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Abstract. In this paper we revisit the classical regular expression
matching problem, namely, given a regular expression R and a string
Q consisting of m and n symbols, respectively, decide if Q matches one
of the strings specified by R. We present new algorithms designed for a
standard unit-cost RAM with word length w ≥ log n. We improve the
best known time bounds for algorithms that use O(m) space, and when-
ever w ≥ log2 n, we obtain the fastest known algorithms, regardless of
how much space is used.

1 Introduction

Regular expressions are a powerful and simple way to describe a set of strings.
For this reason, they are often chosen as the input language for text processing
applications. For instance, in the lexical analysis phase of compilers, regular ex-
pressions are often used to specify and distinguish tokens to be passed to the
syntax analysis phase. Utilities such as Grep, the programming language Perl,
and most modern text editors provide mechanisms for handling regular expres-
sions. These applications all need to solve the classical Regular Expression
Matching problem, namely, given a regular expression R and a string Q, decide
if Q matches one of the strings specified by R.

The standard textbook solution, proposed by Thompson [8] in 1968, con-
structs a non-deterministic finite automaton (NFA) accepting all strings match-
ing R. Subsequently, a state-set simulation checks if the NFA accepts Q. This
leads to a simple O(nm) time and O(m) space algorithm, where m and n are the
number of symbols in R and Q, respectively. The full details are reviewed later
in Sec. 2 and can found in most textbooks on compilers (e.g. Aho et. al. [1]).
Despite the importance of the problem, it took 24 years before the O(nm) time
bound was improved by Myers [6] in 1992, who achieved O( nm

log n +(n+m) logn)
time and O( nm

log n ) space. For most values of m and n this improves the O(nm)
algorithm by a O(log n) factor. Currently, this is the fastest known algorithm.
Recently, Bille and Farach-Colton [3] showed how to reduce the space of My-
ers’ solution to O(n). Alternatively, they showed how to achieve a speedup of
O(log m) while using O(m) space, as in Thompson’s algorithm. These results are
all valid on a unit-cost RAM with w-bit words and a standard instruction set
including addition, bitwise boolean operations, shifts, and multiplication. Each
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word is capable of holding a character of Q and hence w ≥ log n. The space
complexities refer to the number of words used by the algorithm, not counting
the input which is assumed to be read-only. All results presented here assume
the same model. In this paper we present new algorithms achieving the following
complexities:

Theorem 1. Given a regular expression R and a string Q of lengths m and n,
respectively, Regular Expression Matching can be solved using O(m) space
with the following running times:

⎧
⎪⎨

⎪⎩

O(nm log w
w + m log w) if m > w

O(n log m + m log m) if
√

w < m ≤ w

O(min(n + m2, n log m + m log m) if m ≤ √
w.

This represents the best known time bound among algorithms using O(m) space.
To compare these with previous results, consider a conservative word length of
w = log n. When the regular expression is ”large”, e.g., m > log n, we achieve
an O( log n

log log n ) speedup over Thompson’s algorithm using O(m) space. Hence, we
simultaneously match the best known time and space bounds for the problem,
with the exception of an O(log log n) factor in time. More interestingly, consider
the case when the regular expression is ”small”, e.g., m = O(log n). This is
usually the case in most applications. To beat the O(n log n) time of Thompson’s
algorithm, the fast algorithms [6,3] essentially convert the NFA mentioned above
into a deterministic finite automaton (DFA) and then simulate this instead.
Constructing and storing the DFA incurs an additional exponential time and
space cost in m, i.e., O(2m) = O(n). However, the DFA can now be simulated
in O(n) time, leading to an O(n) time and space algorithm. Surprisingly, our
result shows that this exponential blow-up in m can be avoided with very little
loss of efficiency. More precisely, we get an algorithm using O(n log log n) time
and O(log n) space. Hence, the space is improved exponentially at the cost of
an O(log log n) factor in time. In the case of an even smaller regular expression,
e.g., m = O(

√
log n), the slowdown can be eliminated and we achieve optimal

O(n) time. For larger word lengths our time bounds improve. In particular, when
w > log n log log n the bound is better in all cases, except for

√
w ≤ m ≤ w,

and when w > log2 n it improves all known time bounds regardless of how much
space is used.

The key to obtain our results is to avoid explicitly converting small NFAs
into DFAs. Instead we show how to effectively simulate them directly using the
parallelism available at the word-level of the machine model. The kind of idea
is not new and has been applied to many other string matching problems, most
famously, the Shift-Or algorithm [2], and the approximate string matching algo-
rithm by Myers [7]. However, none of these algorithms can be easily extended to
Regular Expression Matching. The main problem is the complicated de-
pendencies between states in an NFA. Intuitively, a state may have long paths of
ε-transitions to a large number of other states, all of which have to be traversed
in parallel in the state-set simulation. To overcome this problem we develop sev-
eral new techniques ultimately leading to Theorem 1. For instance, we introduce
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a new hierarchical decomposition of NFAs suitable for a parallel state-set simu-
lation. We also show how state-set simulations of large NFAs efficiently reduces
to simulating small NFAs.

The results presented in this paper are primarily of theoretical interest. How-
ever, we believe that most of the ideas are useful in practice. The previous
algorithms require large tables for storing DFAs, and perform a long series of
lookups in these tables. As the tables become large we can expect a high number
of cache-misses during the lookups, thus limiting the speedup in practice. Since
we avoid these tables, our algorithms do not suffer from this defect.

The paper is organized as follows. In Sec. 2 we review Thompson’s NFA
construction, and in Sec. 3 we present the above mentioned reduction. In Sec. 4
we present our first simple algorithm for the problem which is then improved in
Sec. 5. Combining these algorithms with our reduction leads to Theorem 1.

2 Regular Expressions and Finite Automata

In this section we briefly review Thompson’s construction and the standard state-
set simulation. The set of regular expressions over an alphabet Σ are defined
recursively as follows: A character α ∈ Σ is a regular expression, and if S and T
are regular expressions, then so is the catenation, S · T , the union, S|T , and the
star, S∗ (we often remove the · when writing regular expressions). The language
L(R) generated by R is the set of all strings matching R. The parse tree T (R) of
R is the binary rooted tree representing the hiearchical structure of R. Each leaf
is labeled by a character in Σ and each internal node is labeled either ·, |, or ∗.
A finite automaton is a tuple A = (V, E, δ, θ, φ), where V is a set of nodes called
states, E is set of directed edges between states called transitions, δ : E → Σ∪{ε}
is a function assigning labels to transitions, and θ, φ ∈ V are distinguished
states called the start state and accepting state, respectively. 1 Intuitively, A is
an edge-labeled directed graph with special start and accepting nodes. A is a
deterministic finite automaton (DFA) if A does not contain any ε-transitions,
and all outgoing transitions of any state have different labels. Otherwise, A is a
non-deterministic automaton (NFA). We say that A accepts a string Q if there
is a path from θ to φ such that the concatenation of labels on the path spells out
Q. Thompson [8] showed how to recursively construct a NFA N(R) accepting
all strings in L(R). The rules are shown in Fig. 1.

Readers familiar with Thompson’s construction will notice that N(ST ) is
slightly different from the usual construction. This is done to simplify our later
presentation and does not affect the worst case complexity of the problem. Any
automaton produced by these rules we call a Thompson-NFA (TNFA). By con-
struction, N(R) has a single start and accepting state, denoted θ and φ, re-
spectively. θ has no incoming transitions and φ has no outgoing transitions.
The total number of states is 2m and since each state has at most 2 outgoing
transitions that the total number of transitions is at most 4m. Furthermore, all
1 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for

our purposes.
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Fig. 1. Thompson’s NFA construction. The regular expression for a character α ∈ Σ

correspond to NFA (a). If S and T are regular expression then N(ST ), N(S|T ), and

N(S∗) correspond to NFAs (b), (c), and (d), respectively. Accepting nodes are marked

with a double circle.

incoming transitions have the same label, and we denote a state with incoming
α-transitions an α-state. Note that the star construction in Fig. 1(d) introduces
a transition from the accepting state of N(S) to the start state of N(S). All
such transitions are called back transitions and all other transitions are forward
transitions. We need the following property.

Lemma 1 (Myers [6]). Any cycle-free path in a TNFA contains at most one
back transition.

For a string Q of length n the standard state-set simulation of N(R) on Q
produces a sequence of state-sets S0, . . . , Sn. The ith set Si, 0 ≤ i ≤ n, consists
of all states in N(R) for which there is a path from θ that spells out the ith prefix
of Q. The simulation can be implemented with the following simple operations.
For a state-set S and a character α ∈ Σ, define

Move(S, α): Return the set of states reachable from S via a single α-transition.
Close(S): Return the set of states reachable from S via 0 or more ε-transitions.

Since the number of states and transitions in N(R) is O(m), both operations
can be easily implemented in O(m) time. The Close operation is often called
an ε-closure. The simulation proceeds as follows: Initially, S0 := Close({θ}). If
Q[j] = α, 1 ≤ j ≤ n, then Sj := Close(Move(Sj−1, α)). Finally, Q ∈ L(R) iff
φ ∈ Sn. Since each state-set Sj only depends on Sj−1 this algorithm uses O(mn)
time and O(m) space.

3 From Large to Small TNFAs

In this section we show how to simulate N(R) by simulating a number of smaller
TNFAs. We will use this to achieve our bounds when R is large.
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Fig. 2. (a) The parse tree for the regular expression ac|a∗b. (b) A clustering of (a)

into node-disjoint connected subtrees C1, C2, and C3, each with at most 3 nodes. (c)

The clustering from (b) extended with pseudo-nodes. (d) The nested decomposition of

N(ac|a∗b). (e) The TNFA corresponding to C1.

3.1 Clustering Parse Trees and Decomposing TNFAs

Let R be a regular expression of length m. We first show how to decompose
N(R) into smaller TNFAs. This decomposition is based on a simple clustering
of the parse tree T (R). A cluster C is a connected subgraph of T (R) and a cluster
partition CS is a partition of the nodes of T (R) into node-disjoint clusters. Since
T (R) is a binary tree with O(m) nodes, a simple top-down procedure provides
the following result:

Lemma 2. Given a regular expression R of length m and a parameter x, a
cluster partition CS of T (R) can be constructed in O(m) time such that |CS| =
O(	m/x
), and for any C ∈ CS, the number of nodes in C is at most x.

For a cluster partition CS, edges adjacent to two clusters are external edges and
all other edges are internal edges. Contracting all internal edges in CS induces
a macro tree, where each cluster is represented by a single macro node. Let Cv

and Cw be two clusters with corresponding macro nodes v and w. We say that
Cv is the parent cluster (resp. child cluster) of Cw if v is the parent (resp. child)
of w in the macro tree. The root cluster and leaf clusters are the clusters corre-
sponding to the root and the leaves of the macro tree. An example clustering of
a parse tree is shown in Fig. 2(b). Given a cluster partition CS of T (R) we show
how to divide N(R) into a set of small nested TNFAs. Each cluster C ∈ CS
will correspond to a TNFA A, and we use the terms child, parent, root, and
leaf for the TNFAs in the same way we do with clusters. For a cluster C ∈ CS
with children C1, . . . , Cl, insert a special pseudo-node pi, 1 ≤ i ≤ l, in the mid-
dle of the external edge connecting C with Ci. We label each pseudo-node by a
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special character β �∈ Σ. Let TC be the tree induced by the set of nodes in C and
{p1, . . . , pl}. Each leaf in TC is labeled with a character from Σ∪{β}, and hence
TC is a well-formed parse tree for some regular expression RC over Σ∪{β}. Now,
the TNFA A corresponding to C is N(RC). In A, child TNFA Ai is represented
by its start and accepting state θAi and φAi and a pseudo-transition labeled β
connecting them. An example of these definitions is given in Fig. 2. We call any
set of TNFAs obtained from a cluster partition as above a nested decomposition
AS of N(R). From Lemma 2 we have:

Lemma 3. Given a regular expression R of length m and a parameter x, a
nested decomposition AS of N(R) can be constructed in O(m) time such that
|AS| = O(	m/x
), and for any A ∈ AS, the number of states in A is at most x.

3.2 Simulating Large Automata

We now show how N(R) can be simulated using the TNFAs in a nested de-
composition. For this purpose we define a simple data structure to dynamically
maintain the TNFAs. Let AS be a nested decomposition of N(R) according to
Lemma 3, for some parameter x. Let A ∈ AS be a TNFA, let SA be a state-
set of A, let s be a state in A, and let α ∈ Σ. A simulation data structure
supports the five operations: MoveA(SA, α), CloseA(SA), MemberA(SA, s), and
InsertA(SA, s). Here, the operations MoveA and CloseA are defined exactly as in
Sec. 2, with the modification that they only work on A and not N(R). The oper-
ation MemberA(SA, s) return yes if s ∈ SA and no otherwise and InsertA(SA, s)
returns the set SA ∪ {s}.

In the following sections we consider various efficient implementations of sim-
ulation data structures. For now assume that we have a black-box data structure
for each A ∈ AS. To simulate N(R) we proceed as follows. First, fix an ordering
of the TNFAs in the nested decomposition AS, e.g., by a preorder traversal of
the tree represented given by the parent/child relationship of the TNFAs. The
collection of state-sets for each TNFA in AS are represented in a state-set array
X of length |AS|. The state-set array is indexed by the above numbering, that
is, X [i] is the state-set of the ith TNFA in AS. For notational convenience we
write X [A] to denote the entry in X corresponding to A. Note that a parent
TNFA share two states with each child, and therefore a state may be repre-
sented more than once in X . To avoid complications we will always assure that
X is consistent, meaning that if a state s is in included in the state-set of some
TNFA, then it is also included in the state-sets of all other TNFAs that share s.
If S = ∪A∈ASX [A] we say that X models the state-set S and write S ≡ X .

Next we show how to do a state-set simulation of N(R) using the operations
MoveAS and CloseAS , which we define below. These operations recursively up-
date a state-set array using the simulation data structures. For any A ∈ AS,
state-set array X , and α ∈ Σ define

MoveAS(A, X, α): 1. X [A] := MoveA(X [A], α)
2. For each child Ai of A do

(a) X := MoveAS(Ai, X, α)



New Algorithms for Regular Expression Matching 649

(b) If φAi ∈ X [Ai] then X [A] := InsertA(X [A], φAi)
3. Return X

CloseAS(A, X): 1. X [A] := CloseA(X [A])
2. For each child Ai of A in topological order do

(a) If θAi ∈ X [A] then X [Ai] := InsertAi(X [Ai], θAi)
(b) X := CloseAS(Ai, X)
(c) If φAi ∈ X [Ai] then X [A] := InsertA(X [A], φAi)
(d) X [A] := CloseA(X [A])

3. Return X

The MoveAS and CloseAS operations recursively traverses the nested decom-
position top-down processing the children in topological order. At each child
the shared start and accepting states are propagated in the state-set array. For
simplicity, we have written MemberA using the symbol ∈.

The state-set simulation of N(R) on a string Q of length n produces the
sequence of state-set arrays X0, . . . , Xn as follows: Let Ar be the root automa-
ton and let X be an empty state-set array (all entries in X are ∅). Initially,
set X [Ar] := InsertAr (X [Ar], θAr ) and compute X0 := CloseAS(Ar, CloseAS(Ar ,
X)). For i > 0 we compute Xi from Xi−1 as follows:

Xi := CloseAS(Ar, CloseAS(Ar , MoveAS(Ar, Xi−1, Q[i])))

Finally, we output Q ∈ L(R) iff φAr ∈ Xn[Ar]. To see that this algorithm
correctly solves Regular Expression Matching it suffices to show that for
any i, 0 ≤ i ≤ n, Xi correctly models the ith state-set Si in the standard state-set
simulation. We need the following lemma.

Lemma 4. Let X be a state-set array and let Ar be the root TNFA in a nested
decomposition AS. If S is the state-set modeled by X, then

– Move(S, α) ≡ MoveAS(Ar , X, α) and
– Close(S) ≡ CloseAS(Ar , CloseAS(Ar, X)).

The proof is left for the full version of the paper. Intuitively, the 2 calls to CloseAS

produce the set of states reachable via a path of forward ε-transitions, and the
set of states reachable via a path of forward ε-transitions and at most 1 back
transition, respectively. By Lemma 1 it follows that this is the correct set.

By Lemma 4 the state-set simulation can be done using the CloseAS and
MoveAS operations and the complexity now directly depends on the complexities
of the simulation data structure. Putting it all together the following reduction
easily follows:

Lemma 5. Let R be a regular expression of length m over alphabet Σ and let
Q a string of length n. Given a simulation data structure for TNFAs with x <
m states over alphabet Σ ∪ {β}, where β �∈ Σ, that supports all operations in
O(t(x)) time, using O(s(x)) space, and O(p(x)) preprocessing time, Regular

Expression Matching for R and Q can be solved in O(nm·t(x)
x + m·p(x)

x ) time
using O(m·s(x)

x ) space.
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The idea of decomposing TNFAs is also present in Myers’ paper [6], though he
does not give a ”black-box” reduction as in Lemma 5. Essentially, he provides a
simulation data structure supporting all operations in O(1) time using O(x · 2x)
preprocessing time and space. For x ≤ log(n/ log n) this achieves the result
mentioned in the introduction. The result of Bille and Farach [3] does not use
Lemma 5. Instead they efficiently encode all possible simulation data structures
in total O(2x + m) time and space.

4 A Simple Algorithm

In this section we present a simple simulation data structure for TNFAs, and
develop some of the ideas for the improved result of the next section. Let A be
a TNFA with m = O(

√
w) states. We will show how to support all operations

in O(1) time using O(m) space and O(m2) preprocessing time.
To build our simulation data structure for A, first sort all states in A in

topological ignoring the back transitions. We require that the endpoints of an
α-transition are consecutive in this order. This is automatically guaranteed using
a standard O(m) time algorithm for topological sorting (see e.g. [4]). We will
refer to states in A by their rank in this order. A the state-set of A is represented
using a bitstring S = s1s2 . . . sm defined such that si = 1 iff node i is in the
state-set. The simulation data structure consists of the following bitstrings:

– For each α ∈ Σ, a string Dα = d1, . . . , dm such that di = 1 iff i is an α-state.
– A string E = 0e1,1e1,2 . . . e1,m0e2,1e2,2 . . . e2,m0 . . . 0em,1em,2 . . . em,m, where

ei,j = 1 iff i is ε-reachable from j. The zeros are test bits needed for the
algorithm.

– Three constants I = (10m)m, X = 1(0m1)m−1, and C = 1(0m−11)m−1. Note
that I has a 1 in each test bit position. 2

The strings E, I, X , and C are easily computed in O(m2) time and use O(m2)
bits. Since m = O(

√
w) only O(1) space is needed to store these strings. We store

Dα in a hashtable indexed by α. Since the total number of different characters
in A can be at most m, the hashtable contains at most m entries. Using perfect
hashing Dα can be represented in O(m) space with O(1) worst-case lookup time.
The preprocessing time is expected O(m) w.h.p.. To get a worst-case bound we
use the deterministic dictionary of Hagerup et. al. [5] with O(m log m) worst-case
preprocessing time. In total the data structure requires O(m) space and O(m2)
preprocessing time.

Next we show how to support each of the operations on A. Suppose S =
s1 . . . sm is a bitstring representing a state-set of A and α ∈ Σ. The result of
MoveA(S, α) is given by

S′ := (S >> 1) & Dα.

This should be understood as C notation, where the right-shift is unsigned.
Readers familiar with the Shift-Or algorithm [2] will notice the similarity. To see

2 We use exponentiation to denote repetition, i.e., 130 = 1110.
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the correctness, observe that state i is put in S′ iff state (i − 1) is in S and the
ith state is an α-state. Since the endpoints of α-transitions are consecutive in
the topological order it follows that S′ is correct. Here, state (i − 1) can only
influence state i, and this makes the operation easy to implement in parallel.
However, this is not the case for CloseA. Here, any state can potentially affect a
large number of states reachable through long ε-paths. To deal with this we use
the following steps.

Y := (S × X) & E

Z := ((Y | I) − (I >> m)) & I

S′ := ((Z × C) << w − m(m + 1)) >> w − m

We describe in detail why this, at first glance somewhat cryptic sequence, cor-
rectly computes S′ as the result of CloseA(S). The variables Y and Z are simply
temporary variables inserted to increase the readability of the computation. Let
S = s1 . . . sm. Initially, S×X concatenates m copies of S with a zero bit between
each copy, that is, S × X = s1 . . . sm × 1(0m1)m−1 = (0s1 . . . sm)m. The bitwise
& with E gives Y = 0y1,1y1,2 . . . y1,m0y2,1y2,2 . . . y2,m0 . . . 0ym,1ym,2 . . . ym,m,
where yi,j = 1 iff state j is in S and state i is ε-reachable from j. In other words,
the substring Yi = yi,1 . . . yi,m indicates the set of states in S that have a path of
ε-transitions to i. Hence, state i should be included in CloseA(S) precisely if at
least one of the bits in Yi is 1. This is determined next. First (Y | I)− (I >> m)
sets all test bits to 1 and subtracts the test bits shifted right by m positions.
This ensures that if all positions in Yi are 0, the ith test bit in the result is 0 and
otherwise 1. The test bits are then extracted with a bitwise & with I, producing
the string Z = z10mz20m . . . zm0m. This is almost what we want since zi = 1 iff
state i is in CloseA(S). It is easy to check that Z × C produces a string, where
positions m(m − 1) + 1 through m2 (from the left) contain the test bits com-
pressed into a string of length m. The two shifts zero all other bits and moves
this substring to the rightmost position in the word, producing the final result.
Since m = O(

√
w) all of the above operations can be done in constant time.

Finally, observe that InsertA and MemberA are trivially implemented in constant
time. Thus,

Lemma 6. For any TNFA with m = O(
√

w) states there is a simulation data
structure using O(m) space and O(m2) preprocessing time which supports all
operations in O(1) time.

The main bottleneck in the above data structure is the string E that represents
all ε-paths. On a TNFA with m states E requires at least m2 bits and hence this
approach only works for m = O(

√
w). In this next section we show how to use

the structure of TNFAs to do better.

5 Overcoming the ε-Closure Bottleneck

In this section we show how to compute an ε-closure on a TNFA with m = O(w)
states in O(log m) time. Compared with the result of the previous section we
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quadratically increase the size of the TNFA at the expense of using logarithmic
time. The algorithm is easily extended to an efficient simulation data structure.
The key idea is a new hierarchical decomposition of TNFAs described below.

5.1 Partial-TNFAs and Separator Trees

First we need some definitions. Let A be a TNFA with parse tree T . Each node v
in T uniquely correspond to two states in the A, namely, the start and accepting
states θA′ and φA′ of the TNFA A′ with the parse tree consisting of v and all
descendants of v. We say v associates the states S(v) = {θA′ , φA′}. In general, if
C is a cluster of T , i.e., any connected subgraph of T , we say C associates the set
of states S(C) = ∪v∈CS(v). We define the partial-TNFA (pTNFA) for C, as the
directed, labeled subgraph of A induced by the set of states S(C). In particular,
A is a pTNFA since it is induced by S(T ). The two states associated by the root
node of C are defined to be the start and accepting state of the corresponding
pTNFA. We need the following result.

Lemma 7. For any pTNFA P with m > 2 states there exists a partitioning of
P into two subgraphs PO and PI such that

(i) PO and PI are pTNFAs with at most 2/3m + 2 states each,
(ii) any transition from PO to PI ends in θPI and any transition from PI to

PO starts in φPI , and
(iii) the partitioning can be computed in O(m) time.

The proof is left for the full version of the paper. Intuitively, if we draw P , PI is
”surrounded” by PO, and therefore we will often refer to PI and PO as the inner
pTNFA and the outer pTNFA, respectively. Applying Lemma 7 recursively gives
the following essential data structure. Let P be a pTNFA with m states. The
separator tree for P is a binary, rooted tree B defined as follows: If m = 2, i.e.,
P is a trivial pTNFA consisting of two states θP and φP , then B is a single leaf
node v that stores the set X(v) = {θP , φP }. Otherwise (m > 2), compute PO

and PI according to Lemma 7. The root v of B stores the set X(v) = {θPI , φPI},
and the children of v are roots of separator trees for PO and PI , respectively.

With the above construction each node in the separator tree naturally cor-
respond to a pTNFA, e.g., the root corresponds to P , the children to PI and
PO, and so on. We denote the pTNFA corresponding to node v in B by P (v). A
simple induction combined with Lemma 7(i) shows that if v is a node of depth k
then P (v) contains at most (2

3 )km + 6 states. Hence, the depth of B is at most
d = log3/2 m + O(1). By Lemma 7(iii) each level of B can be computed in O(m)
time and thus B can be computed in O(m log m) total time.

5.2 A Recursive ε-Closure Algorithm

We now present a simple ε-closure algorithm for a pTNFA, which recursively
traverses the separator tree B. We first give the high level idea and then show
how it can be implemented in O(1) time for each level of B. Since the depth of
B is O(log m) this leads to the desired result. For a pTNFA P with m states, a
separator tree B for P , and a node v in B define
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CloseP (v)(S): 1. Compute the set Z ⊆ X(v) of states in X(v) that are ε-
reachable from S in P (v).

2. If v is a leaf return S′ := Z, else let u and w be the children
of v, respectively:
(a) Compute the set G ⊆ V (P (v)) of states in P (v) that are

ε-reachable from Z.
(b) Return S′ := CloseP (u)((S∪G)∩V (P (u)))∪CloseP (w)((S∪

G) ∩ V (P (w))).

A simple case analysis shows the correctness of CloseP (v)(S). Next we show
how to efficiently implement the above algorithm in parallel. The key ingredient
is a compact mapping of states into positions in bitstrings. Suppose B is the
separator tree of depth d for a pTNFA P with m states. The separator mapping
M maps the states of P into an interval of integers [1, l], where l = 3 · 2d. The
mapping is defined recursively according to the separator tree. Let v be the root
of B. If v is a leaf node the interval is [1, 3]. The two states of P , θP and φP , are
mapped to positions 2 and 3, respectively, while position 1 is left intentionally
unmapped. Otherwise, let u and w be the children of v. Recursively, map P (u)
to the interval [1, l/2] and P (w) to the interval [l/2 + 1, l]. Since the separator
tree contains at most 2d leaves and each contribute 3 positions the mapping is
well-defined. The size of the interval for P is l = 3 · 2log3/2 m+O(1) = O(m). We
will use the unmapped positions as test bits in our algorithm.

The separator mapping compactly maps all pTNFAs represented in B into
small intervals. Specifically, if v is a node at depth k in B, then P (v) is mapped to
an interval of size l/2k of the form [(i−1) · l

2k +1, i · l
2k ], for some 1 ≤ i ≤ 2k. The

intervals that correspond to a pTNFA P (v) are mapped and all other intervals
are unmapped. We will refer to a state s of P by its mapped position M(s). A
state-set of P is represented by a bitstring S such that, for all mapped positions
i, S[i] = 1 iff the i is in the state-set. Since m = O(w), state-sets are represented
in a constant number of words.

To implement the algorithm we define a simple data structure consisting of
four length l bitstrings Xθ

k , Xφ
k , Eθ

k, and Eφ
k for each level k of the separa-

tor tree. For notational convenience, we will consider the strings at level k as
two-dimensional arrays consisting of 2k intervals of length l/2k, i.e., Xθ

k [i, j] is
position j in the ith interval of Xθ

k . If the ith interval at level k is unmapped
then all positions in this interval are 0 in all four strings. Otherwise, suppose
that the interval corresponds to a pTNFA P (v) and let X(v) = {θv, φv}. The
strings are defined as follows:

Xθ
k [i, j] = 1 iff θv is ε-reachable in P (v) from state j,

Eθ
k [i, j] = 1 iff state j is ε-reachable in P (v) from θv,

Xφ
k [i, j] = 1 iff φv is ε-reachable in P (v) from state j,

Eφ
k [i, j] = 1 iff state j is ε-reachable in P (v) from φv.

In addtion to these, we also store a string Ik containing a test bit for each
interval, that is, Ik[i, j] = 1 iff j = 1. Since the depth of B is O(log m) the strings
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use O(log m) words. With a simple depth-first search they can all be computed
in O(m log m) time. It is now a relatively simple matter to simulate the recursive
algorithm using techniques similar to those in Sec. 4. Due to lack of space we
leave the details for the full version of the paper.

Next we show how to get a full simulation data structure. First, note that in
the separator mapping the endpoints of the α-transitions are consecutive (as in
Sec. 4). It follows that we can use the same algorithm as in the previous section
to compute MoveA in O(1) time. This requires a dictionary of bitstrings, Dα,
using additional O(m) space and O(m log m) preprocessing time. The InsertA and
MemberA operations are trivially implemented in O(1). Putting it all together
we have:

Lemma 8. For a TNFA with m = O(w) states there is a simulation data struc-
ture using O(m) space and O(m log m) preprocessing time which supports all
operations in O(log m) time.

Combining the simulation data structures from Lemmas 6 and 8 with the re-
duction from Lemma 5 and taking the best result gives Theorem 1. Note that
the simple simulation data structure is the fastest when m = O(

√
w) and n is

sufficiently large compared to m.
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