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Abstract

We survey the problem of comparing labeled trees based on simple local operations of deleting,
inserting, and relabeling nodes. These operations lead to the tree edit distance, alignment distance,
and inclusion problem. For each problem we review the results available and present, in detail, one
or more of the central algorithms for solving the problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Trees are among the most common and well-studied combinatorial structures in computer
science. In particular, the problem of comparing trees occurs in several diverse areas such
as computational biology, structured text databases, image analysis, automatic theorem
proving, and compiler optimization[43,55,22,24,16,35,56]. For example, in computational
biology, computing the similarity between trees under various distance measures is used in
the comparison of RNA secondary structures [55,18].
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Fig. 1. (a) A relabeling of the node labell1 to l2. (b) Deleting the node labeledl2. (c) Inserting a node labeledl2
as the child of the node labeledl1.

Let T be a rooted tree. We callT a labeled treeif each node is a assigned a symbol from
a fixed finite alphabet�. We callT anordered treeif a left-to-right order among siblings
in T is given. In this paper we consider matching problems based on simple primitive
operations applied to labeled trees. IfT is an ordered tree these operations are defined as
follows:

Relabel: Change the label of a nodev in T.
Delete: Delete a non-root nodev in T with parentv′, making the children ofv become the

children ofv′. The children are inserted in the place ofv as a subsequence in the left-to-right
order of the children ofv′.

Insert: The complement of delete. Insert a nodev as a child ofv′ in T makingv the parent
of a consecutive subsequence of the children ofv′.

Fig. 1 illustrates the operations. For unordered trees the operations can be defined simi-
larly. In this case, the insert and delete operations works on asubsetinstead of a subsequence.
We define three problems based on the edit operations. LetT1 andT2 be labeled trees (or-
dered or unordered).

Tree edit distance: Assume that we are given acost functiondefined on each edit operation.
An edit script SbetweenT1 andT2 is a sequence of edit operations turningT1 into T2. The
cost ofS is the sum of the costs of the operations inS. An optimal edit scriptbetweenT1
andT2 is an edit script betweenT1 andT2 of minimum cost and this cost is thetree edit
distance. Thetree edit distance problemis to compute the edit distance and a corresponding
edit script.

Tree alignment distance: Assume that we are given a cost function defined on pair of
labels. Analignment Aof T1 andT2 is obtained as follows. First we insert nodes labeled
with spacesinto T1 andT2 so that they become isomorphic when labels are ignored. The
resulting trees are thenoverlaidon top of each other giving the alignmentA, which is a tree
where each node is labeled by a pair of labels. Thecostof A is the sum of costs of all pairs
of opposing labels inA. An optimal alignmentof T1 andT2 is an alignment of minimum
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cost and this cost is called thealignment distanceof T1 andT2. Thealignment distance
problemis to compute the alignment distance and a corresponding alignment.

Tree inclusion:T1 is includedin T2 if and only if T1 can be obtained by deleting nodes
from T2. Thetree inclusion problemis to determine ifT1 is included inT2.

In this paper we survey each of these problems and discuss the results obtained for them.
For reference, Table1 summarizes most of the available results. All of these and a few others
are covered in the text. The tree edit distance problem is the most general of the problems.
The alignment distance corresponds to a kind of restricted edit distance, while tree inclusion
is a special case of both the edit and alignment distance problem. Apart from these simple
relationships, interesting variations on the edit distance problem has been studied leading
to a more complex picture.

Both the ordered and unordered version of the problems are reviewed. For the unordered
case, it turns out that all of the problems in general are NP-hard. Indeed, the tree edit
distance and alignment distance problems are even MAX SNP-hard [4]. However, under
various interesting restrictions, or for special cases, polynomial time algorithms are avail-
able. For instance, if we impose astructure preservingrestriction on the unordered tree
edit distance problem, such that disjoint subtrees are mapped to disjoint subtrees, it can
be solved in polynomial time. Also, unordered alignment for constant degree trees can be
solved efficiently.

For the ordered version of the problems polynomial time algorithms exists. These are all
based on the classic technique ofdynamic programming(see, e.g., [9, Chapter 15]) and most
of them are simple combinatorial algorithms. Recently, however, more advanced techniques
such as fast matrix multiplication have been applied to the tree edit distance problem [8].

The survey covers the problems in the following way. For each problem and variations
of it we review results for both the ordered and unordered version. This will, in most cases,
include a formal definition of the problem, a comparison of the available results and a
description of the techniques used to obtain the results. More importantly, we will also pick
one or more of the central algorithms for each of the problems and present it in almost full
detail. Specifically, we will describe the algorithm, prove that it is correct, and analyze its
time complexity. For brevity, we will omit the proofs of a few lemmas and skip over some
less important details. Common for the algorithms presented in detail is that, in most cases,
they are the basis for more advanced algorithms. Typically, most of the algorithms for one
of the above problems are refinements of the same dynamic programming algorithm.

The main technical contribution of this survey is to present the problems and algorithms
in a common framework. Hopefully, this will enable the reader to gain a better overview and
deeper understanding of the problems and how they relate to each other. In the literature,
there are some discrepancies in the presentations of the problems. For instance, the ordered
edit distance problem was considered by Klein [25] who used edit operations on edges.
He presented an algorithm using a reduction to a problem defined on balanced parenthe-
sis strings. In contrast, Zhang and Shasha [55] gave an algorithm based on the postorder
numbering on trees. In fact, these algorithms share many features which become apparent if
considered in the right setting. In this paper we present these algorithms in a new framework
bridging the gap between the two descriptions.

Another problem in the literature is the lack of an agreement on a definition of the
edit distance problem. The definition given here is by far the most studied and in our
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opinion the most natural. However, several alternatives ending in very different distance
measures have been considered[30,45,38,31]. In this paper we review these other variants
and compare them to our definition. We should note that the edit distance problem defined
here is sometimes referred to as thetree-to-tree correction problem.

This survey adopts atheoreticalpoint of view. However, the problems above are not only
interesting mathematical problems but they also occur in many practical situations and it
is important to develop algorithms that perform well onreal-life problems. For practical
issues see, e.g., [49,46,40].

We restrict our attention tosequentialalgorithms. However, there has been some research
in parallel algorithms for the edit distance problem, e.g., [55,53,41].

This summarizes the contents of this paper. Due to the fundamental nature of comparing
trees and its many applications several other ways to compare trees have been devised. In
this paper, we have chosen to limit ourselves to a handful of problems which we describe
in detail. Other problems includetree pattern matching[27,10] and [16,35,56],maximum
agreement subtree[19,11],largest common subtree[2,20], andsmallest common supertree
[34,13].

1.1. Outline

In Section 2 we give some preliminaries. In Sections 3, 4, and 5 we survey the tree edit
distance, alignment distance, and inclusion problems, respectively. We conclude in Section
6 with some open problems.

2. Preliminaries and notation

In this section we define notations and definitions that we use throughout the paper. For
a graphG we denote the set of nodes and edges byV (G) andE(G), respectively. LetT
be a rooted tree. The root ofT is denoted by root(T ). The sizeof T, denoted by|T |, is
|V (T )|. Thedepthof a nodev ∈ V (T ), depth(v), is the number of edges on the path from
v to root(T ). Thein-degreeof a nodev, deg(v) is the number of children ofv. We extend
these definitions such that depth(T ) and deg(T ) denotes the maximum depth and degree,
respectively, of any node inT. A node with no children is a leaf and otherwise an internal
node. The number of leaves ofT is denoted by leaves(T ). We denote the parent of nodev
by parent(v). Two nodes are siblings if they have the same parent. For two treesT1 andT2,
we will frequently refer to leaves(Ti), depth(Ti), and deg(Ti) byLi , Di , andIi , i = 1,2.

Let�denote the empty tree and letT (v)denote the subtree ofTrooted at a nodev ∈ V (T ).
If w ∈ V (T (v)) thenv is an ancestor ofw, and ifw ∈ V (T (v))\{v} thenv is a proper
ancestor ofw. If v is a (proper) ancestor ofw thenw is a (proper) descendant ofv. A treeT
is orderedif a left-to-right order among the siblings is given. For an ordered treeT with root
v and childrenv1, . . . , vi , thepreorder traversalof T (v) is obtained by visitingv and then
recursively visitingT (vk), 1�k� i, in order. Similarly, thepostorder traversalis obtained
by first visitingT (vk), 1�k� i, and thenv. Thepreorder numberandpostorder number
of a nodew ∈ T (v), denoted by pre(w) and post(w), is the number of nodes precedingw
in the preorder and postorder traversal ofT, respectively. The nodes to theleft of w in T is
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the set of nodesu ∈ V (T ) such that pre(u) < pre(w) and post(u) < post(w). If u is to the
left of w thenw is to theright of u.

A forest is a set of trees. A forestF is ordered if a left-to-right order among the trees
is given and each tree is ordered. LetT be an ordered tree and letv ∈ V (T ). If v has
childrenv1, . . . , vi defineF(vs, vt ), where 1�s� t� i, as the forestT (vs), . . . , T (vr). For
convenience, we setF(v) = F(v1, vi).

We assume throughout the paper that labels assigned to nodes are chosen from a finite
alphabet�. Let� 	∈ � denote a specialblanksymbol and define�� = �∪�. We often define
a cost function, � : (�� × ��)\(�, �) → R, on pairs of labels. We will always assume that
� is a distance metric. That is, for anyl1,l2,l3 ∈ �� the following conditions are satisfied:
1. �(l1, l2)�0, �(l1, l1) = 0,
2. �(l1, l2) = �(l2, l1),
3. �(l1, l3)��(l1, l2) + �(l2, l3).

3. Tree edit distance

In this section we survey the tree edit distance problem. Assume that we are given acost
functiondefined on each edit operation. Anedit script Sbetween two treesT1 andT2 is a
sequence of edit operations turningT1 into T2. The cost ofS is the sum of the costs of the
operations inS. An optimal edit scriptbetweenT1 andT2 is an edit script betweenT1 and
T2 of minimum cost. This cost is called thetree edit distance, denoted by�(T1, T2). An
example of an edit script is shown in Fig.2.

The rest of the section is organized as follows. First, in Section 3.1, we present some
preliminaries and formally define the problem. In Section 3.2 we survey the results obtained
for the ordered edit distance problem and present two of the currently best algorithms for the
problem. The unordered version of the problem is reviewed in Section 3.3. In Section 3.4 we
review results on the edit distance problem when variousstructure-preservingconstraints
are imposed. Finally, in Section 3.5 we consider some other variants of the problem.

3.1. Edit operations and edit mappings

Let T1 and T2 be labeled trees. Following [43] we represent each edit operation by
(l1 → l2), where(l1, l2) ∈ (�� × ��)\(�, �). The operation is a relabeling ifl1 	= � and
l2 	= �, a deletion ifl2 = �, and an insertion ifl1 = �. We extend the notation such that
(v → w) for nodesv andw denotes(label(v) → label(w)). Here, as with the labels,v or
w may be�. Given a metric cost function� defined on pairs of labels we define the cost of
an edit operation by setting�(l1 → l2) = �(l1, l2). The cost of a sequenceS = s1, . . . , sk
of operations is given by�(S) = ∑k

i=1 �(si). The edit distance,�(T1, T2), betweenT1 and
T2 is formally defined as:

�(T1, T2) = min{�(S) | S is a sequence of operations transformingT1 into T2}.
Since� is a distance metric� becomes a distance metric too.

An edit distance mapping(or just amapping) betweenT1 andT2 is a representation of the
edit operations, which is used in many of the algorithms for the tree edit distance problem.
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Fig. 2. Transforming (a) into (c) via editing operations. (a) A tree. (b) The tree after deleting the node labeledc.
(c) The tree after inserting the node labeledc and relabelingf to a ande to d.
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Fig. 3. The mapping corresponding to the edit script in Fig.2.

Formally, define the triple(M, T1, T2) to be anordered edit distance mappingfrom T1 to
T2, if M ⊆ V (T1) × V (T2) and for any pair(v1, w1), (v2, w2) ∈ M:
1. v1 = v2 iff w1 = w2 (one-to-one condition).
2. v1 is an ancestor ofv2 iff w1 is an ancestor ofw2 (ancestor condition).
3. v1 is to the left ofv2 iff w1 is to the left ofw2 (sibling condition).
Fig. 3 illustrates a mapping that corresponds to the edit script in Fig. 2. We define the
unordered edit distance mappingbetween two unordered trees as the same, but without the
sibling condition. We will useM instead of(M, T1, T2) when there is no confusion. Let
(M, T1, T2) be a mapping. We say that a nodev in T1 or T2 is touched by a linein M if v
occurs in some pair inM. LetN1 andN2 be the set of nodes inT1 andT2, respectively, not
touched by any line inM. The cost ofM is given by

�(M) = ∑
(v,w)∈M

�(v → w) + ∑
v∈N1

�(v → �) + ∑
w∈N2

�(� → w).

Mappings can be composed. LetT1, T2, andT3 be labeled trees. LetM1 andM2 be a
mapping fromT1 to T2 andT2 to T3, respectively. Define

M1 ◦ M2 = {(v,w) | ∃u ∈ V (T2) such that(v, u) ∈ M1 and(u,w) ∈ M2}.
With this definition it follows easily thatM1 ◦M2 itself becomes a mapping fromT1 to T3.
Since� is a metric, it is not hard to show that a minimum cost mapping is equivalent to the
edit distance:

�(T1, T2) = min{�(M) | (M, T1, T2) is an edit distance mapping}.
Hence, to compute the edit distance we can compute the minimum cost mapping. We

extend the definition of edit distance to forests. That is, for two forestsF1 andF2, �(F1, F2)
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denotes the edit distance betweenF1 andF2. The operations are defined as in the case of
trees, however, roots of the trees in the forest may now be deleted and trees can be merged
by inserting a new root. The definition of a mapping is extended in the same way.

3.2. General ordered edit distance

The ordered edit distance problem was introduced by Tai[43] as a generalization of the
well-knownstring edit distance problem[48]. Tai presented an algorithm for the ordered
version using O(|T1||T2||L1|2|L2|2) time and space. Subsequently, Zhang and Shasha [55]
gave a simple algorithm improving the bounds to O(|T1||T2| min(L1,D1)min(L2,D2))

time and O(|T1||T2|) space. This algorithm was modified by Klein [25] to get a better
worst-case time bound of O(|T1|2|T2| log |T2|) 1 under the same space bounds. We present
the latter two algorithms in detail below. Recently, Chen [8] has presented an algorithm
using O(|T1||T2| + L2

1|T2| + L2.5
1 L2) time and O((|T1| + L2

1)min(L2,D2) + |T2|) space.
Hence, for certain kinds of trees the algorithm improves the previous bounds. This algorithm
is more complex than all the above and uses results on fast matrix multiplication. Note that
in the above bounds we can exchangeT1 with T2 since the distance is symmetric.

3.2.1. A simple algorithm
We first present a simple recursion which will form the basis for the two dynamic pro-

gramming algorithms we present in the next two sections. We will only show how to
compute the edit distance. The corresponding edit script can be easily obtained within the
same time and space bounds. The algorithm is due to Klein [25]. However, we should note
that the presentation given here is somewhat different. We believe that our framework is
more simple and provides a better connection to previous work.

Let F be a forest andv be a node inF. We denote byF − v the forest obtained by
deletingv from F. Furthermore, defineF − T (v) as the forest obtained by deletingv and
all descendants ofv. The following lemma provides a way to compute edit distances for
the general case of forests.

Lemma 1. Let F1 andF2 be ordered forests and� be a metric cost function defined on
labels. Letv andw be the rightmost(if any) roots of the trees inF1 andF2, respectively.
We have,

�(�, �) = 0,

�(F1, �) = �(F1 − v, �) + �(v → �),
�(�, F2) = �(�, F2 − w) + �(� → w),

�(F1, F2) = min




�(F1 − v, F2) + �(v → �),
�(F1, F2 − w) + �(� → w),

�(F1(v), F2(w)) + �(F1 − T1(v), F2 − T2(w)) + �(v → w).

1 Since the edit distance is symmetric this bound is in fact O(min(|T1|2|T2| log |T2|, |T2|2|T1| log |T1|). For
brevity we will use the short version.
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Proof. The first three equations are trivially true. To show the last equation consider a
minimum cost mappingM betweenF1 andF2. There are three possibilities forv andw:

Case1: v is not touched by a line. Then(v, �) ∈ M and the first case of the last equation
applies.

Case2: w is not touched by a line. Then(�, w) ∈ M and the second case of the last
equation applies.

Case3: v andw are both touched by lines. We show that this implies(v,w) ∈ M.
Suppose(v, h) and(k, w) are inM. If v is to the right ofk thenh must be to right ofw by
the sibling condition. Ifv is a proper ancestor ofk thenh must be a proper ancestor ofw by
the ancestor condition. Both of these cases are impossible sincev andw are the rightmost
roots and hence(v,w) ∈ M. By the definition of mappings the equation follows.�

Lemma1 suggests a dynamic programming algorithm. The value of�(F1, F2) depends
on a constant number of subproblems of smaller size. Hence, we can compute�(F1, F2)

by computing�(S1, S2) for all pairs of subproblemsS1 andS2 in order of increasing size.
Each new subproblem can be computed in constant time. Hence, the time complexity is
bounded by the number of subproblems ofF1 times the number of subproblems ofF2.

To count the number of subproblems, define for a rooted, ordered forestF the (i, j)-
deleted subforest, 0� i+j� |F |, as the forest obtained fromF by first deleting the rightmost
root repeatedlyj times and then, similarly, deleting the leftmost rooti times. We call the
(0, j)-deleted and(i,0)-deleted subforests, for 0�j� |F |, theprefixesand thesuffixesof
F, respectively. The number of(i, j)-deleted subforests ofF is

∑|F |
k=0 k = O(|F |2), since

for eachi there are|F | − i choices forj.
It is not hard to show that all the pairs of subproblemsS1 andS2 that can be obtained

by the recursion of Lemma 1 are deleted subforests ofF1 andF2. Hence, by the above
discussion the time complexity is bounded by O(|F1|2|F2|2). In fact, fewer subproblems
are needed, which we will show in the next sections.

3.2.2. Zhang and Shasha’s algorithm
The following algorithm is due to Zhang and Shasha [55]. Define thekeyrootsof a rooted,

ordered treeT as follows:

keyroots(T ) = {root(T )} ∪ {v ∈ V (T ) | v has a left sibling}.

The specialsubforests ofT is the forestsF(v), wherev ∈ keyroots(T ). The relevant
subproblems of T with respect to the keyrootsis the prefixes of all special subforestsF(v).
In this section we refer to these as therelevant subproblems.

Lemma 2. For each nodev ∈ V (T ), F(v) is a relevant subproblem.

It is easy to see that, in fact, the subproblems that can occur in the above recursion are
either subforests of the formF(v), wherev ∈ V (T ), or prefixes of a special subforest ofT.
Hence, it follows by Lemma2 and the definition of a relevant subproblem, that to compute
�(F1, F2) it is sufficient to compute�(S1, S2) for all relevant subproblemsS1 andS2 of T1
andT2, respectively.
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The relevant subproblems of a treeT can be counted as follows. For a nodev ∈ V (T )

define thecollapsed depthof v, cdepth(v), as the number of keyroot ancestors ofv. Also,
define cdepth(T ) as the maximum collapsed depth of all nodesv ∈ V (T ).

Lemma 3. For an ordered tree T the number of relevant subproblems, with respect to the
keyroots is bounded byO(|T |cdepth(T )).

Proof. The relevant subproblems can be counted using the following expression:∑
v∈keyroots(T )

|F(v)| < ∑
v∈keyroots(T )

|T (v)| = ∑
v∈V (T )

cdepth(v)� |T |cdepth(T )

Since the number prefixes of a subforestF(v) is |F(v)| the first sum counts the number of
relevant subproblems ofF(v). To prove the first equality note that for each nodev the number
of special subforests containingv is the collapsed depth ofv. Hence,v contributes the same
amount to the left and right side. The other equalities/inequalities follow immediately.�

Lemma 4. For a tree T, cdepth(T )� min{depth(T ), leaves(T )}

Thus, using dynamic programming it follows that the problem can be solved in O(|T1||T2|
min{D1, L1} min{D2, L2}) time and space. To improve the space complexity we carefully
compute the subproblems in a specific order and discard some of the intermediate results.
Throughout the algorithm we maintain a table called thepermanent tablestoring the dis-
tances�(F1(v), F2(w)), v1 ∈ V (F1) andw2 ∈ V (F2), as they are computed. This uses
O(|F1||F2|) space. When the distances of all special subforests ofF1 andF2 are available
in the permanent table, we compute the distance between all prefixes ofF1 andF2 in order
of increasing size and store these in a table called thetemporary table. The values of the
temporary table that are distances between special subforests are copied to the permanent
table and the rest of the values are discarded. Hence, the temporary table also uses at most
O(|F1||F2|) space. By Lemma1 it is easy to see that all values needed to compute�(F1, F2)

are available. Hence,

Theorem 1(Zhang and Shasha[55] ). For ordered treesT1 and T2 the edit distance
problem can be solved in timeO(|T1||T2| min{D1, L1} min{D2, L2}) and space
O(|T1||T2|).

3.2.3. Klein’s algorithm
In the worst case, that is for trees with linear depth and a linear number of leaves, Zhang

and Shasha’s algorithm of the previous section still requires O(|T1|2|T2|2) time as the simple
algorithm. In[25] Klein obtained a better worst-case time bound of O(|T1|2|T2| log |T2|).
The reported space complexity of the algorithm is O(|T1|2|T2| log |T2|)which is significantly
worse than the algorithm of Zhang and Shasha. However, according to Klein [23] this
algorithm can also be improved to O(|T1||T2|).

The algorithm is based on an extension of the recursion in Lemma 1. The main idea is
to consider all of the O(|T1|2) deleted subforests ofT1 but only O(|T2| log |T2|) deleted
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subforests ofT2. In total the worst-case number of subproblems is thus reduced to the
desired bound above.

A key concept in the algorithm is the decomposition of a rooted treeT into disjoint paths
calledheavy paths. This technique was introduced by Harel and Tarjan[15]. We define the
sizea nodev ∈ V (T ) as |T (v)|. We classify each node ofT as eitherheavyor light as
follows. The root is light. For each internal nodev we pick a childu of v of maximum size
among the children ofv and classifyu as heavy. The remaining children are light. We call
an edge to a light child alight edge, and an edge to a heavy child aheavy edge. The light
depthof a nodev, ldepth(v), is the number of light edges on the path fromv to the root.

Lemma 5 (Harel and Tarjan[15] ). For any treeT and anyv ∈ V (T ), ldepth(v)� log |T |+
O(1).

By removing the light edgesT is partitioned into heavy paths.
We define therelevant subproblems of T with respect to the light nodesbelow. We will

refer to these asrelevant subproblemsin this section. First fix a heavy path decomposition
of T. For a nodev in T we recursively define the relevant subproblems ofF(v) as follows:
F(v) is relevant. Ifv is not a leaf, letu be the heavy child ofv and let l and r be the
number of nodes to the left and to the right ofu in F(v), respectively. Then, the(i,0)-
deleted subforests ofF(v), 0� i� l, and the(l, j)-deleted subforests ofF(v), 0�j�r are
relevant subproblems. Recursively, all relevant subproblems ofF(u) are relevant.

The relevant subproblems ofT with respect to the light nodes is the union of all relevant
subproblems ofF(v) wherev ∈ V (T ) is a light node.

Lemma 6. For an ordered tree T the number of relevant subproblems with respect to the
light nodes is bounded byO(|T | ldepth(T )).

Proof. Follows by the same calculation as in the proof of Lemma3. �
Also note that Lemma 2 still holds with this new definition of relevant subproblems. Let

Sbe a relevant subproblem ofT and letvl andvr denote the leftmost and rightmost root ofS,
respectively. Thedifference nodeof Sis eithervr if S−vr is relevant orvl if S−vl is relevant.
The recursion of Lemma 1 compares the rightmost roots. Clearly, we can also choose to
compare the leftmost roots resulting in a new recursion, which we will refer to as thedual
of Lemma 1. Depending on which recursion we use, different subproblems occur. We now
give a modified dynamic programming algorithm for calculating the tree edit distance. Let
S1 be a deleted tree ofT1 and letS2 be a relevant subproblem ofT2. Let d be the difference
node ofS2. We compute�(S1, S2) as follows. There are two cases to consider:
1. If d is the rightmost root ofS2 compare the rightmost roots ofS1 andS2 using Lemma1.
2. If d is the leftmost root ofS2 compare the leftmost roots ofS1 andS2 using the dual of

Lemma1.
It is easy to show that in both cases the resulting smaller subproblems ofS1 will all be

deleted subforests ofT1 and the smaller subproblems ofS2 will all be relevant subproblems
of T2. Using a similar dynamic programming technique as in the algorithm of Zhang and
Shasha we obtain the following:
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Theorem 2(Klein [25] ). For ordered treesT1 and T2 the edit distance problem can be
solved in time and spaceO(|T1|2|T2| log |T2|).

Klein [25] also showed that his algorithm can be extended within the same time
and space bounds to theunrooted ordered edit distance problembetweenT1 and T2,
defined as the minimum edit distance betweenT1 andT2 over all possible roots ofT1
andT2.

3.3. General unordered edit distance

In the following section we survey the unordered edit distance problem. This problem
has been shown to be NP-complete [58,50,57] even for binary trees with a label alphabet
of size 2. The reduction is from the Exact Cover by 3-Sets problem [12]. Subsequently,
the problem was shown to be MAX SNP-hard [54]. Hence, unless P= NP there is no
PTAS for the problem [4]. It was shown in [58] that for special cases of the problem
polynomial time algorithms exists. IfT2 has one leaf, i.e.,T2 is a sequence, the problem
can be solved in O(|T1||T2|) time. More generally, there is an algorithm running in time
O(|T1||T2| + L2!3L2(L3

2 + D2
1)|T1|). Hence, if the number of leaves inT2 is logarithmic

the problem can be solved in polynomial time.

3.4. Constrained edit distance

The fact that the general edit distance problem is difficult to solve has led to the study
of restricted versions of the problem. In [51,52] Zhang introduced theconstrained edit
distance, denoted by�c, which is defined as an edit distance under the restriction that
disjoint subtrees should be mapped to disjoint subtrees. Formally,�c(T1, T2) is defined
as a minimum cost mapping(Mc, T1, T2) satisfying the additional constraint, that for all
(v1, w1), (v2, w2), (v3, w3) ∈ Mc:
• nca(v1, v2) is a proper ancestor ofv3 iff nca(w1, w2) is a proper ancestor ofw3.

According to[29], Richter [37] independently introduced thestructure respecting edit dis-
tance�s. Similar to the constrained edit distance,�s(T1, T2) is defined as a minimum cost
mapping(Ms, T1, T2) satisfying the additional constraint, that for all(v1, w1), (v2, w2),

(v3, w3) ∈ Ms such that none ofv1, v2, andv3 is an ancestor of the others,
• nca(v1, v2) = nca(v1, v3) iff nca(w1, w2) = nca(w1, w3).

It is straightforward to show that both of these notions of edit distance are equivalent.
Henceforth, we will refer to them simply as the constrained edit distance. As an exam-
ple consider the mappings of Fig.4. (a) is a constrained mapping since nca(v1, v2) 	=
nca(v1, v3) and nca(w1, w2) 	= nca(w1, w3). (b) is not constrained since nca(v1, v2) =
v4 	= nca(v1, v3) = v5, while nca(w1, w2) = w4 = nca(w1, w3). (c) is not constrained
since nca(v1, v3) = v5 	= nca(v2, v3), while nca(w1, w3) = v5 	= nca(w2, w3) = w4.

In [51,52] Zhang presents algorithms for computing minimum cost constrained mappings.
For the ordered case he gives an algorithm using O(|T1||T2|) time and for the unordered case
he obtains a running time of O(|T1||T2|(I1 + I2) log(I1 + I2)). Both use space O(|T1||T2|).
The idea in both algorithms is similar. Due to the restriction on the mappings fewer sub-
problem need to be considered and a faster dynamic programming algorithm is obtained. In
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Fig. 4. (a) A mapping which is constrained and less-constrained. (b) A mapping which is less-constrained but not
constrained. (c) A mapping which is neither constrained nor less-constrained.

the ordered case the key observation is a reduction to the string edit distance problem. For
the unordered case the corresponding reduction is to a maximum matching problem. Using
an efficient algorithm for computing a minimum cost maximum flow Zhang obtains the
time complexity above. Richter presented an algorithm for the ordered constrained edit dis-
tance problem, which uses O(|T1||T2|I1I2) time and O(|T1|D2I2) space. Hence, for small
degree, low depth trees this algorithm gives a space improvement over the algorithm of
Zhang.

Recently, Lu et al.[29] introduced theless-constrained edit distance,�l , which relaxes the
constrained mapping. The requirement here is that for all(v1, w1), (v2, w2), (v3, w3) ∈ Ml
such that none ofv1, v2, andv3 is an ancestor of the others,
• depth(nca(v1, v2))�depth(nca(v1, v3)) and also nca(v1, v3) = nca(v2, v3) if and only

if depth(nca(w1, w2))�depth(nca(w1, w3)) and nca(w1, w3) = nca(w2, w3).
For example, consider the mappings in Fig.4. (a) is less-constrained because it is

constrained. (b) is not a constrained mapping, however, the mapping is less-constrained
since depth(nca(v1, v2)) > depth(nca(v1, v3)), nca(v1, v3) = nca(v2, v3), nca(w1, w2) =
nca(w1, w3), and nca(w1, w3) = nca(w2, w3). (c) is not a less-constrained mapping since
depth(nca(v1, v2)) > depth(nca(v1, v3))and nca(v1, v3) = nca(v2, v3), while nca(w1, w3)

	= nca(w2, w3).
In paper [29] an algorithm for the ordered version of the less-constrained edit distance

problem using O(|T1||T2|I3
1 I

3
2 (I1 + I2)) time and space is presented. For the unordered

version, unlike the constrained edit distance problem, it is shown that the problem is NP-
complete. The reduction used is similar to the one for the unordered edit distance problem.
It is also reported that the problem is MAX SNP-hard. Furthermore, it is shown that there
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is no absolute approximation algorithm2 for the unordered less-constrained edit distance
problem unless P= NP.

3.5. Other variants

In this section we survey results for other variants of edit distance. LetT1 andT2 be
rooted trees. Theunit cost edit distancebetweenT1 andT2 is defined as the number of
edit operations needed to turnT1 into T2. In [41] the ordered version of this problem is
considered and a fast algorithm is presented. Ifu is the unit cost edit distance betweenT1
andT2 the algorithm runs in O(u2 min{|T1|, |T2|} min{L1, L2}) time. The algorithm uses
techniques from Ukkonen [47] and Landau and Vishkin [28].

In [38] Selkow considered an edit distance problem where insertions and deletions are
restricted to leaves of the trees. This edit distance is sometimes referred to as the1-degree
edit distance. He gave a simple algorithm using O(|T1||T2|) time and space. Another edit
distance measure where edit operations work on subtrees instead of nodes was given by Lu
[30]. A similar edit distance was given by Tanaka in [45,44]. A short description of Lu’s
algorithm can be found in [42].

4. Tree alignment distance

In this section we consider the alignment distance problem. LetT1 andT2 be rooted,
labeled trees and let� be a metric cost function on pairs of labels as defined in Section 2. An
alignmentA of T1 andT2 is obtained by first inserting nodes labeled with� (calledspaces)
intoT1 andT2 so that they become isomorphic when labels are ignored, and thenoverlaying
the first augmented tree on the other one. Thecostof a pair of opposing labels inA is given
by �. The cost ofA is the sum of costs of all opposing labels inA. An optimal alignmentof
T1 andT2, is an alignment ofT1 andT2 of minimum cost. We denote this cost by�(T1, T2).
Fig. 5 shows an example (from [18]) of an ordered alignment.

The tree alignment distance problem is a special case of the tree editing problem. In fact,
it corresponds to a restricted edit distance where all insertions must be performed before
any deletions. Hence,�(T1, T2)��(T1, T2). For instance, assume that all edit operations
have cost 1 and consider the example in Fig. 5. The optimal sequence of edit operations is
achieved by deleting the node labelede and then inserting the node labeledf. Hence, the
edit distance is 2. The optimal alignment, however, is the tree depicted in (c) with a value
of 4. Additionally, it also follows that the alignment distance does not satisfy the triangle
inequality and hence it is not a distance metric. For instance, in Fig. 5 ifT3 is T1 where the
node labelede is deleted, then�(T1, T3) + �(T3, T2) = 2 > 4 = �(T1, T2).

It is a well-known fact that edit and alignment distance are equivalent in terms of com-
plexity for sequences, see, e.g., Gusfield [14]. However, for trees this is not true which we
will show in the following sections. In Section 4.1 and Section 4.2 we survey the results for
the ordered and unordered tree alignment distance problem, respectively.

2 An approximation algorithmA is absoluteif there exists a constantc > 0 such that for every instanceI,
|A(I) − OPT(I )|�c, whereA(I) and OPT(I ) are the approximate and optimal solutions ofI, respectively[33].
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Fig. 5. (a) TreeT1. (b) TreeT2. (c) An alignment ofT1 andT2.

4.1. Ordered tree alignment distance

In this section we consider the ordered tree alignment distance problem. LetT1 andT2
be two rooted, ordered and labeled trees. The ordered tree alignment distance problem was
introduced by Jiang et al. in[18]. The algorithm presented there uses O(|T1||T2|(I1 + I2)

2)

time and O(|T1||T2|(I1+I2))space. Hence, for small degree trees, this algorithm is in general
faster than the best known algorithm for the edit distance. We present this algorithm in detail
in the next section. Recently, in [17], a new algorithm was proposed designed forsimilar
trees. Specifically, if there is an optimal alignment ofT1 andT2 using at mosts spaces the
algorithm computes the alignment in time O((|T1|+|T2|) log(|T1|+|T2|)(I1+I2)

4s2). This
algorithm works in a way similar to the fast algorithms for comparing similar sequences,
see, e.g., Section 3.3.4 in [39]. The main idea is to speedup the algorithm of Jiang et al. by
only considering subtrees ofT1 andT2 whose sizes differ by at most O(s).

4.1.1. Jiang, Wang, and Zhang’s algorithm
In this section we present the algorithm of Jiang et al. [18]. We only show how to compute

the alignment distance. The corresponding alignment can easily be constructed within the
same complexity bounds. Let� be a metric cost function on the labels. For simplicity,
we will refer to nodes instead of labels, that is, we will use(v,w) for nodesv andw to
mean(label(v), label(w)). Here,v orw may be�. We extend the definition of� to include
alignments of forests, that is,�(F1, F2) denotes the cost of an optimal alignment of forest
F1 andF2.

Lemma 7. Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj ,
respectively. Then,

�(�, �) = 0,

�(T1(v), �) = �(F1(v), �) + �(v, �),

�(�, T2(w)) = �(�, F2(w)) + �(�, w),

�(F1(v), �) =
i∑

k=1
�(T1(vk), �),

�(�, F2(w)) =
j∑

k=1
�(�, T2(wk)).
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Lemma 8. Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj ,
respectively. Then,

�(T1(v), T2(w))

= min




�(F1(v), F2(w)) + �(v,w),

�(�, T2(w)) + min1� r� j {�(T1(v), T2(wr)) − �(�, T2(wr)},
�(T1(v), �) + min1� r� i{�(T1(vr), T2(w)) − �(T1(vr), �)}.

Proof.Consider an optimal alignmentAof T1(v) andT2(w). There are four cases: (1)(v,w)

is a label inA, (2) (v, �) and(k, w) are labels inA for somek ∈ V (T1), (3) (�, w) and(v, h)
are labels inA for someh ∈ V (T2) or (4) (v, �) and(�, w) are inA. Case (4) need not be
considered since the two nodes can be deleted and replaced by the single node(v,w) as the
new root. The cost of the resulting alignment is by the triangle inequality at least as small.

Case1: The root ofA is labeled by(v,w). Hence,

�(T1(v), T2(w)) = �(F1(v), F2(w)) + �(v,w)

Case2: The root ofA is labeled by(v, �). Hence,k ∈ V (T1(ws)) for some 1�r� i. It
follows that,

�(T1(v), T2(w)) = �(T1(v), �) + min
1� r� i

{�(T1(vr), T2(w)) − �(T1(vr), �)}

Case3: Symmetric to case 2.�

Lemma 9. Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj ,
respectively. For any s, t such that1�s� i and1� t�j ,

�(F1(v1, vs), F2(w1, wt ))

= min




�(F1(v1, vs−1), F2(w1, wt−1)) + �(T1(vs), T2(wt )),

�(F1(v1, vs−1), F2(w1, wt )) + �(T1(vs), �),

�(F1(v1, vs), F2(w1, wt−1)) + �(�, T2(wt )),

�(�, wt ) + min
1�k<s

{�(F1(v1, vk−1), F2(w1, wt−1))

+�(F1(vk, vs), F2(wk))},
�(vs, �) + min

1�k<t
{�(F1(v1, vs−1), F2(w1, wk−1))

+�(F1(vs), F2(wk,wt ))}.

Proof. Consider an optimal alignmentA of F1(v1, vs) andF2(w1, wt ). The root of the
rightmost tree inA is labeled either(vs, wt ), (vs, �) or (�, wt ).

Case1: The label is(vs, wt ). Then the rightmost tree ofA must be an optimal alignment
of T1(vs) andT2(wt ). Hence,

�(F1(v1, vs), F2(w1, wt )) = �(F1(v1, vs−1), F2(w1, wt−1)) + �(T1(vs), T2(wt )).
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Case2: The label is(vs, �). ThenT1(vs) is a aligned with a subforestF2(wt−k+1, wt ),
where 0�k� t . The following subcases can occur:

Subcase2.1(k = 0): T1(vs) is aligned withF2(wt−k+1, wt ) = �. Hence,

�(F1(v1, vs), F2(w1, wt )) = �(F1(v1, vs−1), F2(w1, wt )) + �(T1(vs), �).

Subcase2.2 (k = 1): T1(vs) is aligned withF2(wt−k+1, wt ) = T2(wt ). Similar to
case 1.

Subcase2.3(k�2): The most general case. It is easy to see that:

�(F1(v1, vs), F2(w1, wt ))= �(vs, �) + min
1� r<t

(�(F1(v1, vs−1), F2(w1, wk−1)))

+�(F1(vs), F2(wk,wt )).

Case3: The label is(�, wt ). Symmetric to case 2.�
This recursion can be used to construct a bottom-up dynamic programming algorithm.

Consider a fixed pair of nodesv and w with children v1, . . . , vi and w1, . . . , wj , re-
spectively. We need to compute the values�(F1(vh, vk), F2(w)) for all 1�h�k� i, and
�(F1(v), F2(wh,wk)) for all 1�h�k�j . That is, we need to compute the optimal align-
ment ofF1(v) with each subforest ofF2(w) and, on the other hand, compute the optimal
alignment ofF2(w) with each subforest ofF1(v). For anys andt, 1�s� i and 1� t�j ,
define the set:

As,t = {�(F1(vs, vp), F2(wt , wq)) | s�p� i, t�q�j}.

To compute the alignments described above we need to computeAs,1 andA1,t for all
1�s� i and 1� t�j . Assuming that values for smaller subproblems are known it is not hard
to show thatAs,t can be computed, using Lemma9, in time O((i−s)·(j−t)·(i−s+j−t)) =
O(ij (i + j)). Hence, the time to compute the(i + j) subproblems,As,1 andA1,t , 1�s� i

and 1� t�j , is bounded by O(ij (i+j)2). It follows that the total time needed for all nodes
v andw is bounded by:∑

v∈V (T1)

∑
w∈V (T2)

O(deg(v)deg(w)(deg(v) + deg(w))2)

� ∑
v∈V (T1)

∑
w∈V (T2)

O(deg(v)deg(w)(deg(T1) + deg(T2))
2)

�O

(
(I1 + I2)

2 ∑
v∈V (T1)

∑
w∈V (T2)

deg(v)deg(w)

)

�O(|T1||T2|(I1 + I2)
2).

In summary, we have shown the following theorem.

Theorem 3(Jiang et al.[18] ). For ordered treesT1 and T2, the tree alignment distance
problem can be solved inO(|T1||T2|(I1 + I2)

2) time andO(|T1||T2|(I1 + I2)) space.
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4.2. Unordered tree alignment distance

The algorithm presented above can be modified to handle the unordered version of the
problem in a straightforward way[18]. If the trees have bounded degrees the algorithm
still runs in O(|T1|T2|) time. This should be seen in contrast to the edit distance problem
which is MAX SNP-hard even if the trees have bounded degree. If one tree has arbitrary
degree unordered alignment becomes NP-hard [18]. The reduction is, as for the edit distance
problem, from the Exact Cover by 3-Sets problem [12].

5. Tree inclusion

In this section we survey the tree inclusion problem. LetT1 andT2 be rooted, labeled
trees. We say thatT1 is includedin T2 if there is a sequence of delete operations performed
on T2 which makesT2 isomorphic toT1. The tree inclusion problemis to decide ifT1 is
included inT2. Fig. 6(a) shows an example of an ordered inclusion. The tree inclusion
problem is a special case of the tree edit distance problem: If insertions all have cost 0 and
all other operations have cost 1, thenT1 can be included inT2 if and only if �(T1, T2) = 0.
According to [7] the tree inclusion problem was initially introduced by Knuth [26, exercise
2.3.2-22].

The rest of the section is organized as follows. In Sections 5.1 we give some preliminaries
and in Sections 5.2 and 5.3 we survey the known results on ordered and unordered tree
inclusion, respectively.

5.1. Orderings and embeddings

Let T be a labeled, ordered, and rooted tree. We define an ordering of the nodes ofT
given byv ≺ v′ iff post(v) < post(v′). Also, v � v′ iff v ≺ v′ or v = v′. Furthermore,
we extend this ordering with two special nodes⊥ and� such that for all nodesv ∈ V (T ),
⊥ ≺ v ≺ �. The left relatives, lr(v), of a nodev ∈ V (T ) is the set of nodes that are
to the left ofv and similarly theright relatives, rr(v), are the set of nodes that are to the
right of v.

Let T1 andT2 be rooted labeled trees. We define anordered embedding(f, T1, T2) as an
injective functionf : V (T1) → V (T2) such that for all nodesv, u ∈ V (T1),
• label(v) = label(f (v)) (label preservation condition).
• v is an ancestor ofu iff f (v) is an ancestor off (u) (ancestor condition).
• is to the left ofu iff f (v) is to the left off (u) (sibling condition).
Hence, embeddings are special cases of mappings (see Section3.1). Anunordered embed-
ding is defined as above, but without the sibling condition. An embedding(f, T1, T2) is
root-preservingif f (root(T1)) = root(T2). Fig. 6(b) shows an example of a root-preserving
embedding.

5.2. Ordered tree inclusion

LetT1 andT2 be rooted, ordered and labeled trees. The ordered tree inclusion problem has
been the attention of much research. Kilpeläinen and Mannila [22] (see also [21]) presented



234 P. Bille / Theoretical Computer Science 337 (2005) 217–239

f

f d e

b e a
c

b

f

f d e

b e a
c

b

(a)

(b)

Fig. 6. (a) The tree on the left is included in the tree on the right by deleting the nodes labeledd, a andc. (b) The
embedding corresponding to (a).

the first polynomial time algorithm using O(|T1||T2|) time and space. Most of the later
improvements are refinements of this algorithm. We present this algorithm in detail in the
next section. In[21] a more space efficient version of the above was given using O(|T1|D2)

space. In [36] Richter gave an algorithm using O(|�T1||T2| + mT1,T2D2) time, where�T1

is the alphabet of the labels ofT1 andmT1,T2 is the setmatches, defined as the number of
pairs(v,w) ∈ T1 × T2 such that label(v) = label(w). Hence, if the number of matches is
small the time complexity of this algorithm improves the(|T1||T2|) algorithm. The space
complexity of the algorithm is O(|�T1||T2|+mT1,T2). In [7] a more complex algorithm was
presented using O(L1|T2|) time and O(L1 min{D2, L2}) space. In [3] an efficient average
case algorithm was given.

5.2.1. Kilpeläinen and Mannila’s algorithm
In this section we present the algorithm of Kilpeläinen and Mannila [22] for the ordered

tree inclusion problem. LetT1 andT2 be ordered labeled trees. DefineR(T1, T2) as the set
of root-preserving embeddings ofT1 into T2. We define�(v,w), wherev ∈ V (T1) and
w ∈ V (T2):

�(v,w) = min≺ ({w′ ∈ rr(w) | ∃f ∈ R(T1(v), T2(w
′))} ∪ {�}).

Hence,�(v,w) is the closest right relative ofw which has a root-preserving embedding
of T1(v). Furthermore, if no such embedding exists�(v,w) is �. It is easy to see that, by
definition,T1 can be included inT2 if and only if�(v,⊥) 	= �. The following lemma shows
how to search for root preserving embeddings.

Lemma 10. Let v be a node inT1 with childrenv1, . . . , vi . For a nodew in T2, define
a sequencep1, . . . , pi by settingp1 = �(v1,max≺ lr(w)) and pk = �(vk, pk−1), for
2�k� i. There is a root-preserving embedding f ofT1(v) in T2(v) if and only iflabel(v) =
label(w) andpi ∈ T2(w), for all 1�k� i.
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Proof. If there is a root-preserving embedding betweenT1(v) andT2(w) it is straightfor-
ward to check that there is a sequencepi , 1� i�k such that the conditions are satisfied.
Conversely, assume thatpk ∈ T2(w) for all 1�k� i and label(v) = label(w). We construct
a root-preserving embeddingf of T1(v) intoT2(w) as follows. Letf (v) = w. By definition
of � there must be a root-preserving embeddingf k, 1�k� i, of T1(vk) in T2(pk). For a
nodeu in T1(vk), 1�k� i, we setf (u) = f k(u). Sincepk ∈ rr(pk−1), 2�k� i, and
pk ∈ T2(w) for all k, 1�k� i, it follows thatf is indeed a root-preserving embedding.�

Using dynamic programming it is now straightforward to compute�(v,w) for all v ∈
V (T1) andw ∈ V (T2). For a fixed nodev we traverseT2 in reverse postorder. At each
nodew ∈ V (T2) we check if there is a root-preserving embedding ofT1(v) in T2(w). If so
we set�(v, q) = w, for all q ∈ lr(w) such thatx�q, wherex is the next root-preserving
embedding ofT1(v) in T2(w).

For a pair of nodesv ∈ V (T1) andw ∈ V (T2) we test for a root-preserving embed-
ding using Lemma10. Assuming that values for smaller subproblems has been computed,
the time used is O(deg(v)). Hence, the contribution to the total time for the nodew is∑

v∈V (T1)
O(deg(v)) = O(|T1|). It follows that the time complexity of the algorithm is

bounded by O(|T1||T2|). Clearly, only O(|T1||T2|) space is needed to store�. Hence, we
have the following theorem,

Theorem 4(Kilpeläinen and Mannila[22] ). For any pair of rooted, labeled, and ordered
treesT1 andT2, the tree inclusion problem can be solved inO(|T1||T2|) time and space.

5.3. Unordered tree inclusion

In [22] it is shown that the unordered tree inclusion problem is NP-complete. The re-
duction used is from the Satisfiability problem [12]. Independently, Matoušek and Thomas
[32] gave another proof of NP-completeness.

An algorithm for the unordered tree inclusion problem is presented in [22] using O(|T1|I1
22I1|T2|) time. Hence, ifI1 is constant the algorithm runs in O(|T1||T2|) time and ifI1 =
log |T2| the algorithm runs in O(|T1| log |T2||T2|3).

6. Conclusion

We have surveyed the tree edit distance, alignment distance, and inclusion problems.
Furthermore, we have presented, in our opinion, the central algorithms for each of the
problems. There are several open problems, which may be the topic of further research. We
conclude this paper with a short list proposing some directions.
• For the unordered versions of the above problems some are NP-complete while others are

not. Characterizing exactly which types of mappings that gives NP-complete problems
for unordered versions would certainly improve the understanding of all of the above
problems.

• The currently best worst-case upper bound on the ordered tree edit distance problem is the
algorithm of[25] using O(|T1|2|T2| log |T2|). Conversely, the quadratic lower bound for
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Table 1
Results for the tree edit distance, alignment distance, and inclusion problem listed according to variant

Variant Type Time Space Reference

Tree edit distance
General O O(|T1||T2|D2

1D
2
2) O(|T1||T2|D2

1D
2
2) [43]

General O O(|T1||T2| min(L1,D1)min(L2,D2)) O(|T1||T2|) [55]
General O O(|T1|2|T2| log |T2|) O(|T1||T2|) [25]
General O O(|T1||T2| + L2

1|T2| + L2.5
1 L2) O((|T1| + L2

1)min(L2,D2) + |T2|) [8]
General U MAX SNP-hard [54]
Constrained O O(|T1||T2|) O(|T1||T2|) [51]
Constrained O O(|T1||T2|I1I2) O(|T1||D2I2) [37]
Constrained U O(|T1||T2|(I1 + I2) log(I1 + I2)) O(|T1||T2|) [52]
Less-constrained O O(|T1||T2|I3

1 I
3
2 (I1 + I2)) O(|T1||T2|I3

1 I
3
2 (I1 + I2)) [29]

Less-constrained U MAX SNP-hard [29]
Unit-cost O O(u2 min(|T1|, |T2|)min(L1, L2)) O(|T1||T2|) [41]
1-degree O O(|T1||T2|) O(|T1||T2|) [38]

Tree alignment distance
General O O(|T1||T2|(I1 + I2)

2) O(|T1||T2|(I1 + I2)) [18]
General U MAX SNP-hard [18]
Similar O O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)

4s2) O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)
4s2) [17]

Tree inclusion
General O O(|T1||T2|) O(|T1| min(D2L2)) [21]
General O O(|�T1||T2| + mT1,T2D2) O(|�T1||T2| + mT1,T2) [36]
General O O(L1|T2|) O(L1 min(D2L2)) [7]
General U NP-hard [22,32]

Di , Li , andIi denotes the depth, the number of leaves, and the maximum degree, respectively, ofTi , i = 1,2. The type is either O for ordered or U for unordered. The
valueu is the unit cost edit distance betweenT1 andT2 and the values is the number of spaces in the optimal alignment ofT1 andT2. The value�T1 is set of labels used
in T1 andmT1,T2 is the number of pairs of nodes inT1 andT2 which have the same label.
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the longest common subsequence problem[1] problem is the best general lower bound
for the ordered tree edit distance problem. Hence, a large gap in complexity exists which
needs to be closed.

• Several meaningful edit operations other than the above may be considered depending
on the particular application. Each set of operations yield a new edit distance problem
for which we can determine the complexity. Some extensions of the tree edit distance
problem have been considered[6,5,24].
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