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Abstract. We show how to represent sets in a linear space data struc-
ture such that expressions involving unions and intersections of sets can
be computed in a worst-case efficient way. This problem has applications
in e.g. information retrieval and database systems. We mainly consider
the RAM model of computation, and sets of machine words, but also
state our results in the I/O model. On a RAM with word size w, a
special case of our result is that the intersection of m (preprocessed)
sets, containing n elements in total, can be computed in expected time
O(n(log w)2/w + km), where k is the number of elements in the inter-
section. If the first of the two terms dominates, this is a factor w1−o(1)

faster than the standard solution of merging sorted lists. We show a
cell probe lower bound of time Ω(n/(wm log m) + (1 − log k

w
)k), meaning

that our upper bound is nearly optimal for small m. Our algorithm uses
a novel combination of approximate set representations and word-level
parallelism.

1 Introduction

Algorithms and data structures for sets play an important role in computer
science. For example, the relational data model, which has been the dominant
database paradigm for decades, is based on set representation and manipulation.
Set operations also arise naturally in connection with database queries that can
be expressed as a boolean combination of simpler queries. For example, search
engines report documents that are present in the intersection of several sets
of documents, each corresponding to a word in the query. If we fix the set of
documents to be searched, it is possible to spend time on preprocessing all sets,
to decrease the time for answering queries.

The search engine application has been the main motivation in several recent
works on computing set intersections [14, 5, 13]. All these papers assume that
elements are taken from an ordered set, and are accessed through comparisons.
In particular, creating the canonical representation, a sorted list, is the best pos-
sible preprocessing in this context. The comparison-based model rules out some
algorithms that are very efficient, both in theory and practice. For example, if the
preprocessing produces a hashing-based dictionary for each set, the intersection
of two sets S1 and S2 can be computed in expected time O(min(|S1|, |S2|)). This
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is a factor Θ(log(1 + max( |S1|
|S2| ,

|S2|
|S1| ))) faster than the best possible worst-case

performance of comparison-based algorithms.
In this paper we investigate non-comparison-based techniques for evaluating

expressions involving unions and intersections of sets on a RAM. (In the search
engine application this corresponds to expressions using AND and OR opera-
tors.) Specifically, we consider the situation in which each set is required to be
represented in a linear space data structure, and propose the multi-resolution
set representation, which is suitable for efficient set operations. We show that it
is possible in many cases to achieve running time that is sub-linear in the total
size of the input sets and intermediate results of the expression. For example, we
can compute the intersection of a number of sets in a time bound that is sub-
linear in the total size of the sets, plus time proportional to the total number of
input elements in the intersection. In contrast, all previous algorithms that we
are aware of take at least linear time in the worst case over all possible input
sets, even if the output is the empty set. The time complexity of our algorithm
improves as the word size w of the RAM grows. While the typical word size
of a modern CPU is 64 bits, modern CPU design is superscalar meaning that
several independent instructions can be executed in parallel. This means that in
most cases (with the notable exception of multiplication) it is possible to sim-
ulate operations on larger word sizes with the same (or nearly the same) speed
as operations on single words. We expect that word-level parallelism may gain
in importance, as a way of making use of the increasing parallelism of modern
processor architectures.

1.1 Related Work

Set Union and Intersection. The problem of computing intersections and
unions (as well as differences) of sorted sets was recently considered in a number
of papers (e.g. [14, 5]) in an adaptive setting. A good adaptive algorithm uses a
number of comparisons that is close (or as close as possible) to the size of the
smallest set of comparisons that determine the result. In the case of two sorted
sets, this is the number of interleavings when merging the sets. In the worst case
this number is linear in the size of the sets, in which case the adaptive algorithm
performs no better than standard merging. However, adaptive algorithms are
able to exploit “easy” cases to achieve smaller running time. Mirzazadeh in his
thesis [17] extended this line of work to arbitrary expressions with unions and
intersections. These results are incomparable to those obtained in this paper:
Our algorithm is faster for most problem instances, but the adaptive algorithms
are faster in certain cases. It is instructive to consider the case of computing the
intersection of two sets of size n where the size of the intersection is relatively
small. In this case, an optimal adaptive algorithm is faster than our algorithm
only if the number of interleavings of the sorted lists (i.e., the number of sublists
needed to form the sorted list of the union of the sets) is less than around n/w.

Another idea that has been studied is, roughly speaking, to exploit asymmetry.
Hwang and Lin [15] show that merging two sorted lists S1 and S2 requires
Θ(|S1| log(1 + |S2|

|S1| )) comparisons, for |S1| < |S2|, in the worst case over all
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input lists. This is significantly less than O(|S1| + |S2|) if |S1| � |S2|. This
result was generalized to computation of general expressions involving unions
and intersections of sets by Chiniforooshan et al. [13]. Given an expression, and
the sizes of the input sets, their algorithm uses a number of comparisons that
is asymptotically equal to the minimum number of comparisons required in the
worst case over all such sets.1 The bounds stated in [13] do not involve the size
of the output, meaning that they pessimistically assume the output to be the
largest possible, given the expression and the set sizes. In contrast, our bounds
will be output sensitive, i.e., involve also the size of the result of the expression.
We further compare our result to that of [13] in section 1.2.

Approximate Set Representations. There has been extensive previous work
on approximate set representations, mainly motivated by applications in network-
ing and distributed systems [8]. Much of this work builds upon the seminal paper
on Bloom filters [7]. A Bloom filter for a set S is an approximate representation of
S in the sense that for any x �∈ S the filter can be used to determine that x �∈ S with
probability close to 1. However, for an ε fraction of elements not in S, called false
positives, the Bloom filter is consistent with a set that includes these elements.
The advantage of allowing some false positives, rather than storing S exactly, is
that the space usage drops to around O(n log(1/ε)) bits, practically independent
of the size of the universe of which S is a subset. Two Bloom filters for sets S1 and
S2 can be combined to form a Bloom filter for S1 ∩ S2 (resp. S1 ∪ S2), in a very
simple way: By taking bitwise AND (resp. OR) of the data structures.

Bloom filters have been used in connection with computation of relational
joins, which are essentially multiset intersections, in the I/O model of computa-
tion. The idea is to use a Bloom filter for the smaller set to efficiently find most
elements of the larger set that are not in the intersection. If the Bloom filter
can fit into internal memory, this is a highly efficient procedure for reducing the
amount of data that needs to be considered in the join. The algorithm presented
in this paper also uses approximate set representations to eliminate elements
that will not contribute to the result. However, using Bloom filters does not ap-
pear to yield an efficient solution, essentially because the information pertaining
to a particular element of S is distributed across the data structure. This makes
it hard to locate the set of input elements represented by a particular Bloom
filter. Instead, we use the approximate set representation of Carter et al. [11]
(see also [18]), which consists of storing, in a compact way, the image of the set
under a universal hash function.

1.2 Setup and Results

We consider fully parenthesized expressions with binary operators. That is, we
have a rooted binary tree with input sets at the leaves and internal nodes
1 After personal communication with the authors, we have had confirmed that the

algorithm described in [13] is not optimal in certain cases. Specifically, it does not
always compute the union of sets in the optimal bound. However, the authors have
informed us that the algorithm can be slightly modified to remove this problem.
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corresponding to union and intersection operations. Given the sizes of all in-
put sets, we may associate with any node v two numbers (notation from [13]):

– ψ(v) is the maximum possible number of elements in the subexpression
rooted at v. (Can be computed bottom-up by summing child values at union
nodes, and choosing the minimum child value at intersection nodes.)

– ψ∗(v) is the maximum possible number of elements in the subexpression
rooted at v that can appear in the final result. This is the minimum value
of ψ(v) on the path from v to the root.

We denote by V the set of nodes in the expression (internal as well as leaves),
and let v0 denote the root node.

Theorem 1. Given suitably preprocessed sets of total size n, we can compute the
value of an expression with binary union and intersection operators in expected
time O(k′ +

∑
v∈V �ψ∗(v)

w log2( nw
ψ∗(v) )�), where k′ is the number of occurrences in

the input of elements in the result. Preprocessing of a set of size n1 uses linear
space and expected time O(n1 log w).

Theorem 1 requires some effort to interpret. We will first state some special cases
of the result, and then discuss the general result towards the end of the section.
It is not hard to see that the terms in the sum of Theorem 1 corresponding to
intersection nodes do not affect the asymptotic value. That is, we could alterna-
tively sum over the set of leaf nodes and union nodes in the expression. In the
case where the expression is an intersection of m sets we can further improve
our algorithm and analysis to get the following result:

Theorem 2. Given m preprocessed sets of total size n, we can compute the
intersection of the sets in expected time O(n log2 w/w + km), where k is the
number of elements in the intersection.

We show the following lower bound, implying that the time complexity of Theo-
rem 2 is within a factor (log w)2m log m of optimal, assuming w = (1+Ω(1)) log n.
Our lower bound applies to the class of functions whose union-intersection expres-
sion has an intersection operation on any root-to-leaf path (an element needs to
be in at least two input sets to appear in the result). Note that if there is a path
consisting of only union operations, there exists a set where all elements must be
included in the result, so this requirement is no serious restriction.

Theorem 3. Let f be a function of m sets given by a union-intersection ex-
pression with an intersection node on any root-to-leaf path. For integers n and
k ≤ n/m, any (randomized) algorithm in the cell probe model that takes represen-
tations of sets S1, . . . , Sm ⊆ {0, 1}w, where

∑
i |Si| ≤ n and |f(S1, . . . , Sm)| ≤ k,

and computes |f(S1, . . . , Sm)| must use expected time at least Ω(n/(wm log m)+
(1 − log k

w )k) on a worst-case input. The lower bound holds regardless of how the
sets are represented.

Possibly the best way of understanding the general result in Theorem 1 is to
compare the complexity to the comparison-based algorithm of [13]. Though it
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might not result in the best running time for our algorithm, we make the com-
parison in the case where any group of adjacent union operators is arranged
as a perfectly balanced tree in the expression tree (we could modify our al-
gorithm to always make this change to the expression). The algorithm of [13]
takes an expression where operators have unbounded degree, and where union
and intersection nodes alternate. It can be applied in our setting by combining
groups of adjacent union and intersection operators. The time usage is at least
Ω(k′ +

∑
v∈V ψ∗(v)) (in fact, the complexity also involves a logarithmic factor

on each term, but it is not easily comparable to the factor in our result). Thus,
if the word length is sufficiently large, e.g. w = (log n)ω(1), our algorithm gains
a factor w1−o(1) compared to [13].

We observe that all our results immediately imply nontrivial results in the I/O
model [1]. For the upper bounds, this is because any RAM algorithm can be simu-
lated in the same I/O bound as long as w is bounded by the number of bits in a disk
block. In other words, if B is the number of words in a disk block, we can get I/O
bounds by replacing w by Bw in the results. In fact, the power of 2 in the bounds
can be reduced to 1 in this setting, as the I/O model does not count the cost of
computation. Our lower bound also holds in the I/O model, with w replaced by
Bw, independently of the size of internal memory. (The same proof applies.)

1.3 Technical Overview

Our results are obtained through non-trivial combination of several known tech-
niques. We use the idea of Carter el al. [11] to obtain an approximate represen-
tation of a set by storing a set h(S) of hash function values rather than the set
S itself. Storing the approximation in a näıve way (using at least log n bits per
element) does not lead to a significant speedup in general. Instead, a compact
representation of the set h(S) is needed. We use a bucketed set representation, as
in the dictionary of Brodnik and Munro [9], to get a compact representation of
h(S) that is suitable for word-parallel set operations. Specifically, we show how
set operations on small integers packed in words can be efficiently implemented,
using ideas from [2, 3]. This allows us to quickly approximate the intersection
of any two sets in the sense that we get a compressed list of references to the
elements in the intersection plus a small fraction of the elements not in the inter-
section. To compute the intersection we compute the intersection of the subsets
of “candidates” in the standard way, using hashing. The generalization to the
case of expressions involving arbitrary unions and intersections is an extension
of this idea, using a variant of a technique from [13] to keep the sizes of the
sets we have to deal with as small as possible. Our lower bound is shown by a
reduction to multi-party communication complexity.

2 Main Algorithm and Data Structure

In this section we present most of our algorithm and data structure, postponing
the material on word-level parallelism to Section 3 (which is used as a blackbox
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in this section). Specifically, we show how to reduce the problem of performing
unions and intersections on sets of words to the problem of performing these
operations on sets from a smaller universe. Due to space constraints we refer to
the technical report version of this paper [6] for the time and space analysis.

2.1 Overview of Special Case: Intersection

We first present the main ideas in the case where the expression is an intersection
of m sets. The basis of the approach is to map elements of {0, 1}w to a smaller
universe using a hash function h, and compute the intersection H = h(S1)∩· · ·∩
h(Sm). Now, if x ∈ S1∩· · ·∩Sm then h(x) ∈ H . On the other hand, if x �∈ S1∩· · ·∩
Sm then, if h is suitably chosen, we will have h(x) �∈ H with probability close to
1. Thus, we can regard H as representing a good approximation of S1 ∩· · ·∩Sm.
In particular, if we compute the sets S′

i = {x ∈ Si | h(x) ∈ H}, i = 1, . . . , m,
we expect that S′

i does not contain many elements of Si\(S1 ∩ · · · ∩ Sm). Since
Si ⊇ S′

i ⊇ S1 ∩ · · · ∩ Sm we can compute the intersection of S1, . . . , Sm as
S′

1 ∩ · · · ∩ S′
m — using a standard linear time hashing-based algorithm. The

challenge of this approach is to keep the cost of computing H and the sets S′
i

low. We store preprocessed, compressed representations of the sets h(Si) using
only O(log w) bits per hash value, which allows us to compute H in time that
is sub-linear in the size of the input sets. The elements of S′

i are extracted in
additional time O(|Si|). The details of these steps appear in sections 2.3 and 3.
Readers mainly interested in the case of computing a single intersection may
skip the description of the general case in the next subsection.

2.2 The General Case

In the rest of the paper we let f denote the function of m input sets given by
the expression to be evaluated. Since f(S1, . . . , Sm) is monotone in the sense
that adding an element to an input set can never remove an element from
f(S1, . . . , Sm) we have that for any x ∈ f(S1, . . . , Sm) it holds that h(x) ∈
f(h(S1), . . . , h(Sm)). This means we can compute f(S1, . . . , Sm) by the follow-
ing steps:

1. Compute H = f(h(S1), . . . , h(Sm)).
2. For all i compute the set S′

i = {x ∈ Si | h(x) ∈ H}.
3. Compute f(S′

1, . . . , S
′
m) to get the result.

We will show how, starting with a suitable, compressed representation of the
sets h(S1), . . . , h(Sm), we can efficiently perform the first two steps such that
the sets S′

i are significantly smaller than the Si in the following sense: Most of
the elements that do not occur in f(S1, . . . , Sm) have been removed. This means
that, except for negligible terms, the time for performing the third step, using
the standard linear time hashing-based algorithm, depends on the number of
input elements in the output rather than on the size of the input. Conceptually,
the first step computes the expression on approximate representations of the
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sets S1, . . . , Sm. Then the information extracted from this is used to create a
smaller problem instance with the same result, which is then used to produce
the answer.

Assume for now that h is given, and that we have access to data structures
for h(S1), . . . , h(Sm). The details on how to choose h appear in Section 2.3. The
computation of f(h(S1), . . . , h(Sm)) is done bottom-up in the expression tree
in the same order as the algorithm of [13]: For an intersection node v we first
recursively process the child subtree whose root has the smallest value of ψ∗

— the children of union nodes are processed recursively in arbitrary order. We
adopt another idea of [13]: If the set computed for the subtree rooted at v has size
more than 2ψ∗(v), we reduce the size of the set to at most ψ∗(v) by computing
the intersection with the smallest child set of an intersection node on the path
from v to the root. Observe that this will only remove elements that are not in
the output. Due to the way we traverse the expression tree, the relevant child
set will already have been computed. For every node v in the expression tree,
we store the result Iv of the subexpression rooted at v.

For the root node v0 define I ′
v0

= Iv0 . To compute the sets S′
i we first tra-

verse the tree top-down and compute for every non-root node v the intersection
I ′

v = I ′
v ∩ I′

p(v), where p(v) is the parent node of v. Observe that, by induction,
I ′

v = Iv ∩ f(h(S1), . . . , h(Sm)). We will see that the time for this procedure is
dominated by the time for computing f(h(S1), . . . , h(Sm)). At the end we have
computed h(S′

i) = f(h(S1), . . . , h(Sm)) ∩ h(Si) for all i. All that remains is to
find the corresponding elements of S′

i, which is easily done by looking up the
hash function values in a hash table that stores h(Si) with the corresponding
elements of Si as satellite information.

Finally, we compute f(S′
1, . . . , S

′
m) by first identifying all duplicate elements

in the sets (by inserting them in a common hash table), keeping track of which
set each element comes from. Then for each element decide whether it is in the
output by evaluating the expression. This can be done in time proportional to the
number of occurrences of the element: First annotate each leaf and intersection
node in the expression tree with the nearest ancestor that is an intersection node.
Then compute the set corresponding to each intersection node bottom-up. The
time spent on an intersection node is bounded by the total size of the sets at
intersection nodes immediately below it, but the intersection of these sets has
size at most half of the total size. This implies the claimed time bound by a
simple accounting argument.

2.3 Data Structure

The best choice of h depends on the particular expression and size of input sets.
For example, when computing the intersection S1 ∩S2 we want the range of h to
have size significantly larger than the smaller set (S1, say). This will imply that
most elements in h(S2\S1) will not be in h(S1), and there will be a significant
reduction of the problem instance in step 2 of the main algorithm. On the other
hand, the time and space usage grows with the size of the range of the hash
function used, so it should be chosen no larger than necessary. In conclusion, to
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be able to choose the most suitable one in a given situation, we wish to store
the image of every set under several hash functions, differing in the size of their
range. The images of the set under various hash functions can be thought of
as representations of the set at different resolutions. Hence, we name our data
structure the multi-resolution set representation. As we show in the full version
of this paper [6], it suffices to use a hash function with range {0, 1}r, where
r = log n + O(log w) and n is the total size of the input sets.

The hash functions will all be derived from a single “mother” hash function
h∗, a strongly universal hash function [10, 19] with values in the range {0, 1}w.
This is a global hash function that is shared for all sets. The hash function hr, for
1 ≤ r ≤ w is defined by hr(x) = h∗(x) div 2w−r, where “div” denotes integer
division (we use the natural correspondence between bit strings and nonnegative
integers). Note that hr has function values of r bits. To store hr(S) for a particular
set S, r ≥ log |S|+1, requires |hr(S)|(r − log |hr(S)|+Θ(1)) bits, by information
theoretical arguments. Since we may have |hr(S)| = |S| the space usage could
be as high as |S|(r − log |S| + Θ(1)). Note that the required space per element is
constant when r ≤ log |S| + O(1), and then grows linearly with r.

If we store hr(S) for all r, log |S| < r ≤ w, the space usage may be Ω(w)
times that of storing S itself. To achieve linear space usage we store hr(S) only
for selected values of r, depending on |S|, namely r ∈ {�log |S|� + 2i | i =
0, 1, 2, . . . , 
log(w − log |S|)�}. These sets are stored using the bucketed set rep-
resentation of Section 3 which gives a space usage for hr(S) of O(|S|(r− log |S|+
log w)) bits. To get the representation of hr(S) for arbitrary r we access the
stored representation of hr′ , where r′ > r, and throw away the r′ − r least sig-
nificant bits of its elements (see Section 3 for details). Choosing r′ as small as
possible minimizes the time for this step. We build the bucketed set representa-
tion of the largest value of r in O(|S|) time by hashing, and then apply Lemma 4
iteratively to get the structures for the lower values of r.

The final thing we need is a hash table that allows us to look up a value hr(x)
and retrieve the element(s) in S that have this value of hr. This can be done by
using the �log |S|� most significant bits of hr as index into a chained hash table.
Since the values of these bits are common for all hr, log |S| < r ≤ w, we only
need to store a single hash table. Note that the size of the hash table is Θ(|S|),
which means that the expected lookup time is constant.

3 Bucketed and Packed Sets

We describe two representations of sets of elements from a small universe and
provide efficient algorithms for computing union and intersection in the represen-
tations. Proofs of the lemmas in this section can be found in the full version [6].

3.1 Packed Sets

Given a parameter f we partition words into k = w/(f + 1) substrings, called
fields, numbered from right to left. The most significant bit of a field is called
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the test bit and the remaining f -bits are called the entry. A word is viewed as
an array A capable of holding up to k bit strings of length f . If the ith test bit is
1 we consider the ith field to be vacant. Otherwise the field is occupied and the
bit string in the ith entry is interpreted as the binary encoding of a non-negative
integer. If |A| > k we can represent it in �|A|/k� words; each storing up to k
elements. We call an array represented in this way a packed array with parameter
f (or simply packed array if f is understood from the context). For our purposes
we will always assume that fields are capable of storing the total number of fields
in a word, that is, f ≥ log k. In the following we present a number of useful ways
to manipulate packed arrays.

Suppose A is a packed array containing x occupied fields. Then, compacting A
means moving all the occupied fields into the first x fields of A while maintaining
the order among them.

Lemma 1 (Andersson et al. [3]). A packed array A with parameter f can be
compacted in O

(
|A|

⌈
f2/w

⌉)
time.

Let X = x1, . . . , xm be a sequence of f -bit integers. If X is given as a packed
array with parameter f , such that the ith field, 1 ≤ i ≤ m, holds xi, we say that
X is a packed sequence with parameter f . We use the following result:

Lemma 2 (Albers and Hagerup [2]). Two sorted packed sequences X1 and
X2 with parameter f can be merged into a single sorted packed sequence in
O

(
(|X1| + |X2|)

⌈
f2/w

⌉)
time.

We refer to a sorted, packed sequence of integers as a packed set.

Lemma 3. Given packed sets S1 and S2 with parameter f , the packed sets S1 ∪
S2 and S1 ∩ S2 with parameter f can be computed in O

(
(|S1| + |S2|)

⌈
f2/w

⌉)

time.

3.2 Bucketed Sets

Let S be a set of l-bit integers. For a given parameter b ≤ l we partition S
into 2b subsets, S0, . . . , S2b−1, called buckets. Bucket Si contain all values in the
range [2i(l−b), 2(i+1)(l−b) − 1], and therefore all values in Si agree on the b most
significant bits. Hence, to represent Si it suffices to know the b most significant
bits together with the set of the l − b least significants bits. We can therefore
compactly represent S by an array of length 2b, where the ith entry points to
the packed set (with parameter l − b) of the l − b least significant bits of Si. We
say that S is a bucketed set with parameter b if it is given in this representation.
Note that such an encoding of S uses O(2bw + |S|(l − b)) bits. As above, we
assume that fields in packed sets are capable of holding the number of fields in
a word, that is, we assume that (l − b) ≥ log w − log(l − b + 1)) in any bucketed
set. We need the following results to manipulate bucketed sets.

Lemma 4. Let S be a bucketed set of l-bit integers with parameter b. Then,

1. Given an integer b′ we can convert S into a bucketed set with parameter b′

in time O
(
2max(b,b′) + |S|

⌈
(l − min(b, b′))2/w

⌉)
.
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2. Given an integer b < x ≤ l we can compute the bucketed set S′ = {j div 2x |
j ∈ S} of l − x bit integers with parameter b in O

(
2b + |S|

⌈
(l − b)2/w

⌉)

time.

Let S be a bucketed set of l-bit integers with parameter b. We say that S is
a balanced bucketed set if b is the largest integer such that b ≤ log |S| − log w.
Intuitively, this choice of b balances the space for the array of buckets and the
packed sets representing the buckets. Since l ≥ log |S| the condition implies that
l − b ≥ l − log |S| + log w ≥ log w − log(l − b + 1). Hence, the field length of the
packed sets representing the buckets in S is as required. Also, note that the space
for a balanced bucketed set S is O(2bw + |S|(l − b)) = O(|S|(l − log |S|+log w)).

Lemma 5. Let S1 and S2 be balanced bucketed sets of l-bit integers. The bal-
anced bucketed sets S1 ∪ S2 and S1 ∩ S2 can be computed in time

O
(
(|S1| + |S2|)

⌈
(l − log(|S1| + |S2|) + log w)2/w

⌉)
.

If l = Θ(log(|S1| + |S2|)) Lemma 5 provides a speedup by a factor of w/ log2 w.

4 Lower Bound

In this section we show Theorem 3. The proof uses known bounds from t-party
communication complexity, where t communicating players are required to com-
pute a function of n-bit strings x1, . . . , xt, where xi is held by player i, using
as little communication as possible. We consider the blackboard model where a
bit communicated by one player is seen by all other players, and consider the
following binary functions:

EQ(x1, x2) which has value 1 iff x1 = x2. (Here t = 2.)
DISJn,t(x1, . . . , xt) which has value 1 iff there is no position where two bit

strings xi and xj both have a 1 (i.e., all pairs are “disjoint”). We consider
this problem under the unique intersection assumption, where either all pairs
are disjoint, or there exists a single position where all bit strings have a 1.
We allow the protocol to behave in any way if this is not the case.

Solving EQ exactly requires communication of Ω(n) bits, for both deterministic
and randomized protocols [20,16]. That is, the trivial protocol where one player
communicates her entire bit string is optimal. Chakrabarti at al. [12], based
on work by Bar-Yossef et al. [4], showed that solving DISJn,t exactly requires
Ω(n/(t log t)) bits of communication in expectation, even under the unique in-
tersection assumption and when the protocol is randomized.

Our main observation is that if sets S1, . . . , St have been independently pre-
processed, we can view any algorithm that computes f(S1, . . . , St) as a commu-
nication protocol where each player holds a set. Whenever the algorithm accesses
the representation of Si it corresponds to w bits being sent by player i. Formally,
given any (possibly randomized) algorithm that computes |f(S1, . . . , St)|, where
S1, . . . , St have been individually preprocessed in an arbitrary way, we derive
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communication protocols for EQ and DISJn,t, and use the lower bounds for
these problems to conclude a lower bound on the expected number of steps used
by the algorithm. We note that this reduction from communication complex-
ity is different from the reduction from asymmetric communication complexity
commonly used to show data structures lower bounds.

Let n and k, 1 ≤ k ≤ n/t, denote integers such that the algorithm correctly
computes |f(S1, . . . , St)| provided that the sum of sizes of the sets is at most n+1,
and that |f(S1, . . . , St)| ≤ k. Let τ denote the number of cell probes on a worst-
case input of this form. Given vectors x1, . . . , xt ∈ {0, 1}n satisfying the unique
intersection assumption, we consider the sets Si = {j | xi has a 1 in position j}
and their associated representations (which could be chosen in a randomized
fashion). Observe that the total size of the sets is at most n + 1, and that
|f(S1, . . . , St)| = 0 if and only S1, . . . , St are disjoint (using the assumptions
on f). By simulating the algorithm on these representations, we get a commu-
nication protocol for DISJ using τw bits in expectation. By the lower bound
on DISJn,t we thus have τw = Ω(n/(t log t)) on a worst case input, i.e., τ =
Ω(n/(wt log t)) cell probes are needed.

Consider the function f ′(S1, S2) = f(S1, . . . , S1, S2). Clearly, a lower bound
on the cost of computing f ′ applies to f as well. We denote by

({0,1}w

k

)
the set

of subsets of {0, 1}w having size k. Let q = 
log2 |
({0,1}w

k

)
|�, and let φ be any

injective function from {0, 1}q to
({0,1}w

k

)
. Given two vectors x, y ∈ {0, 1}q we

consider the sets S1 = φ(x) and S2 = φ(y), which satisfy |f ′(S1, S2)| ≤ k and
(t−1)|S1|+ |S2| ≤ n. Since φ is injective, we have that x = y iff |f ′(S1, S2)| = k.
Thus, similar to above we get a communication protocol for EQ that uses τw
bits in expectation on a worst-case input. By the lower bound on EQ we have
τ = Ω(q/w), implying that τ = Ω(k(w − log2 k)/w). The maximum of our two
lower bounds is a factor of at most two from the sum stated in the theorem,
finishing the proof.

5 Conclusion and Open Problems

We have shown how to use two algorithmic techniques, approximate set repre-
sentations and word-level parallelism, to accelerate algorithms for basic set op-
erations. Potentially, the results (or techniques) could have a number of applica-
tions in problem domains such as databases (relational, textual,. . . ) where some
preprocessing time (indexing) may be invested to keep the cost of queries low.

It is an interesting problem whether our results can be extended to handle
non-monotone set operators such as set difference. The technical problem here
is that one would have to deal with two-sided errors in the estimates of the in-
termediate results.

Acknowledgement. We thank Mikkel Thorup for providing us useful insight
on the use of word-level parallelism on modern processors.
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