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Abstract

We survey the problem of comparing labeled trees based on simple local operations of deleting,
inserting, and relabeling nodes. These operations lead to the tree edit distance, alignment distance,
and inclusion problem. For each problem we review the results available and present, in detail, one
or more of the central algorithms for solving the problem.
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1. Introduction

Trees are among the most common and well-studied combinatorial structures in computer
science. In particular, the problem of comparing trees occurs in several diverse areas such
as computational biology, structured text databases, image analysis, automatic theorem
proving, and compiler optimizatidd 3,55,22,24,16,35,56]. For example, in computational
biology, computing the similarity between trees under various distance measures is used in
the comparison of RNA secondary structures [55,18].
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Fig. 1. (a) A relabeling of the node labiglto Io. (b) Deleting the node labeldd. (c) Inserting a node labeldd
as the child of the node labeléd

LetT be a rooted tree. We cdllalabeled treaf each node is a assigned a symbol from
a fixed finite alphabek. We call T anordered treef a left-to-right order among siblings
in T is given. In this paper we consider matching problems based on simple primitive
operations applied to labeled treesTIfs an ordered tree these operations are defined as
follows:

Relabel: Change the label of a nodé T.

Delete: Delete a non-root noden T with parent’, making the children of become the
children ofv’. The children are inserted in the placev@s a subsequence in the left-to-right
order of the children of’.

Insert: The complement of delete. Insert a nodes a child o’ in T makingv the parent
of a consecutive subsequence of the children' of

Fig. 1 illustrates the operations. For unordered trees the operations can be defined simi-
larly. In this case, the insert and delete operations worksabseinstead of a subsequence.
We define three problems based on the edit operationgiL&nd 7> be labeled trees (or-
dered or unordered).

Tree editdistance: Assume that we are giveast functiordefined on each edit operation.

An edit script Sbetweerl; andT» is a sequence of edit operations turnifignto 7. The
cost of Sis the sum of the costs of the operationsSirAn optimal edit scriptbetweenr;

and 7> is an edit script betweefy and 7> of minimum cost and this cost is thieee edit
distance Thetree edit distance probleia to compute the edit distance and a corresponding
edit script.

Tree alignment distance: Assume that we are given a cost function defined on pair of
labels. Analignment Aof 71 and T is obtained as follows. First we insert nodes labeled
with spacednto T; andT» so that they become isomorphic when labels are ignored. The
resulting trees are thaverlaidon top of each other giving the alignmeXtwhich is a tree
where each node is labeled by a pair of labels. dd®tof A is the sum of costs of all pairs
of opposing labels i\. An optimal alignmenbf Ty and 7> is an alignment of minimum
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cost and this cost is called tledignment distancef 771 and 7». The alignment distance
problemis to compute the alignment distance and a corresponding alignment.

Tree inclusionT is includedin 7> if and only if 71 can be obtained by deleting nodes
from T>. Thetree inclusion problenis to determine iff7 is included in75.

In this paper we survey each of these problems and discuss the results obtained for them.
For reference, Tablesummarizes most of the available results. All of these and a few others
are covered in the text. The tree edit distance problem is the most general of the problems.
The alignment distance corresponds to a kind of restricted edit distance, while tree inclusion
is a special case of both the edit and alignment distance problem. Apart from these simple
relationships, interesting variations on the edit distance problem has been studied leading
to a more complex picture.

Both the ordered and unordered version of the problems are reviewed. For the unordered
case, it turns out that all of the problems in general are NP-hard. Indeed, the tree edit
distance and alignment distance problems are even MAX SNP-hard [4]. However, under
various interesting restrictions, or for special cases, polynomial time algorithms are avail-
able. For instance, if we imposes#ructure preservingestriction on the unordered tree
edit distance problem, such that disjoint subtrees are mapped to disjoint subtrees, it can
be solved in polynomial time. Also, unordered alignment for constant degree trees can be
solved efficiently.

For the ordered version of the problems polynomial time algorithms exists. These are all
based on the classic techniqualghamic programminsee, e.g., [9, Chapter 15]) and most
of them are simple combinatorial algorithms. Recently, however, more advanced techniques
such as fast matrix multiplication have been applied to the tree edit distance problem [8].

The survey covers the problems in the following way. For each problem and variations
of it we review results for both the ordered and unordered version. This will, in most cases,
include a formal definition of the problem, a comparison of the available results and a
description of the techniques used to obtain the results. More importantly, we will also pick
one or more of the central algorithms for each of the problems and present it in almost full
detail. Specifically, we will describe the algorithm, prove that it is correct, and analyze its
time complexity. For brevity, we will omit the proofs of a few lemmas and skip over some
less important details. Common for the algorithms presented in detail is that, in most cases,
they are the basis for more advanced algorithms. Typically, most of the algorithms for one
of the above problems are refinements of the same dynamic programming algorithm.

The main technical contribution of this survey is to present the problems and algorithms
in a common framework. Hopefully, this will enable the reader to gain a better overview and
deeper understanding of the problems and how they relate to each other. In the literature,
there are some discrepancies in the presentations of the problems. For instance, the ordered
edit distance problem was considered by Klein [25] who used edit operations on edges.
He presented an algorithm using a reduction to a problem defined on balanced parenthe-
sis strings. In contrast, Zhang and Shasha [55] gave an algorithm based on the postorder
numbering on trees. In fact, these algorithms share many features which become apparent if
considered in the right setting. In this paper we present these algorithms in a new framework
bridging the gap between the two descriptions.

Another problem in the literature is the lack of an agreement on a definition of the
edit distance problem. The definition given here is by far the most studied and in our
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opinion the most natural. However, several alternatives ending in very different distance
measures have been considdi@45,38,31]. In this paper we review these other variants
and compare them to our definition. We should note that the edit distance problem defined
here is sometimes referred to as thee-to-tree correction problem

This survey adoptstheoreticalpoint of view. However, the problems above are not only
interesting mathematical problems but they also occur in many practical situations and it
is important to develop algorithms that perform well @al-life problems. For practical
issues see, e.g., [49,46,40].

We restrict our attention teequentiahlgorithms. However, there has been some research
in parallel algorithms for the edit distance problem, e.g., [55,53,41].

This summarizes the contents of this paper. Due to the fundamental nature of comparing
trees and its many applications several other ways to compare trees have been devised. In
this paper, we have chosen to limit ourselves to a handful of problems which we describe
in detail. Other problems includeee pattern matching27,10] and [16,35,56]maximum
agreement subtrg@9,11],largest common subtrd2,20], andsmallest common supertree
[34,13].

1.1. Outline

In Section 2 we give some preliminaries. In Sections 3, 4, and 5 we survey the tree edit
distance, alignment distance, and inclusion problems, respectively. We conclude in Section
6 with some open problems.

2. Preliminaries and notation

In this section we define notations and definitions that we use throughout the paper. For
a graphG we denote the set of nodes and edged/lgy5) and E(G), respectively. Lel
be a rooted tree. The root dfis denoted by ro@’). The sizeof T, denoted by T, is
|V(T)|. Thedepthof a nodev € V (T), depthv), is the number of edges on the path from
v to root(T'). Thein-degreeof a nodev, deqv) is the number of children aof. We extend
these definitions such that depth and de@7") denotes the maximum depth and degree,
respectively, of any node if. A node with no children is a leaf and otherwise an internal
node. The number of leaves Bifis denoted by leavé®). We denote the parent of node
by parentv). Two nodes are siblings if they have the same parent. For two Thessd 7>,
we will frequently refer to leaveq;), depth(T;), and degT;) by L;, D;, andl;,i = 1, 2.

Letd denote the empty tree and Ietv) denote the subtree dfooted atanode € V(7).
If w e V(T (v)) thenv is an ancestor ofy, and ifw € V(T (v))\{v} thenv is a proper
ancestor ofv. If v is a (proper) ancestor of thenw is a (proper) descendant of A treeT
is orderedif a left-to-right order among the siblings is given. For an orderedTneih root
v and childrenvy, . . ., v;, thepreorder traversabf T (v) is obtained by visiting and then
recursively visitingT (v;), 1<k <i, in order. Similarly, thepostorder traversais obtained
by first visiting T'(vx), 1<k <i, and therw. The preorder numbegandpostorder number
of a nodew € T (v), denoted by prev) and postw), is the number of nodes preceding
in the preorder and postorder traversalpfespectively. The nodes to theft of w in T is
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the set of nodes € V(T') such that pra:) < pre(w) and postu) < postw). If u is to the
left of w thenw is to theright of u.

A forest is a set of trees. A foreBtis ordered if a left-to-right order among the trees
is given and each tree is ordered. Oebe an ordered tree and lete V(T). If v has
childrenvy, ..., v; defineF (vy, v;), where I<s <r <i, as the foresr (vy), ..., T (vy). For
convenience, we sét(v) = F(v1, v;).

We assume throughout the paper that labels assigned to nodes are chosen from a finite
alphabet. Let 1 ¢ > denote a specidlanksymbol and defing; = XU . We often define
acost functiony : (X, x Z))\(4, 1) — R, on pairs of labels. We will always assume that
y is a distance metric. That is, for ahyl2,/3 € X, the following conditions are satisfied:

1. y(1,12) 20, y(la, 1) =0,
2. y(l1,I2) = y(2, ),
3. (1, I3) <y, I2) + (12, [3).

3. Tree edit distance

In this section we survey the tree edit distance problem. Assume that we are gvein a
functiondefined on each edit operation. &dit script Sbetween two tree$; and7> is a
sequence of edit operations turnifiginto 7. The cost ofSis the sum of the costs of the
operations irS. An optimal edit scriptbetweenr; andT> is an edit script betweef and
T> of minimum cost. This cost is called theee edit distancedenoted by (71, 72). An
example of an edit script is shown in Fi#y.

The rest of the section is organized as follows. First, in Section 3.1, we present some
preliminaries and formally define the problem. In Section 3.2 we survey the results obtained
for the ordered edit distance problem and present two of the currently best algorithms for the
problem. The unordered version of the problem is reviewed in Section 3.3. In Section 3.4 we
review results on the edit distance problem when vargiuscture-preservingonstraints
are imposed. Finally, in Section 3.5 we consider some other variants of the problem.

3.1. Edit operations and edit mappings

Let 71 and 7> be labeled trees. Following [43] we represent each edit operation by

(I1 — o), where(ly, I2) € (X; x Z;)\(4, ). The operation is a relabeling/if # 4 and

I> # A, a deletion ifl, = 4, and an insertion if; = /. We extend the notation such that
(v — w) for nodesv andw denoteglabelv) — labekw)). Here, as with the labels,or

w may bel. Given a metric cost functiopdefined on pairs of labels we define the cost of
an edit operation by settingly — I2) = y(l1, [2). The cost of a sequence= s1, ..., sk

of operations is given by(S) = Zf-‘zl 1(s;). The edit distancej(Ty, T»), betweerl; and

T is formally defined as:

o(Ty, T2) = min{y(S) | S is a sequence of operations transformiiignto 7>}.

Sincey is a distance metrié becomes a distance metric too.
An edit distance mappin@r just amapping betweeril; and7> is a representation of the
edit operations, which is used in many of the algorithms for the tree edit distance problem.
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Fig. 2. Transforming (@) into (c) via editing operations. (a) A tree. (b) The tree after deleting the node tabeled
(c) The tree after inserting the node labeteghd relabeling to a andeto d.

Fig. 3. The mapping corresponding to the edit script in Big.

Formally, define the tripl€éM, Ty, T») to be anordered edit distance mappirfgpm 77 to

1o, if M C V(T1) x V(T») and for any pailv, w1), (v2, w2) € M:

1. v1 = vy iff w1 = w2 (One-to-one condition).

2. v1 is an ancestor afz iff w4 is an ancestor ab, (ancestor condition).

3. vy is to the left ofv; iff w1 is to the left ofw, (sibling condition).

Fig. 3 illustrates a mapping that corresponds to the edit script in Fig. 2. We define the
unordered edit distance mappibgtween two unordered trees as the same, but without the
sibling condition. We will useM instead of(M, Ty, T>) when there is no confusion. Let
(M, T1, T>) be a mapping. We say that a nod@ 77 or T» is touched by a linen M if v
occurs in some pair iM. Let N1 and N> be the set of nodes ifiy andT», respectively, not
touched by any line il. The cost oM is given by

M) = Y yv—=w+ Y pv—=> A+ Y (= w).

(v,w)eM veNy weNp

Mappings can be composed. LE{, T2, and 73 be labeled trees. LeW; and M2 be a
mapping fromTy to 7> andT> to T3, respectively. Define

M1 0 My = {(v, w)|3u € V(T) such that(v, u) € M1 and(u, w) € M>}.

With this definition it follows easily thad1 o M> itself becomes a mapping froM to 7s.
Sincey is a metric, it is not hard to show that a minimum cost mapping is equivalent to the
edit distance:

0(T1, T2) = min{y(M) | (M, T1, T») is an edit distance mappihg

Hence, to compute the edit distance we can compute the minimum cost mapping. We
extend the definition of edit distance to forests. That is, for two folestnd F», 6 (F1, F?)
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denotes the edit distance betweénand F»>. The operations are defined as in the case of
trees, however, roots of the trees in the forest may now be deleted and trees can be merged
by inserting a new root. The definition of a mapping is extended in the same way.

3.2. General ordered edit distance

The ordered edit distance problem was introduced by43ias a generalization of the
well-known string edit distance problef#8]. Tai presented an algorithm for the ordered
version using Q71| T2||L1]%|L»|?) time and space. Subsequently, Zhang and Shasha [55]
gave a simple algorithm improving the bounds tQ1Q||T2| min(L1, D1) min(L2, D2))
time and Q|T1]|72|) space. This algorithm was modified by Klein [25] to get a better
worst-case time bound of @74 |?|T»| log|T»|) 1 under the same space bounds. We present
the latter two algorithms in detail below. Recently, Chen [8] has presented an algorithm
using Q|T1||T2| + L23|T2| + L3°Ly) time and Q(|T1] + L2) min(Ly, D7) + |T2|) space.
Hence, for certain kinds of trees the algorithm improves the previous bounds. This algorithm
is more complex than all the above and uses results on fast matrix multiplication. Note that
in the above bounds we can excharfgevith 7> since the distance is symmetric.

3.2.1. A simple algorithm

We first present a simple recursion which will form the basis for the two dynamic pro-
gramming algorithms we present in the next two sections. We will only show how to
compute the edit distance. The corresponding edit script can be easily obtained within the
same time and space bounds. The algorithm is due to Klein [25]. However, we should note
that the presentation given here is somewhat different. We believe that our framework is
more simple and provides a better connection to previous work.

Let F be a forest and be a node irF. We denote byF — v the forest obtained by
deletingv from F. Furthermore, defin& — T (v) as the forest obtained by deletingand
all descendants af. The following lemma provides a way to compute edit distances for
the general case of forests.

Lemma 1. Let F1 and F» be ordered forests ang be a metric cost function defined on
labels. Letv and w be the rightmos(if any) roots of the trees irfy and F», respectively.
We have

0(0,0) =0,
O0(F1,0) =0(F1—v,0)+7y(v > 1),
0(0, F2) = (0, Fo — w) + y(4 — w),
o(F1—v, F2) +y(v — A),
O0(F1, F2) = min{ 6(F1, F2 — w) + (4 — w),
0(F1(v), F2(w)) + 6(F1 — T1(v), F2 — T2(w)) + (v — w).

1Since the edit distance is symmetric this bound is in fa(m(\T1|2|T2| log |75/, \T2\2|T1| log|T1|). For
brevity we will use the short version.
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Proof. The first three equations are trivially true. To show the last equation consider a
minimum cost mappindl betweenF; and F». There are three possibilities forandw:

Casel: v is not touched by a line. Thew, 1) € M and the first case of the last equation
applies.

Case2: w is not touched by a line. Thefid, w) € M and the second case of the last
equation applies.

Case3: v andw are both touched by lines. We show that this impliesw) € M.
Supposedv, h) and(k, w) are inM. If v is to the right ofk thenh must be to right otv by
the sibling condition. I is a proper ancestor &fthenh must be a proper ancestorwfby
the ancestor condition. Both of these cases are impossiblesgmegw are the rightmost
roots and hencév, w) € M. By the definition of mappings the equation followd.]

Lemmal suggests a dynamic programming algorithm. The valu¥ Bf, F») depends
on a constant number of subproblems of smaller size. Hence, we can comiputé)
by computingo(S1, S2) for all pairs of subproblems; andS> in order of increasing size.
Each new subproblem can be computed in constant time. Hence, the time complexity is
bounded by the number of subproblemsfaftimes the number of subproblems B{.

To count the number of subproblems, define for a rooted, ordered ferist (i, j)-
deleted subforesd<i +j <|F|, as the forest obtained froRby first deleting the rightmost
root repeatedly times and then, similarly, deleting the leftmost rodimes. We call the
(0, j)-deleted andi, 0)-deleted subforests, forQ; <|F|, the prefixesand thesuffixesof
F, respectively. The number ¢f, j)-deleted subforests &f is Z}on = O(|F|?), since
for eachi there arg F| — i choices fol.

It is not hard to show that all the pairs of subproblefasand S> that can be obtained
by the recursion of Lemma 1 are deleted subforestgiond F». Hence, by the above
discussion the time complexity is bounded by B |2| F»|2). In fact, fewer subproblems
are needed, which we will show in the next sections.

3.2.2. Zhang and Shasha’s algorithm
The following algorithm is due to Zhang and Shasha [55]. Defin&élyeootsof a rooted,
ordered tref as follows:

keyrootg7) = {root(7)} U {v € V(T) | v has a left sibling.

The specialsubforests ofT is the forestsF (v), wherev € keyrootg7). The relevant
subproblems of T with respect to the keyrastihe prefixes of all special subforegtsv).
In this section we refer to these as tleéevant subproblems

Lemma 2. For each nodey € V(T), F(v) is a relevant subproblem.

It is easy to see that, in fact, the subproblems that can occur in the above recursion are
either subforests of the forfi(v), wherev € V(T), or prefixes of a special subforestf
Hence, it follows by Lemm@& and the definition of a relevant subproblem, that to compute
O0(F1, F) itis sufficient to computé (S, S») for all relevant subproblem$; andsS, of Ty
andT>, respectively.
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The relevant subproblems of a tréean be counted as follows. For a node V (T)
define thecollapsed deptlof v, cdepth{v), as the number of keyroot ancestorsofilso,
define cdepttir’) as the maximum collapsed depth of all nodes V (T).

Lemma 3. For an ordered tree T the number of relevant subproblemith respect to the
keyroots is bounded (|7 |cdeptiT)).

Proof. The relevant subproblems can be counted using the following expression:

Y IFwl< >  ITwl= } cdepthv)<|T|cdepthT)

vekeyrootgT) vekeyrootgT) veV(T)

Since the number prefixes of a subfor€sv) is | F(v)| the first sum counts the number of
relevant subproblems &f(v). To prove the first equality note that for each nodee number
of special subforests containings the collapsed depth of Hencep contributes the same
amount to the left and right side. The other equalities/inequalities follow immediately.

Lemma 4. For atree T, cdepti{7) < min{depthT), leavesT)}

Thus, using dynamic programming it follows that the problem can be solved T (77|
min{D1, L1} min{ D>, L»}) time and space. To improve the space complexity we carefully
compute the subproblems in a specific order and discard some of the intermediate results.
Throughout the algorithm we maintain a table calledgkemanent tabletoring the dis-
tancesd(F1(v), F2(w)), v1 € V(Fy) andwy € V(F»), as they are computed. This uses
O(| F1|| F2|) space. When the distances of all special subforest§ ahd F» are available
in the permanent table, we compute the distance between all prefi¥gsafl F> in order
of increasing size and store these in a table calledeimporary table The values of the
temporary table that are distances between special subforests are copied to the permanent
table and the rest of the values are discarded. Hence, the temporary table also uses at most
O(| F1|| F2|) space. By Lemma itis easy to see that all values needed to compUte, F>)
are available. Hence,

Theorem 1(Zhang and Shash®&5]). For ordered trees7; and T» the edit distance
problem can be solved in time(|Ty||7T2| min{D1, L1} min{D>, L»}) and space
O(T1lIT2)).

3.2.3. Klein’s algorithm

In the worst case, that is for trees with linear depth and a linear number of leaves, Zhang
and Shasha’s algorithm of the previous section still requit¢®(¥| 7>|2) time as the simple
algorithm. In[25] Klein obtained a better worst-case time bound 6ff®?| T»| log | T»|).
The reported space complexity of the algorithm {§X9|2| T»| log | T»|) which is significantly
worse than the algorithm of Zhang and Shasha. However, according to Klein [23] this
algorithm can also be improved to([@y || T3])-

The algorithm is based on an extension of the recursion in Lemma 1. The main idea is
to consider all of the Q71|%) deleted subforests df; but only Q(|7>|log|7»|) deleted
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subforests off». In total the worst-case number of subproblems is thus reduced to the
desired bound above.

A key concept in the algorithm is the decomposition of a rootedTrieo disjoint paths
calledheavy pathsThis technique was introduced by Harel and TafjEs]. We define the
sizea nodev € V(T) as|T (v)|. We classify each node df as eithetheavyor light as
follows. The root is light. For each internal nodeve pick a childu of v of maximum size
among the children of and classifyx as heavy. The remaining children are light. We call
an edge to a light child Bght edge and an edge to a heavy chilchaavy edgeThelight
depthof a nodev, Idepth(v), is the number of light edges on the path frorto the root.

Lemma 5 (Harel and Tarjan[15]). ForanytreeTandany € V (T, |depth(v) < log|T |+
o).

By removing the light edgeBis partitioned into heavy paths.

We define thaelevant subproblems of T with respect to the light ndoieew. We will
refer to these aelevant subproblemis this section. First fix a heavy path decomposition
of T. For a nodev in T we recursively define the relevant subproblem# ¢f) as follows:
F(v) is relevant. Ifv is not a leaf, letu be the heavy child of and letl andr be the
number of nodes to the left and to the rightiofn F(v), respectively. Then, th@, 0)-
deleted subforests @f(v), 0<i </, and the(/, j)-deleted subforests d@f(v), 0< j <r are
relevant subproblems. Recursively, all relevant subproblentqof are relevant.

The relevant subproblems dfwith respect to the light nodes is the union of all relevant
subproblems of (v) wherev € V(T) is a light node.

Lemma 6. For an ordered tree T the number of relevant subproblems with respect to the
light nodes is bounded (| T'| Idepth(T)).

Proof. Follows by the same calculation as in the proof of Len8nal]

Also note that Lemma 2 still holds with this new definition of relevant subproblems. Let
Sbe a relevant subproblem ©fand letv; andv; denote the leftmost and rightmost root3f
respectively. Thdifference nodef Sis eitherv, if S—uv; isrelevantom if S—uvj is relevant.

The recursion of Lemma 1 compares the rightmost roots. Clearly, we can also choose to

compare the leftmost roots resulting in a new recursion, which we will refer to akidie

of Lemma 1. Depending on which recursion we use, different subproblems occur. We now

give a modified dynamic programming algorithm for calculating the tree edit distance. Let

S1 be a deleted tree @ and letS, be a relevant subproblem @%. Letd be the difference

node ofS,. We compute(S1, S») as follows. There are two cases to consider:

1. If dis the rightmost root of, compare the rightmost roots 8f andS, using LemmadlL.

2. If dis the leftmost root of, compare the leftmost roots 6f andS, using the dual of
Lemmal.

It is easy to show that in both cases the resulting smaller subproblessnill all be
deleted subforests @ and the smaller subproblems$fwill all be relevant subproblems
of T». Using a similar dynamic programming technique as in the algorithm of Zhang and
Shasha we obtain the following:
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Theorem 2(Klein [25]). For ordered treesly and T» the edit distance problem can be
solved in time and spad®(|71|2|T»| log | T3]).

Klein [25] also showed that his algorithm can be extended within the same time
and space bounds to therooted ordered edit distance problebetweenT; and 75,
defined as the minimum edit distance betwdgnand 7> over all possible roots of
andTs.

3.3. General unordered edit distance

In the following section we survey the unordered edit distance problem. This problem
has been shown to be NP-complete [58,50,57] even for binary trees with a label alphabet
of size 2. The reduction is from the Exact Cover by 3-Sets problem [12]. Subsequently,
the problem was shown to be MAX SNP-hard [54]. Hence, unless RP there is no
PTAS for the problem [4]. It was shown in [58] that for special cases of the problem
polynomial time algorithms exists. If; has one leaf, i.e1» is a sequence, the problem
can be solved in QT1||T>|) time. More generally, there is an algorithm running in time
O(|T1||T| + L2!3L2(L§ + Df)|T1|). Hence, if the number of leaves i is logarithmic
the problem can be solved in polynomial time.

3.4. Constrained edit distance

The fact that the general edit distance problem is difficult to solve has led to the study
of restricted versions of the problem. In [51,52] Zhang introducedctirestrained edit
distance denoted byd., which is defined as an edit distance under the restriction that
disjoint subtrees should be mapped to disjoint subtrees. Forndall¥;, T>) is defined
as a minimum cost mappin@/., T1, T») satisfying the additional constraint, that for all
(v1, w1), (v2, w2), (v3, w3) € M!

e Nncalvi, v2) is a proper ancestor af iff nca(wi, wo) is a proper ancestor afs.

According tg29], Richter [37] independently introduced thteucture respecting edit dis-

tanceods. Similar to the constrained edit distanég(T7, T>) is defined as a minimum cost

mapping(Ms, Ti1, T») satisfying the additional constraint, that for @lh, w1), (v2, wa),

(v3, w3) € Mg such that none af1, v, andvz is an ancestor of the others,

e ncavy, v2) = ncalvy, v3) iff nca(wy, wr) = nca(wy, wa).

It is straightforward to show that both of these notions of edit distance are equivalent.
Henceforth, we will refer to them simply as the constrained edit distance. As an exam-
ple consider the mappings of Fid. (a) is a constrained mapping since gavy) #
nca(vy, vz) and ncdwsi, w2) # ncaws, wi). (b) is not constrained since nea, v2) =
v4 # ncavi, v3) = vs, While ncaws, w2) = wgq = ncawsi, ws). (C) is not constrained
since ncaw1, v3) = vs # ncaAvz, v3), while ncaws, w3) = vs # Ncawz, w3) = wa.

In[51,52] Zhang presents algorithms for computing minimum cost constrained mappings.
Forthe ordered case he gives an algorithm usi@{D 7»|) time and for the unordered case
he obtains a running time of @7 || T2| (11 + I2) log(I1 + I2)). Both use space @71 || T>)).

The idea in both algorithms is similar. Due to the restriction on the mappings fewer sub-
problem need to be considered and a faster dynamic programming algorithm is obtained. In
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©

Fig. 4. (a) A mapping which is constrained and less-constrained. (b) A mapping which is less-constrained but not
constrained. (c) A mapping which is neither constrained nor less-constrained.

the ordered case the key observation is a reduction to the string edit distance problem. For
the unordered case the corresponding reduction is to a maximum matching problem. Using
an efficient algorithm for computing a minimum cost maximum flow Zhang obtains the
time complexity above. Richter presented an algorithm for the ordered constrained edit dis-
tance problem, which uses([@1||72|1112) time and Q|T1|D2172) space. Hence, for small
degree, low depth trees this algorithm gives a space improvement over the algorithm of
Zhang.

Recently, Lu et al[29] introduced théess-constrained edit distane®, which relaxes the
constrained mapping. The requirement here is that fqoalhwy), (v2, w2), (v3, w3) € M|
such that none of1, v, andvs is an ancestor of the others,

e depthincavi, v2)) >depthincavy, v3)) and also ncev, vz) = ncalve, v3) if and only

if depth(nca(w1, w2)) >depthincaws, wz)) and ncdws1, w3) = ncawz, w3).

For example, consider the mappings in Hg.(a) is less-constrained because it is
constrained. (b) is not a constrained mapping, however, the mapping is less-constrained
since deptnca(vi, v2)) > depthincavs, v3)), ncav, v3) = Ncalve, v3), NCaAw1, w2) =
nca(wi, wz), and ncdwi, wa) = ncawsz, wa). (C) is not a less-constrained mapping since
depthinca(vy, v2)) > depthinca(vi, v3)) and ncdwvy, vs) = ncalvy, v3), while ncaws, wa)

# ncawy, wa).

In paper [29] an algorithm for the ordered version of the less-constrained edit distance
problem using CQT1||T2|If’123(11 + I)) time and space is presented. For the unordered
version, unlike the constrained edit distance problem, it is shown that the problem is NP-
complete. The reduction used is similar to the one for the unordered edit distance problem.
It is also reported that the problem is MAX SNP-hard. Furthermore, it is shown that there
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is no absolute approximation algoriti#nfor the unordered less-constrained edit distance
problem unless P- NP.

3.5. Other variants

In this section we survey results for other variants of edit distanceZlaind 7> be
rooted trees. Thenit cost edit distancéetweenT; and 7> is defined as the number of
edit operations needed to tui into 7». In [41] the ordered version of this problem is
considered and a fast algorithm is presented.iff the unit cost edit distance betwe&n
andT» the algorithm runs in Q:2min{|T1|, | 7|} min{L1, L}) time. The algorithm uses
techniques from Ukkonen [47] and Landau and Vishkin [28].

In [38] Selkow considered an edit distance problem where insertions and deletions are
restricted to leaves of the trees. This edit distance is sometimes referred tdladetpee
edit distanceHe gave a simple algorithm using|®@1||T2|) time and space. Another edit
distance measure where edit operations work on subtrees instead of nodes was given by Lu
[30]. A similar edit distance was given by Tanaka in [45,44]. A short description of Lu’s
algorithm can be found in [42].

4. Tree alignment distance

In this section we consider the alignment distance problem7Letnd 7> be rooted,
labeled trees and lgtbe a metric cost function on pairs of labels as defined in Section 2. An
alignmentA of Ty andT> is obtained by first inserting nodes labeled witfcalledspace}
into 71 andT>» so that they become isomorphic when labels are ignored, and#eeiaying
the first augmented tree on the other one. @bstof a pair of opposing labels iis given
by y. The cost ofA is the sum of costs of all opposing labelsAinAn optimal alignmenbf
T1 andT>, is an alignment of’; and7> of minimum cost. We denote this cost b§T, 7).

Fig. 5 shows an example (from [18]) of an ordered alignment.

The tree alignment distance problem is a special case of the tree editing problem. In fact,
it corresponds to a restricted edit distance where all insertions must be performed before
any deletions. Hence&(T1, T2) < a(T1, T2). For instance, assume that all edit operations
have cost 1 and consider the example in Fig. 5. The optimal sequence of edit operations is
achieved by deleting the node labelkednd then inserting the node labeliedHence, the
edit distance is 2. The optimal alignment, however, is the tree depicted in (c) with a value
of 4. Additionally, it also follows that the alignment distance does not satisfy the triangle
inequality and hence it is not a distance metric. For instance, in FigihisfT; where the
node labele@ is deleted, thea (71, T3) + (T3, o) = 2 > 4 = o(T1, T>).

It is a well-known fact that edit and alignment distance are equivalent in terms of com-
plexity for sequences, see, e.g., Gusfield [14]. However, for trees this is not true which we
will show in the following sections. In Section 4.1 and Section 4.2 we survey the results for
the ordered and unordered tree alignment distance problem, respectively.

2An approximation algorithnA is absoluteif there exists a constart > 0 such that for every instande
|[A(I) — OPT(I)| < ¢, whereA(I) and OPT/) are the approximate and optimal solutions,aespectively{33].
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a a (a,@)
b c c d (b,b) (c,A) (A,0) (d,d)

@ (b) ©

Fig. 5. (a) Tre€l;. (b) TreeT». (c) An alignment off; and7>.

4.1. Ordered tree alignment distance

In this section we consider the ordered tree alignment distance probler; bet 7
be two rooted, ordered and labeled trees. The ordered tree alignment distance problem was
introduced by Jiang et al. {18]. The algorithm presented there use$1||T»| (11 + 12)?)
time and Q|T1||T2|(I1+12)) space. Hence, for small degree trees, this algorithmisin general
faster than the best known algorithm for the edit distance. We present this algorithm in detail
in the next section. Recently, in [17], a new algorithm was proposed designeifritar
trees. Specifically, if there is an optimal alignmen@@fand 7> using at moss spaces the
algorithm computes the alignment in time@| + | 72|) log(| T1| +| T2|) (I1 + 12)*s?). This
algorithm works in a way similar to the fast algorithms for comparing similar sequences,
see, e.g., Section 3.3.4 in [39]. The main idea is to speedup the algorithm of Jiang et al. by
only considering subtrees @f andT> whose sizes differ by at most(©.

4.1.1. Jiang, Wang, and Zhang's algorithm

In this section we present the algorithm of Jiang et al. [18]. We only show how to compute
the alignment distance. The corresponding alignment can easily be constructed within the
same complexity bounds. Letbe a metric cost function on the labels. For simplicity,
we will refer to nodes instead of labels, that is, we will  sew) for nodesv andw to
mean(labekv), labekw)). Here,v or w may be/. We extend the definition af to include
alignments of forests, that is(Fy, F») denotes the cost of an optimal alignment of forest
F1 and F>.

Lemma7. Letv € V(T1) andw e V(T2) with childrenvy,...,v; and wy, ..., wj,
respectively. Then

o(0, 0) =0,

u(T1(v), 0) = a(F1(v), 0) + y(v, 1),

(0, To(w)) = (0, F2(w)) + (4, w),

1

a(F1(v), 0) = kZlOC(Tl(vk), 0),

J
(0, F2(w)) = 3 a0, Ta(wp)).
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Lemma 8. Letv € V(T1) andw € V(I») with childrenwvy,...,v; andwy, ..., wj,
respectively. Then

o(T1(v), T2(w))
a(F1(v), F2(w)) + y(v, w),
=min{ a(0, To(w)) + miny<, < j{a(T1(v), To(w,)) — (0, Ta(w,)},
o(T1(v), 0) + miny <, <i{o(T1(vr), T2(w)) — a(T1(vr), 0)}.

Proof. Consider an optimal alignmeAtof 71 (v) andT>(w). There are four cases: (&), w)

is alabel inA, (2) (v, 4) and(k, w) are labels irA for somek € V(Ty), (3) (4, w) and(v, h)

are labels imA for someh € V(T») or (4) (v, ) and(4, w) are inA. Case (4) need not be

considered since the two nodes can be deleted and replaced by the single, nodas the

new root. The cost of the resulting alignment is by the triangle inequality at least as small.
Casel: The root ofA is labeled by(v, w). Hence,

a(T1(v), T2(w)) = a(F1(v), F2(w)) + (v, w)

Case2: The root ofA is labeled by(v, 4). Hencek € V(T1(wy)) for some Kr <i. It
follows that,

u(T1(v), To(w)) = a(T1(v), 0) + 1mir<1 {o(T1(vr), To(w)) — a(T1(vr), 0)}

<r<i

Case3: Symmetric to case 2.[]

Lemma 9. Letv € V(Ty) andw € V(Tz) with childrenvy, ..., v; andwy, ..., wj,
respectively. For any,$ such thatl <s <i and1<r <},
a(Fi(v1, vs), Fa(wi, wy))

o(F1(v1, vs—1), Fa(w1, wi—1)) + a(T1(vs), T2(wy)),
a(F1(v1, vs-1), Fa(w1, wy)) + o(T1(vs), 0),
a(F1(v1, vs), F2(w1, wi—1)) + (0, T2(w,)),
=min{ (4, w) + 1I’<nlif<lx {o(F1(v1, vi—1), F2(w1, wr-1))

+o(F1(v, vs), Fa(wi))},
P(vs, A) + 121}2[ {o(F1(v1, v5-1), F2(w1, wi-1))

+a(F1(vs), F2(wg, we))}.

Proof. Consider an optimal alignmewt of Fy(v1, vg) and Fa(w1, wy). The root of the
rightmost tree i is labeled eithetv,, w;), (vy, 4) Or (4, w;).

Casel: The label igvs, w;). Then the rightmost tree @& must be an optimal alignment
of T1(vy) andT>(w,). Hence,

a(F1(v1, vs), Fa(wy, wy)) = a(F1(v1, vs—1), F2(w1, wr—1)) + (T2 (vy), T2(wy)).
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Case2: The label is(vg, A). ThenTy(vy) is a aligned with a subforest (w; 11, w;),
where 0< k <t. The following subcases can occur:
Subcase.1 (k = 0): T1(v;) is aligned withF>(w, 41, w;) = 6. Hence,

o(F1(v1, v), Fo(w1, wy)) = a(F1(v1, vs—1), Fa(w1, wy)) + a(T1(vs), 0).

Subcase.2 (k = 1): T1(vy) is aligned with Fo(w;—gy1, w;) = T2(w;). Similar to
case 1.
Subcase.3 (k > 2): The most general case. It is easy to see that:

OC(F]_(U]_, US)a Fz(wla wt)) = V(vs7 ;L') + lT}[rll (OC(F]_(U]_, vS*l)v Fz(wl’ wk*l)))

+o(F1(vs), Fo(wg, wy)).

Case3: The label ig4, w;). Symmetric to case 2.

This recursion can be used to construct a bottom-up dynamic programming algorithm.
Consider a fixed pair of nodes and w with childrenwvy, ..., v; andwy, ..., w;, re-
spectively. We need to compute the valu€si (vy,, vi), Fo(w)) for all 1<h <k <i, and
a(FrL(v), Fo(wy, wy)) forall 1<h <k <j. Thatis, we need to compute the optimal align-
ment of F1(v) with each subforest of>(w) and, on the other hand, compute the optimal
alignment of F>(w) with each subforest of1(v). For anysandt, 1<s <i and 1<t < J,
define the set:

As,t = {o(F1(vy, Up)v Fa(wy, wq)) |s<p<i, t<6]<]}

To compute the alignments described above we need to comuteand A1, for all
1<s<iand 1<z < j. Assuming thatvalues for smaller subproblems are knownitis nothard
to showthatd, ; can be computed, using Lem®@antime Q((i —s)-(j—t)-(i—s+j—t)) =
O(ij(i + j)). Hence, the time to compute tkie+ j) subproblemsA; 1 andAs;, 1<s <i

and 1< < j, is bounded by @j (i + j)?). It follows that the total time needed for all nodes

v andw is bounded by:

> Y O(degv)degw)(degv) + degw))?)
veV(Ty) weV (1)
< Y Y O(degv)degw)(degT1) + deg72))%)
veV(Ty) weV(Tr)
<O<(11+Iz)2 > oo degv)deg(w)>
veV(Ty) weV(T2)
<O(T|| T2 (11 + I2)?).

In summary, we have shown the following theorem.

Theorem 3(Jiang et al.[18]). For ordered treesly and 7>, the tree alignment distance
problem can be solved iB(|T1||T2|(I1 + 12)?) time andO(| T1||T»|(I1 + I2)) space.
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4.2. Unordered tree alignment distance

The algorithm presented above can be modified to handle the unordered version of the
problem in a straightforward wajl8]. If the trees have bounded degrees the algorithm
still runs in (| T1|T2]) time. This should be seen in contrast to the edit distance problem
which is MAX SNP-hard even if the trees have bounded degree. If one tree has arbitrary
degree unordered alignment becomes NP-hard [18]. The reduction s, as for the edit distance
problem, from the Exact Cover by 3-Sets problem [12].

5. Tree inclusion

In this section we survey the tree inclusion problem. Tetnd 7> be rooted, labeled
trees. We say thdfy isincludedin 7> if there is a sequence of delete operations performed
on 7> which makesT» isomorphic toT;. Thetree inclusion problenis to decide ifT; is
included inT». Fig. 6(a) shows an example of an ordered inclusion. The tree inclusion
problem is a special case of the tree edit distance problem: If insertions all have cost 0 and
all other operations have cost 1, thEncan be included iff» if and only if §(T1, T) = 0.
According to [7] the tree inclusion problem was initially introduced by Knuth [26, exercise
2.3.2-22].

The rest of the section is organized as follows. In Sections 5.1 we give some preliminaries
and in Sections 5.2 and 5.3 we survey the known results on ordered and unordered tree
inclusion, respectively.

5.1. Orderings and embeddings

Let T be a labeled, ordered, and rooted tree. We define an ordering of the notles of
given byv < v’ iff post(v) < post(v’). Also,v < v iff v < v/ orv = v'. Furthermore,
we extend this ordering with two special nodesindT such that for all nodes € V(T),

1 < v < T. Theleft relatives Ir(v), of a nodev € V(T) is the set of nodes that are
to the left ofv and similarly theright relatives rr(v), are the set of nodes that are to the
right of v.

Let Tp andT» be rooted labeled trees. We definecmdered embeddingf, T, T>) as an

injective functionf : V(T1) — V(T») such that for all nodes, u € V(T1),

e label(v) = label(f(v)) (label preservation condition).

e v is an ancestor af iff f(v) is an ancestor of (1) (ancestor condition).

e istothe left ofu iff f(v) isto the left of f (u) (sibling condition).

Hence, embeddings are special cases of mappings (see Se&jioAnunordered embed-
ding is defined as above, but without the sibling condition. An embeddjhd@:, 7») is
root-preservingf f(root(71)) = root(7>). Fig. 6(b) shows an example of a root-preserving
embedding.

5.2. Ordered tree inclusion

Let 71 andT» be rooted, ordered and labeled trees. The ordered tree inclusion problem has
been the attention of much research. Kilpelainen and Mannila [22] (see also [21]) presented



234 P. Bille / Theoretical Computer Science 337 (2005) 217-239

Fig. 6. (a) The tree on the left is included in the tree on the right by deleting the nodes ldbaladdc. (b) The
embedding corresponding to (a).

the first polynomial time algorithm using (@7||72]) time and space. Most of the later
improvements are refinements of this algorithm. We present this algorithm in detail in the
next section. 1f21] a more space efficient version of the above was given us(i @2)
space. In [36] Richter gave an algorithm using X, ||7>| + mr, 1, D2) time, whereXr,

is the alphabet of the labels 8f andmr, 7, is the sematchesdefined as the number of
pairs(v, w) € Ty x T» such that lab&b) = labekw). Hence, if the number of matches is
small the time complexity of this algorithm improves th&;||7>|) algorithm. The space
complexity of the algorithm is Q2 7, || 72| +mr,,7,). In [7] @ more complex algorithm was
presented using @.1|7>|) time and QL1 min{Dy, L>}) space. In [3] an efficient average
case algorithm was given.

5.2.1. Kilpelainen and Mannila’s algorithm
In this section we present the algorithm of Kilpeldainen and Mannila [22] for the ordered
tree inclusion problem. Lef; andT» be ordered labeled trees. DefiR€T1, T>) as the set
of root-preserving embeddings @f into 7>. We definep(v, w), wherev € V(T1) and
w e V(T»):

p(, w) =min({w" € rr(w)|3f € R(T1(v), T2(w"))} U{TH.

Hence,p(v, w) is the closest right relative af which has a root-preserving embedding
of T1(v). Furthermore, if no such embedding exigt®, w) is T. It is easy to see that, by
definition, Ty can be included i if and only if p(v, L) # T. The following lemma shows
how to search for root preserving embeddings.

Lemma 10. Let v be a node inT; with childrenvy, ..., v;. For a nodew in T, define
a sequencepy, ..., p; by settingp:s = p(v1, max. Ir(w)) and px = p(vk, pr—1), for
2<k<i.Thereis aroot-preserving embedding flafv) in T>(v) if and only iflabelv) =
labekw) and p; € To(w), forall 1<k <i.
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Proof. If there is a root-preserving embedding betwé&gtw) and T>(w) it is straightfor-
ward to check that there is a sequengel<i <k such that the conditions are satisfied.
Conversely, assume that € T>(w) for all 1<k <i and labe{v) = labekw). We construct

a root-preserving embeddifigf 71 (v) into T>(w) as follows. Letf (v) = w. By definition

of p there must be a root-preserving embeddjifg 1<k <i, of T1(vg) in To(py). For a
nodeu in T1(vy), 1<k <i, we setf(u) = f*u). Sincepy € rr(pr_1), 2<k<i, and
pr € To(w) forall k, 1<k <, it follows thatf is indeed a root-preserving embedding.]

Using dynamic programming it is now straightforward to compute, w) for all v €
V(T1) andw € V(T3). For a fixed nodev we traversely in reverse postorder. At each
nodew € V (T>) we check if there is a root-preserving embeddin@gi) in To(w). If so
we setp(v, ¢) = w, for all ¢ € Ir(w) such thatt<g, wherex is the next root-preserving
embedding offy (v) in T2(w).

For a pair of nodes € V(71) andw € V(T») we test for a root-preserving embed-
ding using Lemmd.0. Assuming that values for smaller subproblems has been computed,
the time used is @legv)). Hence, the contribution to the total time for the nades
Zvev(n) O(degv)) = O(|Ty)). It follows that the time complexity of the algorithm is
bounded by @T1||T>|). Clearly, only Q|T1||T2|) space is needed to stope Hence, we
have the following theorem,

Theorem 4 (Kilpelainen and Mannild22]). For any pair of rootedlabeled and ordered
treesTy and T», the tree inclusion problem can be solvedd(T1||T2|) time and space.

5.3. Unordered tree inclusion

In [22] it is shown that the unordered tree inclusion problem is NP-complete. The re-
duction used is from the Satisfiability problem [12]. Independently, MatouSek and Thomas
[32] gave another proof of NP-completeness.

An algorithm for the unordered tree inclusion problem is presented in [22] ugirig |,

22111 7,|) time. Hence, ifl1 is constant the algorithm runs in(@%||7>|) time and ifI; =
log|T>»| the algorithm runs in Q71| log|T»||T2|3).

6. Conclusion

We have surveyed the tree edit distance, alignment distance, and inclusion problems.
Furthermore, we have presented, in our opinion, the central algorithms for each of the
problems. There are several open problems, which may be the topic of further research. We
conclude this paper with a short list proposing some directions.

e Forthe unordered versions of the above problems some are NP-complete while others are
not. Characterizing exactly which types of mappings that gives NP-complete problems
for unordered versions would certainly improve the understanding of all of the above
problems.

e The currently best worst-case upper bound on the ordered tree edit distance problem s the
algorithm of[25] using Q(|T1|?|T»| log |T2|). Conversely, the quadratic lower bound for



Table 1

Results for the tree edit distance, alignment distance, and inclusion problem listed according to variant

Variant Type Time Space Reference
Tree edit distance

General o QIT1||T2| D2 D3) O(|T1||T2| D D3) [43]
General 0] Q@ T1||T2I min(Ly, D) min(Lyp, D)) O(T11T21) [55]
General o} Q71/2|T»| log| T2) O(IT4||T2)) [25]
General o QT|To| + L3|T2| + LZ5Ly) O((IT1| + L2y min(Ly, Dy) + |T2]) 8]
General U MAX SNP-hard [54]
Constrained (0] QT11||T2)) O(|T1||T2)) [51]
Constrained (0] Q1| T2\ 1112) O(|T1||D212) [37]
Constrained u QT T21(11 + I2) log(I1 + 12)) O(T111T2D) [52]
Less-constrained o Q|| T I3 13(1 + 1)) O( 1| T2 I3 13(11 + I2)) [29]
Less-constrained U MAX SNP-hard [29]
Unit-cost o) QuZ min(|Ty. | T2|) min(L1, L2)) O(11IT2D) [41]
1-degree o Q11lIT2D) O(IT11IT21) [38]
Tree alignment distance

General o QT T2l(11 + 12)?) O(T11T21(11 + 1)) [18]
General U MAX SNP-hard [18]
Similar 0] QT4 + T2 log(IT1| + | T2 (11 + I2)*s?) O((IT1| + |T2)) log(I T1| + | T2) (11 + I2)*s?) [17]
Tree inclusion

General o QT1|IT2)) O(|T1| min(D3L7)) [21]
General o Q27 IT2] +m7y, 1,D2) O(Zp 1Tl + m7y, 1) [36]
General (e} QL1|T>|) O(L1min(DyL>)) [7]
General U NP-hard [22,32]
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D;, L;, andl; denotes the depth, the number of leaves, and the maximum degree, respectiiely-ofl, 2. The type is either O for ordered or U for unordered. The

valueu is the unit cost edit distance betweEpand7, and the valusis the number of spaces in the optimal alignmenT')p&nd7;. The valueXr, is set of labels used

in 71 andmrp, 7, is the number of pairs of nodes 1 and7, which have the same label.
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the longest common subsequence probl&hproblem is the best general lower bound
for the ordered tree edit distance problem. Hence, a large gap in complexity exists which
needs to be closed.

e Several meaningful edit operations other than the above may be considered depending
on the particular application. Each set of operations yield a new edit distance problem
for which we can determine the complexity. Some extensions of the tree edit distance
problem have been considerqgs,24].
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