), S(vr), S′ (we assume here that our
approximate string matching algorithm produces list
of matches in sorted order). This suffices since any
approximate match with at most k errors starting in
S(vl) and ending in S(vr) must be contained within
S′.

For each node v in S we decompress a substring of
length O(m+k) = O(m), solve an approximate string
matching problem between two strings of length
O(m), and merge lists of matches. Since there are
n nodes in S we do n substrings decompression
and approximate string matching computations on
strings of length m in total. The merging is done
on disjoint matches in S and therefore takes O(occ)
time, where occ is the total number of matches of P
in S. With our substring decompression result from
Theorem 1.1 and an arbitrary approximate string
matching algorithm we obtain Theorem 1.2.

8 Random Access to Compressed Trees

Here we consider the problem of representing an
ordered rooted tree T (of arbitrary degree) with N
nodes, where each node is labelled with a character
from Σ, where T is compressed by sharing identical
subtrees, giving a DAG with n nodes (see Fig. 6).

a

b d c a

c d bb

c d

c

b

d

b

c d

A

B

C
D

E

F

G H

I

J

K

L

M

N

O

P Q

((()())((()()))(())((())((()()))))
A B C D E F G H I J K L M N O P Q

Figure 6: A compressed labelled tree given as a DAG
and its balanced parentheses representation.

Theorem 8.1. Given labelled tree T with N nodes
that is compressed to a rooted DAG G with m edges
and n nodes, there is a representation of T that
takes O(m) words of space and supports the following
navigational operations on T in O(logN) time:

• select(x): return the node with preorder number
x,

• access(x): return the label associated with node
x,

• parent(x): return the parent of node x,

• depth(x): return the depth of node x,

• height(x): return the height of node x,

• subtree size(x): return the size of the subtree
rooted at x,

• first child(x): return the first child of x,

• next sibling(x): return the sibling immediately
to the right of x,

13

• level ancestor(x, i): return the ancestor x at
level i, and

• LCA(x): return the lowest common ancestor of
the nodes x and y.

()
()

(A)
(

)A

(AB)
(

A

)B

(

))

(

()

()

(

)

)

(

()

(

)

a

b

c

d

d

c

b

a

34

33

27

19

15

14

13

9

8

7

6

5

2 3

2
4

3

2

Figure 7: The SLP representing the balanced paren-
thesis string of the tree in Fig. 6 – numbers above an
internal node (non-terminal) represent the lengths of
strings output by that non-terminal. Heavy paths are
shown by red arrows – there are three in all.

1 6 8 4 1 4 1 1 2 1 1 1 1 1 1

(
a

1 1 1 1

(
c

(
b

(
a

(
d

(
b

(
d

1 1

(
c

)))

)))))

Figure 8: The left and right size sequences for the
three heavy paths in the SLP of Fig. 7.

Proof. First we create an SLP representing the bal-
anced parentheses representation [46] of the tree T

1 6 8 4 1 4 1 1 2 1 1 1 1 1 1
1 7 15 19 20 24 25 26 28 29 30 31 32 33 34

size
prefix sum

[16,19]

[8,15]

[2,7]

[1,1]

[27,28]

[21,24]

[20,20]
[25,25]

[26,26]

[32,32]

[30,30]

[29,29] [31,31]

[34,34]

[33,33]
(
a

[1,1]

[2,2](
c

)

[2,2]

[1,1] [3,3]

[4,4](
c

(
b

)

)

(
a (

d

(
b

(
d

)

)

)

)

)

Figure 9: The interval-biased search trees. Each
internal nodes have left and right children, shown in
black. The “middle” child pointer (in red) is either
a pointer to a terminal node, a pointer to another
node, or a pair of pointers to leaves (pair indicated
in blue).

6,2
1,3,1

1,1
1,1,1

8,2
1,4,1

7,1
1,3,2

4,2
1,3,1

[1,1] [2,7]

[8,15]

[16,19]

15,1
1,4,3

1,2
2,2,1
[20] [21,24]

4,3
2,4,1

1,3
3,3,1

1,4
4,4,1

2,3
3,4,1

[25] [26]

7,2
2,4,2

2,5
4,5,1

[27,28]

1,5
5,5,1

1,4
4,4,1

1,3
3,3,1

3,5
3,5,1

[29] [30] [31]

1,0
0,0,1

1,1
1,1,1

[33] [34]

1,2
2,2,1
[32]

2,1
0,1,1

6,5
0,5,1

15,2
0,5,1

34,1
0,5,1 size, start

min, max, #min

((()())((()()))(())((())((()()))))
1232321234343212321234323454543210

Figure 10: The range min-max tree of the tree.
Colours in the “excess” values correspond to the sub-
ranges of the parenthesis bit-string represented by
leaves of the min-max tree.

as follows. For each node x of the DAG G with
k ≥ 0 children, we create k + 1 non-terminal nodes
x0, . . . , xk. The node x0 and xk has ’(’ and ’)’ as
its left and right child, respectively. The node xi

(0 ≤ i ≤ k − 1) has xi+1 as its right child, and the
node xj (1 ≤ j ≤ k) has the corresponding represen-

tation of the i-th child of the node x of G (see Fig. 7).
Clearly, the size of this SLP is O(m).

Next we apply the heavy path decomposition
for the SLP of T based on the size of the string
generated by each nonterminal. For each heavy
path, we make the left and right size sequences and
concatenate them into one, reversing the right size
sequence (see Fig. 8). By doing so, the numbers
in the combined size sequence represent consecutive
sub-strings of the balanced parenthesis string. Then
we construct the interval-biased search tree for each
heavy path, and associate each each node of the
interval-biased search tree the substring generated
by the light child it represents; we store with each
node the interval [s, t] ⊂ [1, 2N] of positions in the
balanced parentheses sequence spanned by that light
child. Each node in the interval search tree has
(possibly null) left and right children, and also has an
extra “middle” child, which represents the balanced
parentheses sequence associated with that interval
search tree node. The “middle” child is either a
leaf, which corresponds to a single character in the
sequence, a pointer to another node of the SLP, or a
pair of pointers to two leaves of the SLP. A pair of
pointers to the leaf a at position pa and the leaf b at
position pb represents the interval [pa, pb] ⊂ [1, 2n] of
the balanced parentheses sequence.

By using this data structure, any interval of
length x can be represented by a subtree of height
at most 1 + log x, or two subtrees of height at
most 1 + log x, and the lowest common ancestor of
the roots of the subtrees. Therefore an interval-
biased search for finding an interval of length y takes
O(log(x/y)) time. This means that the i-th character
of the balanced parenthesis sequence is obtained in
O(logN) time. Similarly, by using the range min-
max tree [53], we can perform all the desired tree
operations in O(logN) time. To accomplish this,
we store, in each node of the SLP, the subtree size,
minimum, maximum, and start value of the excess
values in the subtree, and the number of minimum
excess values in the subtree (see Fig. 10).

References

[1] N. Alon and B. Schieber. Optimal preprocessing for
answering on-line product queries. Technical report,
TR-71/87, Institute of Computer Science, Tel Aviv
University, 1987.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked
ancestor problems. In Proceedings of the 39th an-
nual symposium on Foundations Of Computer Sci-
ence (FOCS), pages 534–543, 1998.

[3] A. Amir, G. Benson, and M. Farach. Let sleeping
files lie: Pattern matching in Z-compressed files.
Journal of Comp. and Sys. Sciences, 52(2):299–307,
1996.

[4] A. Amir, G. Landau, and D. Sokol. Inplace 2d
matching in compressed images. In Proc. of the
14th annual ACM-SIAM Symposium On Discrete
Algorithms, (SODA), pages 853–862, 2003.

[5] A. Amir, M. Lewenstein, and E. Porat. Faster
algorithms for string matching with k mismatches.
J. Algorithms, 50(2):257–275, 2004. Announced at
SODA 2000.

[6] A. Apostolico and S. Lonardi. Some theory and
practice of greedy off-line textual substitution. In
Proc. IEEE Data compression conference, pages
119–128, 1998.

[7] A. Apostolico and S. Lonardi. Compression of bio-
logical sequences by greedy off-line textual substitu-
tion. In Proc. IEEE Data compression conference,
pages 143–152, 2000.

[8] A. Apostolico and S. Lonardi. Off-line compres-
sion by greedy textual substitution. Proc. IEEE,
88(11):1733–1744, 2000.

[9] O. Arbell, G. M. Landau, and J. Mitchell. Edit
distance of run-length encoded strings. Information
Processing Letters, 83(6):307–314, 2001.

[10] A. Bagchi, A. L. Buchsbaum, and M. Goodrich.
Biased skip lists. Algorithmica, 42:31–48, 2005.

[11] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased
search trees. SIAM J. Comput., 14(3):545–568,
1985.

[12] P. Bille, R. Fagerberg, and I. L. Gørtz. Improved
approximate string matching and regular expression
matching on ziv-lempel compressed texts. ACM
Transactions on Algorithms. To appear. Announced
at CPM 2007.

[13] P. Buneman, B. Choi, W. Fan, R. Hutchison,
R. Mann, and S. Viglas. Vectorizing and query-
ing large xml repositories. In ICDE, pages 261–272.
IEEE Computer Society, 2005.

[14] H. Bunke and J. Csirik. An improved algorithm
for computing the edit distance of run length coded
strings. Information Processing Letters, 54:93–96,
1995.

[15] G. Busatto, M. Lohrey, and S. Maneth. Efficient
memory representation of xml document trees. Inf.
Syst., 33(4-5):456–474, 2008.

[16] P. Cégielski, I. Guessarian, Y. Lifshits, and
Y. Matiyasevich. Window subsequence problems for
compressed texts. In Proc. of the 1st symp. on Com-
puter Science in Russia (CSR), pages 127–136, 2006.

[17] M. Charikar, E. Lehman, D. Liu, R. Panigrahy,
M. Prabhakaran, A. Sahai, and A. Shelat. The
smallest grammar problem. IEEE Transactions on
Information Theory, 51(7):2554–2576, 2005. An-
nounced at STOC 2002 and SODA 2002.

[18] B. Chazelle and B. Rosenberg. Computing partial

15

sums in multidimensional arrays. In Proceedings of
the 5th annual ACM Symposium on Computational
Geometry (SCG), pages 131–139, 1989.

[19] F. Claude and G. Navarro. Self-indexed text com-
pression using straight-line programs. In Proc.
34th Mathematical Foundations of Computer Sci-
ence, volume 5734 of Lecture Notes in Computer
Science, pages 235–246, 2009.

[20] R. Cole and R. Hariharan. Approximate string
matching: A simpler faster algorithm. SIAM J.
Comput., 31(6):1761–1782, 2002.

[21] M. Crochemore, G. Landau, and M. Ziv-Ukelson.
A subquadratic sequence alignment algorithm for
unrestricted scoring matrices. SIAM Journal on
Computing, 32:1654–1673, 2003.

[22] O. Delpratt, R. Raman, and N. Rahman. En-
gineering succinct dom. In A. Kemper, P. Val-
duriez, N. Mouaddib, J. Teubner, M. Bouzeghoub,
V. Markl, L. Amsaleg, and I. Manolescu, editors,
EDBT, volume 261 of ACM International Confer-
ence Proceeding Series, pages 49–60. ACM, 2008.

[23] F. Ellen. Constant-time operations for words of
length w. 1999.

[24] M. Farach and S. Muthukrishnan. Perfect hash-
ing for strings: Formalization and algorithms. In
Proceedings of the 7th Symposium on Combinatorial
Pattern Matching (CPM), pages 130–140. Springer,
1996.

[25] P. Ferragina, F. Luccio, G. Manzini, and
S. Muthukrishnan. Compressing and indexing la-
beled trees, with applications. J. ACM, 57(1), 2009.

[26] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic bound with fusion trees. J.
Comput. Syst. Sci., 47(3):424–436, 1993.

[27] M. L. Fredman and D. E. Willard. Trans-
dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci.,
48(3):533–551, 1994.

[28] P. Gage. A new algorithm for data compression.
The C Users J., 12(2):23 – 38, 1994.

[29] L. Gasieniec, R. Kolpakov, I. Potapov, and P. Sant.
Real-time traversal in grammar-based compressed
files. In Proceedings of the Data Compression Con-
ference, pages 458–458, 2005.

[30] L. Gasieniec and I. Potapov. Time/space effi-
cient compressed pattern matching. Fundam. Inf.,
56(1,2):137–154, 2003.

[31] T. Hagerup. Sorting and searching on the word ram.
In M. Morvan, C. Meinel, and D. Krob, editors,
STACS, volume 1373 of Lecture Notes in Computer
Science, pages 366–398. Springer, 1998.

[32] D. Harel and R. E. Tarjan. Fast algorithms for find-
ing nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[33] D. Hermelin, S. Landau, G. Landau, and
O. Weimann. A unified algorithm for accelerating
edit-distance via text-compression. In Proc. of the

26th International Symposium on Theoretical As-
pects of Computer Science (STACS), pages 529–540,
2009.

[34] J. Iacono. private communication. 2010.
[35] J. Karkkainen, G. Navarro, and E. Ukkonen. Ap-

proximate string matching over Ziv-Lempel com-
pressed text. In Proc. of the 11th symposium
on Combinatorial Pattern Matching (CPM), pages
195–209, 2000.

[36] J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing
and sublinear-size index structures for string match-
ing. In Proc. of the 3rd South American Workshop
on String Processing (WSP), pages 141–155, 1996.

[37] J. C. Kieffer and E. H. Yang. Grammar based codes:
A new class of universal lossless source codes. IEEE
Trans. Inf. Theory, 46(3):737–754, 2000.

[38] J. C. Kieffer, E. H. Yang, G. J. Nelson, and P. Cos-
man. Universal lossless compression via multi-
level pattern matching. IEEE Trans. Inf. Theory,
46(5):1227 – 1245, 2000.

[39] D. E. Knuth. Optimum binary search trees. Acta
Informatica, 1:14–25, 1971.

[40] G. M. Landau and U. Vishkin. Fast parallel and
serial approximate string matching. J. Algorithms,
10(2):157–169, 1989.

[41] J. N. Larsson and A. Moffat. Off-line dictionary-
based compression. Proc. IEEE, 88(11):1722 – 1732,
2000. Announced at DCC 1999.

[42] Y. Lifshits. Processing compressed texts: A
tractability border. In Proc. of the 18th symposium
on Combinatorial Pattern Matching (CPM), pages
228–240, 2007.

[43] V. Makinen, G. Navarro, and E. Ukkonen. Approxi-
mate matching of run-length compressed strings. In
Proc. of the 12th Symposium On Combinatorial Pat-
tern Matching (CPM), pages 1–13, 1999.

[44] U. Manber. A text compression scheme that allows
fast searching directly in the compressed file. In
Proc of the 5th Symposium On Combinatorial Pat-
tern Matching (CPM), pages 31–49, 1994.

[45] K. Mehlhorn. Nearly optimal binary search trees.
Acta Informatica, 5:287–295, 1975.

[46] J. I. Munro and V. Raman. Succinct representation
of balanced parentheses and static trees. SIAM
Journal on Computing, 31(3):762–776, 2001.

[47] J. I. Munro and S. S. Rao. Succinct representa-
tions of functions. In International Colloquium on
Automata, Languages and Programming (ICALP),
pages 1006–1015, 2004.

[48] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, 2001.

[49] G. Navarro, T. Kida, M. Takeda, A. Shinohara,
and S. Arikawa. Faster approximate string match-
ing over compressed text. In Proc. of the 11th
Data Compression Conference (DCC), pages 459–
468, 2001.

[50] C. G. Nevill-Manning and I. H. Witten. Identifying

hierarchical strcture in sequences: A linear-time
algorithm. J. Artif. Intell. Res. (JAIR), 7:67–82,
1997.

[51] M. Pǎtraşcu. private communication. 2009.
[52] W. Rytter. Application of Lempel-Ziv factorization

to the approximation of grammar-based compres-
sion. Theoretical Computer Science, 302(1-3):211–
222, 2003.

[53] K. Sadakane and G. Navarro. Fully-Functional
Succinct Trees. In Proc. ACM-SIAM SODA, pages
134–149, Jan. 2010.

[54] P. Sellers. The theory and computation of evolution-
ary distances: Pattern recognition. J. Algorithms,
1(4):359–373, 1980.

[55] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda,
A. Shinohara, T. Shinohara, and S. Arikawa. Byte
Pair encoding: A text compression scheme that
accelerates pattern matching. Technical Report
DOI-TR-161, Department of Informatics, Kyushu
University, 1999.

[56] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda,
A. Shinohara, T. Shinohara, and S. Arikawa. Speed-
ing up pattern matching by text compression. In
Proc. of the 4th Italian Conference Algorithms and
Complexity (CIAC), pages 306–315, 2000.

[57] R. E. Tarjan. Data Structures and Network Algo-
rithms. SIAM, 1983.

[58] T. A. Welch. A technique for high-performance data
compression. IEEE Computer, 17(6):8–19, 1984.

[59] E. H. Yang and J. C. Kieffer. Efficient universal
lossless data compression algorithms based on a
greedy sequential grammar transform – part one:
Without context models. IEEE Trans. Inf. Theory,
46(3):755–754, 2000.

[60] J. Ziv and A. Lempel. On the complexity of
finite sequences. IEEE Transactions on Information
Theory, 22(1):75–81, 1976.

[61] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

17

