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Labeling Schemes for Small Distances in Trees 

Stephen Alstrup* Philip Bille* Theis Rauhe* 

Abstract  

We consider labeling schemes for trees, supporting 
various relationships between nodes at small distance. 
For instance, we show that  given a tree T and an integer 
k we can assign labels to each node of T such that  
given the label of two nodes we can decide, from these 
two labels alone, if the distance between v and w is at 
most k and if so compute it. For trees with n nodes 
and k > 2, we give a lower bound on the maximum 
label length of log n + ~( loglogn)  bits, and for constant 
k, we give an upper bound of log n + O(log log n). 
Bounds for ancestor, sibling, connectivity and bi- and 
triconnectivity labeling schemes are also presented. 

1 I n t r o d u c t i o n  

Motivated by applications in XML search engines, net- 
work routing and implicit graph representation several 
labeling schemes for trees have been developed, among 
these [16, 22, 13, 10, 26, 1, 3, 8]. Given a tree, a labeling 
scheme assigns a label, l(v), which is a binary string, to 
each node v of the tree. Then, given only the labels 
of two nodes we can compute some predefined function 
of the two nodes. The main objective is to minimize 
the maximum label length, i.e., the maximum number 
of bits used in a label. 

In this paper we consider labeling schemes for 
various relationships between nodes of small distance 
in trees. For instance we show, by giving upper and 
lower bounds, that  a labeling scheme supporting parent 
and sibling queries requires labels of length log n + 
O(log log n) 1. This improves a recent bound by Kaplan 
and Milo [18] of l o g n +  O ( o ~ ) .  

More generally, we say that  two nodes v and w with 
nearest common ancestor z are (kl, k2)-related if the 
distance from v to z is kl and the distance from w to z 
is k2. For a positive integer k, a k-relationship labeling 
scheme is a labeling scheme for trees which supports 
tests for whether v and w are (kl,k2)-related for all 
nodes v and w and all positive integers kl, k2 < k. 
In particular, a 1-relationship labeling scheme supports 
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1log refers to the binary logarithm and log* is the nmnber of 
times log should be iterated to get a constant. 

tests for whether two nodes are (0, 0)-,(0, 1)-,(1, 0)- or 
(1, 1)-related. That  is, whether two nodes are identical, 
one is the parent of the other or they are siblings. 
For trees with n nodes we show, for k = 1, a lower 
bound on the label length of logn + ~( loglogn) ,  and 
for fixed, constant k we give an upper bound of log n + 
O(log log n). 

As noted in [18], a k-relationship labeling scheme 
can be used to test whether or not the distance be- 
tween two nodes is at most k, and if this is the case we 
can compute the distance exactly. We call a labeling 
scheme with this property a k-restricted distance label- 
ing scheme. We give a lower bound showing that  for 
k = 2, a k-restricted distance labeling scheme requires 
labels of length log n + l)(log log n). Hence, for constant 
k, our k-relationship labeling scheme gives a k-restricted 
distance labeling scheme which is optimal to within a 
factor of log logn. This result improves a recent up- 
per bound of logn + O ( o ~ )  for k-relationship and 
k-restricted distance labeling schemes given in [18]. In 
contrast to the results for restricted distances Gavoille et 
al. [13] shows that  a labeling scheme for computing the 
distance between any pair of nodes in a tree must use 
labels of length O(log 2 n). In [10] it is shown that  even if 
the distances are allowed to be approximated to within 
a factor of (1 + 1 / logn)  we still need labels of length 
O( lognloglogn) .  Our result shows that  for restricted 
distances much smaller labels suffice. A 1-restricted la- 
beling scheme supports tests for whether two nodes are 
adjacent. Such a labeling scheme, called an adjacency 
labeling scheme, was recently given for trees in [4], with 
label length bounded by logn + O(log* n). Thus, there 
is a provable gap between the label length of 1- and 
2-restricted distance labeling schemes. 

The above lower bounds is the result of a more 
general new technique which we use to obtain lower 
bounds for several types of labeling schemes and for 
many of these we give matching upper bounds. Apart  
from the above results we present the following. 

Bi- a n d  t r i c o n n e c t i v i t y  l abe l ing  schemes .  As 
an application of our k-relationship labeling scheme we 
obtain a labeling scheme for general graphs for bicon- 
nectivity (or 2-vertex connectivity) queries. Recently, 
Katz et al. [21] considered labeling schemes for 1-,2- 
,3- and m-vertex connectivity. They gave a labeling 
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scheme for biconnectivity using 31ogn bits. We show, 
giving upper and lower bounds, that  labels of length 
logn + O(loglogn) is required. The labeling scheme 
for triconnectivity (or 3-vertex connectivity) in [21] uses 
the biconnectivity labeling scheme and has label length 
bounded by 5 log n. Using our biconnectivity labeling 
scheme we obtain a triconnectivity labeling scheme us- 
ing labels of length 3 log n + O (log log n). 

A n c e s t o r  l abe l ing  schemes .  For trees with n 
nodes we show that  a labeling scheme for ancestor 
queries must use labels of length log n + ~(loglog n). 
This is the first non-trivial lower bound for the prob- 
lem. Upper bounds using 2 [log n] bits were given 
in [27, 17, 23]. Recently, Abiteboul, Kaplan and Milo [1] 
gave an ancestor labeling scheme using labels of length 
3/21ogn + O(log log n). Subsequently, this was im- 
proved by Alstrup and Rauhe [3] bounding the label 
length to l o g n + O ( o ~ ) .  

If no two nodes are assigned the same label we say 
that  the labels are unique. The above labeling schemes 
all produce unique labels, whereas the lower bounds 
also holds for labeling schemes that  produce non-unique 
labels. However, the following bounds shows that  there 
is a non-trivial complexity difference between labeling 
schemes assigning unique and non-unique labels. 

S ib l ing  a n d  c o n n e c t i v i t y  l abe l ing  schemes .  
For sibling queries we give a labeling scheme using labels 
of length [log n]. This labeling scheme will not assign 
unique labels to the nodes of the tree. If uniqueness 
is required, as in [16], we give upper and lower bounds 
showing that  such a labeling scheme uses labels of length 
logn + O(loglogA), for trees of maximum degree A. 
Extending the result for the sibling labeling scheme we 
give a labeling scheme supporting connectivity queries 
for forest using labels of length [log n] for forests with n 
nodes. Again, these labels are not unique and if this is 
required we show that  such a labeling scheme requires 
labels of length log n + O(log log n). 

1.1 Related  work Adjacency labeling schemes, were 
introduced by Breuer and Folkman [5, 6] and efficient 
labeling schemes were consider by Kannan, Naor and 
Rudich in [16, 17]. In [22] distance labeling schemes 
were introduced, i.e., labeling schemes that  compute the 
distance between any pair of nodes. Distance labeling 
schemes for various types of graphs are given in [22, 
20, 13, 11] and distance labeling schemes computing 
approximate distances are given in [10, 25]. 

Recently, labeling schemes for various other rela- 
tionships have been studied. Labeling schemes are given 
for ancestor in [17, 1, 26, 3, 19, 8], for nearest common 
ancestor in [2] and connectivity in [21]. Efficient label- 
ing schemes are also applicable to routing schemes, see 

e.g. [23, 26]. A survey on labeling schemes can be found 
in [12]. 

1.2 O u t l i n e  In Section 2 we give some preliminaries 
and in Section 3, 4 and 5 we present the upper bounds 
on relationship, bi- and triconnectivity, connectivity 
and sibling labeling schemes. Lower bounds for these 
schemes are shown in Section 6 together with lower 
bounds for ancestor labeling schemes and the above 
mentioned lower bound technique. 

2 P r e l i m i n a r i e s  

For a graph G we denote the set of nodes and edges by 
V(G) and E(G). Let T be a rooted tree with n nodes. 
The maximum degree of T is the maximum number of 
children of any node v E V(T) .  The distance between 
two nodes v ,w E V(T) ,  denoted by dist(v,w), is the 
number of edges on the unique simple path between v 
and w. The depth of v is the distance between v and the 
root of T. We let T(v) denote the subtree of T rooted at 
a node v e V(T) .  If w e V(T(v))  then v is an ancestor 
of w and if w E V(T(v ) ) \ {v}  then v is a proper ancestor 
of w. If v is (proper) ancestor of w then w is a (proper) 
descendant of v. A node z is a common ancestor of v and 
w if it is an ancestor of v and w. The nearest common 
ancestor of v and w, nca(v, w), is the common ancestor 
of v and w of largest depth. For a node v of depth 
d and i _< d, the i th level ancestor of v, A(v,i) ,  is the 
ancestor of v of depth d - i .  We call the node A(v, 1) and 
A(v, 2) the parent (denoted parent(v)) and grandparent 
of v respectively. Two nodes are siblings if they have 
the same parent. A node with no children is a leaf and 
otherwise an internal node. Two nodes in a forest are 
connected if and only if there is a path between them. 
A bit string of length n is a sequence a -- aoal . . .  an-l ,  
wherea i  e {0,1},0  < i < n - 1 .  For 0_< j < n - 1  
the sequences a 0 , . . . , a j - 1  and an-j , . . .  ,an-1 are the 
j most significant bits and the j least significant bits 
respectively. The standard binary representation of a 
positive integer k is the unique bit string a 0 . . . a r - 1 ,  
where r = [log k l and k = ~._-~ aj2 r - j - ' .  The discrete 
logarithm of k is the number ~og kJ. For two integers i 
and j where i < j let [i,j] be the interval { i , . . .  , j} .  

L a b e l i n g  schemes .  A binary query (or simply 
query) is a mapping f : V(G) × V(G) ~ X for some 
set X. A labeling scheme for a family of graphs .T 
supporting queries f l , . . . ,  fm (fi : V(G) x V(G) ~ X~) 
is a tuple (e, d l , . . . ,  din) of mappings, where e is called 
the encoder and di is called the decoder for the i th 
query. The encoder e defines a label assignment, eG, 
for all G E .~', which is a mapping of V(G) into bit 
strings called labels. Given the labels of two nodes v 
and w the i th decoder, di, then computes the i th query, 
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i.e., di(ea(v), ea(w) ) = f i(v, w). f f the  label assignment 
eG is an injective mapping for all G E .T we say that  
the labeling scheme assigns unique labels to the nodes. 
A labeling scheme has label length bounded by s if the 
maximum length of the labels assigned to a node in any 
G E .T is bounded by s. We say that  a labeling scheme 
can be computed in time t if for any G E U there is 
an encoder which assigns labels to all nodes in V(G) in 
time t. 

3 Upper bound for relationship labeling 
schemes 

3.1 A 1-relationship labeling scheme In this sec- 
tion we give a 1-relationship labeling scheme which will 
serve as a basis for our k-relationship labeling scheme 
in the next section. As a consequence of this some of 
the lemmas shown below will be more general than re- 
quired for a 1-relationship labeling scheme. Our labeling 
scheme assigns unique labels to each node and supports 
both parent and sibling queries. As described, a label- 
ing scheme with these properties implies a 1-relationship 
labeling scheme. The labeling scheme has label length 
bounded by logn + O(loglogn) for trees with n nodes. 

Some of the techniques presented below are similar 
to the ones used in [4]. Here a labeling scheme 
supporting parent queries is given with labels of length 
bounded by log n + O(log log n). This result is similar 
to Lemma 3.7. In [4], however, only the parent query is 
considered and it is shown that  the label length can be 
reduced to log n + O(log* n). In this section we instead 
generalize the result to relationship queries. As noted 
in the introduction we later show that  our labels are the 
smallest possible within a factor of log log n. 

Let Tn denote the family of rooted trees with n 
nodes. Let T E Tn. As in [14] we partition T into 
disjoint paths. For a node v E V(T)  let size(v) = 
IV(T(v))[. We classify each node of T as either heavy 
or light as follows. The root is light. For each internal 
node v we pick a child w of v of maximum size among 
the children of v and classify w as heavy. The remaining 
children are light. We call an edge to a light child a light 
edge, and an edge to a heavy child a heavy edge. For an 
internal node v, let heavy(v) denote the heavy child of 
v. Define the light subtree, L(w), rooted at the node w 
as follows. If w is an internal node L(w) is the subtree 
obtained from T(w) by cutting away T(heavy(w)) and 
if w is a leaf L(w) = T(w). Let lightsize(v) = IV(L(v))[. 
The light depth of a node v, lightdepth(v), is the number 
of light edges on the path from v to the root. 

LEMMA 3.1. ( [ 1 4 ] ) F o r  any tree T with n nodes 
lightdepth(v) < logn + O(1) for any v E T. 

The nearest light ancestor of v (possibly v itself) is 

denoted apex(v). By removing the light edges T is 
partit ioned into heavy paths. 

A key ingredient of the scheme is preorder numbers. 
Order the tree T such that  the rightmost child of an 
internal node is the heavy node. The light children 
may be in any particular order. A preorder depth first 
traversal of T is obtained by first visiting the root and 
then recursively visiting the children of the root from 
left to right. The preorder number, pre(v), is the number 
of nodes visited before v in this traversal, i.e., the root 
will have number 0 and the rightmost leaf will have 
number n - 1. The labels assigned by our labeling 
scheme will encode pre(v) in the label of v using [log n 1 
bits. This will ensure that  the labels are unique. In the 
rest of the label we will encode various smaller fields 
using no more than O(loglogn) bits in total. In the 
following we show how to test, for two nodes v and w, 
if one is the parent of the other or if they are siblings 
based on whether v and w are light or heavy nodes. 

First define a node w to be a significant ancestor of 
v if v E L(w). We have the following relation between 
significant ancestors and the preorder numbering. 

LEMMA 3.2. For all nodes v and w, v E L(w) if and 
only if pre(v) e [pre(w), pre(w) + lightsize(w) - 1]. 

Proof. If w is a leaf, then v = w and lightsize(w) = 1. 
Hence, pre(w) = pre(v) = p r e ( w ) +  l igh ts ize (w)-  1 
and the result follows. So assume w is an internal 
node. Then, in a preorder traversal, v is visited at 
the time of w or after and before heavy(w) if and 
only if pre(w) < pre(v) < pre(heavy(w)). Since 
pre(heavy(w)) = pre(w)+lightsize(w) the result follows. 
[] 

Consider the binary representation of pre(v) for 
an internal node v. Let w = [logn] and f (v)  = 
[log lightsize(v)J. We define the significant preorder 
number, spre(v), as a number in [pre(v),pre(v) + 
lightsize(v) - 1] where all the f (v )  least significant bits 
are 0: If pre(v) rood 2I(v) = 0 then spre(v) = pre(v). 
Otherwise spre(v) = pre(v) - (pre(v) mod 2I(~)) + 2I(v). 
The following lemma states the relations we need be- 
tween the preorder and significant preorder numbers. 

LEMMA 3.3. For all nodes v and w the following holds: 

(i) spre(v) E [pre(v), pre(v) + lightsize(v) - 1]. 

(ii) v = w if and only if lightdepth(v) = lightdepth(w) 
and spre(v) = spre(w). 

(iii) I f  lightdepth(v) = lightdepth(w) then pre(w) < 
pre(v) /f and only spre(w) < spre(v). 
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Proof. (i) If pre(v) mod 2 f(v) = 0 then spre(v) -- pre(v) 
and since lightsize(v) > 1 for all v the result follows. 
Otherwise 1 < pre(v)rood 2 I(v) < 2 f(') - 1 .  Hence, 
spre(v) >_ pre(v) - (2 l(v) - 1) + 2 ]~v) = pre(v) + 1 and 
spre(v) _< pre(v) - 1 + 2 I(~) < pre(v) - 1 + lightsize(v). 

(ii) If v = w the conditions are clearly satis- 
fied. Conversely assume that  v ¢ w and the condi- 
tions are satisfied. Since v ¢ w and lightdepth(v) = 
lightdepth(w) we have that  v ~ L(w) and w 
L(v). Then, by Lemma 3.2 pre(v) ~ [pre(w),pre(w) + 
lightsize(w) - 1] and pre(w) ~ [pre(v),pre(v) + 
lightsize(v) - 1] and hence these intervals must be dis- 
joint. However, since spre(v) = spre(w) we have, by 
(i), the contradiction that  spre(v) E [pre(v),pre(v) + 
lightsize(v) - 1] and spre(v) E [pre(w),pre(w) + 
lightsize(w) - 1]. 

(iii) If pre(w) < pre(v) and lightdepth(v) = 
lightdepth(w), then v ¢ L(w).  By Lemma 3.2, pre(v) ¢ 
[pre(w),pre(w) + lightsize(w) - 1] and since pre(w) < 
pre(v) we have pre(w) + lightsize(w) - 1 < pre(v). By 
(i) it follows that  spre(w) < spre(v). Conversely, since 
spre(w) < spre(v) and lightdepth(v) = lightdepth(w) 
we have by (ii) that  v ~ w. Furthermore, as in the proof 
of (ii), this implies that  the intervals [pre(v),pre(v) + 
lightsize(v)- 1] and [pre(w), pre(w) +lightsize(w)- 1] are 
disjoint. By (i), spre(v) e [pre(v), pre(v) +l ights ize(v)-  
1] and spre(w) E [pre(w), pre(w) + lightsize(w) - 1] and 
since these intervals are disjoint and spre(w) < spre(v) 
we have that  pre(w) < pre(v). [] 

Note that  by Lemma 3.3(ii) a node v is uniquely 
identified by spre(v) and lightdepth(v). The following 
lemma shows that  the significant preorder number of 
a significant ancestor can be represented efficiently. In 
particular, spre(parent(v)) can be represented efficiently 
if v is a light node. 

LEMMA 3.4. Given pre(v) we can represent spre(w) for 
each significant ancestor w of v using only log log n + 
O(1) bits per significant ancestor. 

Proof. Let w be a significant ancestor of v. Since 
lightsize(w) < 2f( w)+l there can be, apart from 
spre(w), at most one other number in the interval 
[pre(w), pre(w)+lights ize(w)-  1] with all the f (w) l eas t  
significant bits set to zero, i.e., the number spre(w) + 
2 l(w). Let pre'(v) be pre(v) with all the f (w)  least 
significant bits set to zero. Since w is a significant an- 
cestor of v, v E L(w) and thus, by Lemma 3.2, pre(v) E 
[pre(w),pre(w) + lightsize(w) - 1]. Hence, prel(v) will 
be either spre(w) - 2  f(w), spre(w) or spre(w) + 2f(w) 
and therefore spre(w) is either pre~(v) + 2I(w), pre~(v) 
or pre~(v) - 2 l(w). Clearly, representing f (w)  and two 
extra bits to distinguish these three cases we can corn- 

pute spre(w) from pre(v). This can be represented by 
[loglogn] + 2 bits since f (w)  is bounded by logn. [] 

For each light node v we will encode lightdepth(v), 
spre(v) and spre(parent(v)) in the label of v. By 
Lemma 3.1 lightdepth(v) < logn + O(1), and can thus 
be represented using loglogn + O(1) bits. Since the la- 
bels encode pre(v) and v is light, we have by Lemma 3.4 
that  spre(v) and spre(parent(v)) can also be repre- 
sented using loglogn + O(1) bits. By Lemma 3.3(ii), 
lightdepth(v) together with spre(v) uniquely identifies 
the node v. This immediately implies the following: 

LEMMA 3.5. For a light node v and internal node w, 
w is the parent of v if and only if lightdepth(v) = 
lightdepth(w) + 1 and spre(parent(v)) = spre(w). 

LEMMA 3.6. For two light nodes v and w, w and v are 
siblings if and only iflightdepth(v) = lightdepth(w) and 
spre(parent(v)) = spre(parent(w)). 

Next we show how to handle the remaining cases. 
Define diff_parent(v) = spre(v) -spre(parent(v))  and 
leave it undefined for the root. For internal nodes, define 
diff_heavy(v) = spre(heavy(v)) - sp re (v )  and leave it 
undefined for leaves. We will use the discrete logarithm 
of diff_parent(v) and diff_heavy(v) to test for parentship 
between two nodes on a heavy path. Since the discrete 
logarithm is bounded by log n only [log log n 1 bits are 
needed to represent each of these numbers. 

LEMMA 3.7. For heavy node v and internal 
node w, w is the parent of v if and only if 
spre(w) < spre(v), lightdepth(v) = lightdepth(w) 
and [log(spre(v) - spre(w))J = [logdiff_parent(v)J = 
[log diff_heavy (w) J 

Proof. For w = parent(v) it is straightforward, us- 
ing 3.3, to verify that  the conditions are satisfied. 
Conversely, assume that  a node w ¢ parent(v) 
satisfies the conditions. Since spre(w) < spre(v) 
and lightdepth(v) = lightdepth(w), we have by 
Lemma 3.3(iii) that  pre(w) < pre(v). Then, 
since lightdepth(w) = lightdepth(heavy(w)) = 
lightdepth(parent(v)) = lightdepth(v) and w 
parent(v), this implies that  pre(w) < pre(heavy(w)) < 
pre(parent(v)) < pre(v). By Lemma 3.3(ii) and 
(iii), also spre(heavy(w)) < spre(parent(v)) and 
therefore s p r e ( v ) -  spre(w) >_ ( sp re (heavy(w) ) -  
spre(w)) + (spre(v) - spre(parent(w))) = 
diff_heavy(w) + diff_parent(v). By the identities 
Llog(spre(v) - spre(w))J = [log diff_parent(v)J = 
[log diff_heavy(w)J this leads to the contradiction 
spre(v) - spre(w) > diff_heavy(w) + diff_parent(v) > 
2 • 2 l l ° g d i f f - p a x e n t ( v ) j  ~-- 2 • 2 [ l ° g ( s p r e ( v ) - s p r e ( w ) ) j  > 

spre(v) - spre(w). [] 
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By the same reasoning we obtain the following: 

LEMMA 3.8. For a heavy node v and light node w, v 
and w are siblings i] and only if spre(parent(w)) < 
spre(v), lightdepth(v) = lightdepth(w) - 1 
and [log(spre(v) - spre(parent(w)))J -~ 
[log diff_parent(v)J = [log diff_heavy(parent(w))J. 

Note that  since any node has at most one heavy child 
two heavy nodes v and w are siblings if and only if 
v -- w. Since the labels are unique it is trivial to handle 
this case. 

Combining the above lemmas we obtain the 1- 
relationship labeling scheme. For T E Tn let the encoder 
eT(V), V e V(T), encode pre(v), lightdepth(v), spre(v), 
[log diff_heavy(v)J and a type bit indicating if v is a light 
or heavy node. Furthermore, if v is a light node encode 
spre(parent(v)) and diff_heavy(parent(v)). If v is a 
heavy node encode [log diff_parent(v)J. As described, 
pre(v) uses [log n] bits and each of the other values 
uses loglogn + O(1) bits each. For easy decoding we 
represent each of the values in fixed sized fields in the 
label of v. The first [log n] bits stores pre(v). The other 
values are represented, in five fields (we leave one field 
undefined when v is a light node) of the same length, in 
the next 51oglogn + O(1) bits. At the end of the label 
we store the type bit. We will assume that  the decoder 
does not know the value n, i.e., the decoder is not 
specialized to trees of size n, but  will work with any tree, 
regardless of its size. Due to this restriction we cannot 
compute [log n] directly and use this to extract  the 
preorder number and then the rest of the fields. Instead 
we prefix the label with the binary representation of 
the length of the field containing pre(v). Since the 
length of this field is [log n] this can be done using 
loglogn + O(1) bits. Now, we also need to store the 
length of the bit string representing the length of pre(v), 
but this can be done using a unary code of length at 
most loglogn + O(1). In total the label length will be 
bounded by log n + O(loglog n). By uniqueness of the 
labels and Lemmas 3.5 - 3.8 it is straightforward to 
construct decoders testing if two nodes are (0, 0)-,(0, 1)- 
,(1, 0)- or (1, 1)-related. In summary we have: 

THEOREM 3.1. For trees with n nodes there is a 1- 
relationship labeling scheme with label length bounded 
by logn + O(loglogn).  

Finally, note that  labels for all nodes in T can be com- 
puted in O(n) time and queries can be implemented in 
O(1) time per query assuming standard binary opera- 
tions on a RAM. 

3.2 A general k-relationship labeling scheme In 
this section we generalize the result of the previous 

section to a k-relationship labeling scheme. The scheme 
extends the ideas of the first labeling scheme and has 
label length bounded by log n + O (k 2 (log log n + log k)), 
which for constant k is logn + O(loglogn).  

We first extend the definition of diff_heavy(v) 
and diff_parent(v) as follows. If v has a descendant 
u on the same heavy path as v of distance m let 
diff._h_des(v, m) = spre(u) - spre(v) and if there is no 
such node u let diff_h_des(v,m) = 2n, i.e., the dis- 
crete logarithm of 2n will be [log nJ + 1 indicating 
that  this is not an actual difference. Similarly, define 
diff_h_anc(v, m) for the ancestor on the same heavy path 
of v of distance m. Furthermore, for a node v we define 
the index of v, index(v), as the number of nodes with the 
same light depth as v and with smaller preorder num- 
bers than v. We will use the following generalization of 
Lemma 3.7: 

LEMMA 3.9. For a heavy node v and internal node 
w, w and v are on the same heavy path and w is 
an ancestor off v of distance m > 1 if  and only if  
spre(w) < spre(v), lightdepth(v) = lightdepth(w), 
[log spre(v) - spre(w)J = [log diff_h_anc(v, m)J = 
[log diff_.h_des(w, m)J and index(v) mod m = 
index(w) mod m. 

Proo]. Let x denote the ancestor of v of distance 
m on the heavy path of v. Similarly, let y denote 
the descendant of w of distance m on the heavy 
path of w. If x = w (or y = v) it is straight- 
forward to check that  the conditions are satisfied. 
Conversely, assume that  the conditions are satis- 
fied and x ¢ w. Since [ log(spre(v)-spre(w))J  = 
[log diff_h_anc(v, m)J = [log diff_h_des (w, m)J 
both x and y exists and are on the same heavy 
paths as v and w respectively. As in the proof of 
Lemma 3.7, since lightdepth(w) = lightdepth(y) = 
lightdepth(x) = lightdepth(v), spre(w) < spre(v), 
index(v) rood m = index(w) mod rn and x ~ w, it fol- 
lows that  spre(y) < spre(x). Then spre(v) - spre(w) > 
diff_h_des(w, m) + diff_h_anc(v, m). By the identities 
[log(spre(v) - spre(w))j = [log diff_h_anc(v, m)J = 
[log diff_h_des(w, m)J this leads to the contra- 
diction spre(v) - spre(w) > diff_h_des(w,m) + 
diff_h_anc(v, m) _ > 2 2 tlog diff±_z~c(v,~)J = 
2 . 2  [l°g(spre(v)-spre(w))j > spre(v) - spre(w). [] 

The main idea in our labeling scheme is to store, 
in the label of v, pre(v) and lightdepth(v) as be- 
fore. Furthermore, for each significant ancestor w 
of v of distance at most k we will represent spre(w) 
together with diff_heavy(w, m), diff_parent(w, m) and 
index(w) rood m, for 1 < m < k. Then, to test if two 
nodes v and w are (kl, k2)-related we identify the heavy 
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path  containing the nearest common ancestor of v and 
w and compute distances to and on this heavy path.  

T h e  e n c o d e r .  We can now describe the encoder 
for our k-relationship labeling scheme. For T E 7~ 
let the label eT(V), V E V ( T )  encode pre(v) and 
lightdepth(v). Furthermore,  we store an ancestor table 
of s entries, where s is the number of significant 
ancestors of distance at most k from v. If w is the i th 
significant ancestor of v, the i th entry in the ancestor 
table will represent spre(w), dist(v,w) and a single 
bit, called the apex bit, indicating whether or not the 
distance to apex(w) is at  most  k. If  this is so we 
store dist(w, apex(w)) and otherwise leave this field 
undefined. Furthermore,  the i th entry also represents, 
for 1 _< m < k, diff_heavy(w,m), diff_parent(w,m) 
and index(w) mod  m. Hence, number  of bits used to 
represent an entry is bounded by O ( k  log log n + k log k) 
and thus the total  number  of bits used for the ancestor 
table is at  most O( k2 (log log n + logk)) .  For efficient 
computat ion of the queries we store a lookup table of k 
entries. The i th entry stores the light depth of A(v ,  i). 
Hence the lookup table uses at most  O(k  log log n) bits. 
As before all the values are stored in fixed sized fields 
and we prefix the label with small codes representing the 
length of pre(v) and each of tables. In total  the label 
length is bounded by logn  + O ( k 2 ( l o g l o g n  + logk)) .  
Computing the tables can be done in O(k)  t ime per node 
after O(n)  t ime preprocessing and hence the labeling 
scheme can be computed in O(nk )  time. 

T h e  d e c o d e r .  In the following we present the 
decoder for our k-relationship labeling scheme. We first 
present necessary and sufficient conditions for two nodes 
v and w to be (kl, k2) related and then show how to test  
these conditions using only the labels of v and w. 

LEMMA 3.10. Let  v , w  E T and distances kl  and k2 
(not both zero) be given. Let  v t be the significant ances- 
tor of v such that l ightdepth(v t) = l ightdepth(A(v, kl)) 
and i f  v ~ ~ v let v"  be the significant ancestor of v 
of light depth l ightdepth(A(v, kl) + 1. Otherwise let 
v" = v. Similarly, define w'  and w"  for  w.  Then, v 
and w are (k l ,k2)-re la ted  i f  and only i f  one of the fol- 
lowing disjoint conditions are satisfied. 

w j, and are on (i) v ~ = v"  w "  different heavy paths, 
dist(v, v ')  = kl  and dis t (w,w')  = k2. 

(ii) v ~ and w ~ are on the same heavy path, v ~ is a proper 
ancestor o / w  t, dist(wl,v t) = k2 - d i s t ( w , w  I) and 
dis t (v ,v ' )  = kl.  

(iii) v ~ and w ~ are on the same heavy path, w t is a proper 
ancestor of v ' ,  dist(vl ,w I) = k l -  d is t (v ,v  I) and 
dist(w, w') = k2 

V~_--W~.,~Z 

©~v " 
wb (a) 

(~ V '~ 
6w 

(b) 

Figure 1: Cases for Lemma 3.10. (a) case (i). (b) case 
(ii). 

Proof. The situation is illustrated in figure 1. Let 
z = nca(v, w). If one of the conditions are satisfied 
it is straightforward to check tha t  v and w are (kl,  k2)- 
related. Conversely, if v and w are (kl, k2)-related then 
z must  be on the heavy pa th  of v ~ and w ~ and z = v t or 
z = w ~. If z = v' = w' then z is a significant ancestor 
of both  v and w. Hence, since not both  of kl and k2 
are zero, v" and w" must  be on different heavy paths,  
since otherwise there would be a common ancestor of 
larger depth than  z contradicting the assumption tha t  
z = nca(v,w).  If  z = v '  ~ w' then v '  is a proper 
ancestor of w ~ and if z = w' ~ v t then w' is a proper 
ancestor of v t. Since v and w are (kl ,k2)-related the 
distance conditions are satisfied. [] 

Given only the labels of the nodes v and w we can test  if 
they are (kl, k2)-related for kl, k2 <_ k as follows. First, 
since the labels are unique it is trivial to test  if v and 
w are (0,0)-related. Hence, we will assume tha t  tha t  
not both  of kl and k2 are zero. We will show how to 
test  each of the conditions in Lemma 3.10 using only 
the labels. Using the lookup tables we first compute 
the entries in the ancestor tables for the nodes v', v ' ,  
w' and w ' .  So assume tha t  the values stored at these 
entries of the tables are available. Using Lemma 3.3(ii) 
we can check if v ~ = w ~. The distances dis t (v,v t) and 
dist(w, w ~) are stored directly in the ancestor tables of 
v and w and the first three conditions in (ii) and (iii) 
can be checked using Lemma 3.9. Wha t  remains is 
to describe how to test  if v" and w" are on different 
heavy paths.  Since the distances d i s t ( v ' , a p e x ( v ' ) )  
and d i s t ( w ' , a p e x ( w ' ) )  are both  smaller than  k they 
are available in the ancestor tables. If  v" and w" 
are on the same heavy pa th  their distance must  be 
Id i s t (v ' , apex(v" ) )  - d i s t ( w ' , a p e x ( w ' ) ) l ,  and we can 
thus apply Lemma 3.10 to test  the condition. In 
summary  we have shown: 

THEOREM 3.2. For trees with n nodes there is a k-  
relationship labeling scheme with label length bounded 
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by log n + O (k 2 (log log n + log k)). 

As noted the k-relationship labeling scheme can be 
computed in O(nk) t ime and due to the lookup and 
ancestor tables queries can be performed in 0(1)  time. 

4 Upper bounds for bi- and triconnectivity 
labeling schemes 

As an application of our k-relationship labeling scheme 
of Section 3 we give a labeling scheme for biconnectivity. 
Subsequently, we use a reduction from [21] to obtain 
a labeling scheme for triconnectivity. Both labeling 
schemes assigns unique labels. For a graph G with n 
nodes the labeling scheme for bi- and triconnectivity 
uses labels of length bounded by logn + O(loglogn)  
and 3 log n + O(log log n) respectively. 

We first give some preliminaries. Let G be a graph. 
A set of paths P connecting two nodes v and w in G is 
vertex-disjoint if each node except v and w appears  in 
at  most one pa th  p E P.  We define v and w to be m -  
vertex connected if there is a set of vertex-disjoint paths 
of size m connecting v and w. We say that  v and w are 
bi- or triconnected if they are 2- or 3-vertex connected 
respectively. A cut-node is a node whose removal (and 
all incident edges) disconnects the graph. A block of a 
graph G is a maximally connected subgraph without a 
cut-node. By maximality, different blocks of G overlap 
in at most  one node, which is then the cut-node. Using 
Menger's theorem (see e.g. [9]) it can be shown that  
two nodes v, w E V(G) are biconnected if and only if 
they are within the same block and the block has at 
least 3 nodes. 

We define the block graph B of G. Each node in 
G is represented by a unique node in B and each node 
in B either represents a node in G or a block with at 
least three nodes in G. The edges of B are defined as 
follows. Let v be a node in G and let B(v)  denote the 
set of blocks in G tha t  contains v and has at least three 
nodes. For each node representing a block b E B(v)  
there is an edge to the node representing v in B.  A node 
in B representing a node in G that  is not contained in 
any block with at least three nodes is not incident to 
any other node in B.  By the maximali ty  of blocks we 
have: 

LEMMA 4.1. The block graph B of a graph G is a forest 
of unroofed trees. 

Using depth-first search [24] we can compute the 
block forest in linear time. We root each tree in the 
forest as follows: If  the tree contains only one node this 
node is the root. Otherwise the tree contains at least 
one node representing a block and we arbitrari ly root 
the tree in such a node. By B~ we denote the rooted 
version of the block forest B. 

LEMMA 4.2. Two nodes v and w are biconnected in G 
if and only if, in the block forest of rooted trees Br, v 
and w are siblings, v is the grandparent of w or vice 
v e r 8 a .  

Proof. If v and w are biconnected in G then they are 
contained in the same block with at  least tree nodes, and 
hence they are incident to the same node representing a 
block. In B~, this implies tha t  v and w are either siblings 
or one is the grandparent  of the other. Conversely, 
if v and w are siblings or one is the grandparent  of 
the other in Br, then they are incident to the same 
node representing a block. Hence, they are contained 
in the same block with at least tree nodes and are thus 
biconnected. [] 

To test  the conditions in Lemma 4.2 we extend our 
k-relationship labeling scheme to handle the more gen- 
eral case of forests. Add an extra root node connected 
to each root of the trees in the forest. This produces 
a tree where we then apply our k-relationship labeling 
scheme. The modifications needed to handle a special 
root node are straightforward to implement. Using a 2- 
relationship labeling scheme for the forest Br  we obtain 
by Lemma 4.2: 

THEOREM 4.1. For graphs with n nodes there is a 
biconnectivity labeling scheme that assigns unique labels 
with label length bounded by log n + O(log log n). 

Since we can compute the block forest Br in O(n) t ime 
the labeling scheme can be computed in O(n) t ime and 
with the 2-relationship labeling scheme queries can be 
answered in O(1) time. 

As noted in the introduction we can use our bi- 
connectivity labeling scheme to obtain a triconnectivity 
labeling scheme using a reduction from [21]. Here a la- 
beling scheme for triconnectivity is given using labels 
of length bounded by 51ogn. By Lemmas 3.3, 3.4 and 
3.6 in [21] and Theorem 4.1 we obtain the following im- 
provement. 

THEOREM 4.2. For graphs with n nodes there is a 
triconnectivity labeling scheme that assigns unique labels 
with label length bounded by 3 logn + O(log logn).  

5 Upper bounds for sibling and connectivity 
labeling schemes 

In this section we consider labeling schemes for sibling 
queries and connectivity queries in forest. First we 
consider sibling queries. If  two nodes in  the same tree 
can be given the same label, we can label the nodes with 
label of length [log n] as follows; parti t ion the nodes 
into groups such that  two nodes are siblings if and only if 
they belong to the same group. This construction gives 
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g _< n groups, which are numbered 1, 2 . . . g .  Nodes in 
the same group are given the same label, namely the 
number of the group. Now, two nodes are siblings if 
and only if they have the same label. 

THEOREM 5.1. For trees with n nodes there is a sibling 
labeling scheme with label length bounded by [log n].  

Next we show how to assign unique labels for trees 
with maximum degree A. We group the nodes as 
above. We assign to each node v two numbers: A group 
number, g(v) to answer sibling queries as above and an 
individual number i(v) to make its label unique. Two 
nodes in the same group will be given the same group 
number. Assume we have g groups gl ,g2""gg.  Let 
Ig/I be the number of nodes in g/. Using a Huffman 
code [15] we give each node in group g~, a group number 
of length log n - log Ig/I + O(1). The individual numbers 
given to the nodes in group g / a r e  simply 1,2,- .-Ig/] ,  of 
length log Ig/I + O(1). In total we use logn + O(1) bits 
for the group and individual numbers, however coding 
these two numbers as one label, we also need to be 
able to separate these two numbers given the label of 
a node. We use the first O(log log A) bits of the label 
to code the length of the individual number as follows. 
The individual number in a tree with maximum degree 

is at most A, and can be represented with at most 
q = log A + O(1) bits. To represent the length of the 
individual number we need O(log q) = O(log log A) bits. 
Now, we also need to represent the length of the bit 
string representing the length of the individual number, 
but this can be done simply by using an unary code of 
length O(log log A). 

THEOREM 5.2. For trees with n nodes and maximum 
degree ~ there is a sibling labeling scheme that as- 
signs unique labels with label length bounded by log n + 
O(log log A). 

Using the same observations, grouping connected nodes, 
we get. 

THEOREM 5.3. For forests with n nodes there is a 
connectivity labeling scheme that assigns unique labels 
with label length bounded by logn + O(loglogn) .  

It  is straightforward to compute the above labeling 
schemes in O(n) time and answer queries in O(1) time 
assuming standard binary operations on a RAM. 

6 L o w e r  b o u n d s  

In this section we present a lower bound technique and 
subsequently give lower bounds for ancestor, connec- 
tivity, sibling, 1-relationship, 2-restricted distance and 
biconnectivity labeling schemes. 

A test for whether or not v is an ancestor of w we 
denote as an ancestor test, whereas a test for either v is 
ancestor of w or vice versa is called a weak ancestor test. 
A lower bound for weak ancestor tests is clearly a lower 
bound for ancestor tests. The lower bound presented 
in this paper is for weak ancestor tests. We will use 
the following technique to show this lower bound: First 
we give a family of trees .T'A where each tree consist 
of cn nodes for a constant c. We then show that  any 
labeling scheme (which may use non-unique labels) for 
weak ancestor queries need to use ~ ( n l o g n )  different 
labels for ~A. If m different labels are necessary, 
then the label length must be at least log m. Since 
log(cnlogn) = logn + ~( loglogn) ,  for any constant c, 
we establish the lower bound. A similar construction is 
used for the other lower bounds. 

In some cases, e.g. in [7], the goal is to minimize the 
average length of labels instead of the maximum. We 
note that ,  using the above technique, our lower bounds 
also holds for the average length of labels. 

6.1 L o w e r  b o u n d  t e c h n i q u e  Let S be a set of 
elements and let 1 : S ~ D be a function labeling S 
with elements from some domain T). We will assume 
ISI = nk, where k is an integer < logn and n is a power 
of two. We define a parti t ion P of S into k boxes each of 
n elements. The elements in the i th box, 1 < i < logn, 
denoted B/ are parti t ioned into n/2  / groups each of 2 / 
elements. 

LEMMA 6.1. Let S, l and k be as described above. If 
there exists a partition P such that the two properties 
hold: 

(i) For two different elements Sl,S2 E S, if Sl and s2 
belong to the same box, then l(sl) ~ l(s2). 

For elements sl, s2, s3, s4 E S, if81 and s2 belong to 
two different groups in the same box, l(sl) : l(sa) 
and l(s2) = l(s4), then s3 and s4 belong to two 
different groups. 

then IVl = 

Proof. We will say the function l associate labels to 
the elements from 8.  The elements associated with the 
same label we denote as neighbors. In the following we 
give a strategy to choose a subset S' of elements from 
S, guaranteeing that  for all Sl,S2 E S', where s l ¢  s2, 
sl and s2 will not be neighbors. We call a strategy with 
such a guarantee for a safe strategy. The number of 
labels needed by l for S will be at least the size of S' 
since IDI > ISII when choosing S' by a safe strategy. 
An element chosen to belong to S',  we say is a marked 
element. Hence, no two elements with the same label 
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will be marked. If one or more elements from a group are 
marked we say the group is marked. For a box B we let 
M(B) denote the number  of marked groups belonging 
to the box. 

We first mark  elements from the box Bk, and next 
for Bi in order of decreasing i. All elements in Bk 
will be marked. From the first property of Lemma 6.1 
there are no neighbors in the same box and the marking 
is therefore safe. When marking elements from the 
remaining boxes Bi, i < k, we keep the invariant tha t  
M(Bi) < n/2 i+1. Hence, we will at  most  mark  elements 
from half of the groups belonging to Bi. 

Let F(i) be the set of groups belonging to the boxes 
By, j > i, and let M(F(i)) be the number of marked 
groups belonging to F(i). Since we keep the invariant 
that  M(Bi) < n/2 TM , for i < k, we have that ,  for i < k, 

_ S - ' j = k - l - ~ 2  i+l = n[2 i. Next, we M(F(i)) < n[2 k + ,-,j=i '~l 
describe how to mark  elements from Bi, after marking 
elements from Bj,  j > i. If  a group in Bi includes an 
element with a marked neighbor in Bj ,  j > i, we denote 
the group as closed. If a group not is closed we denote 
it as open. 

Let Sl, s2 E Bi belong to two different groups. If Sl 
has a marked neighbor s3 and s2 has a marked neighbor 
s4 then by the second property of Lemma 6.1, s3 and 
s4 must belong to two different marked groups from 
F(i + 1). Hence, for each closed group in Bi we can 
associate a marked group from F(i + 1) which will 
not be associated to any other groups in Bi. Since 
the number of groups in Bi is n/2 i and we keep the 
invariant that  M(F(i  + 1)) <_ n/2 TM, at least n /2  TM 

of the groups in Bi will be open. Since the elements 
from the open groups does not have a marked neighbor 
and none of them are neighbors by the first property of 
Lemma 6.1 it is safe marking all elements from n/2 I+1 
groups of Bi. Doing this we keep the invariant, at  most 
marking elements from half of the groups in Bi, i < k. 
Summarizing, we mark  all elements in Bk, and half of 
the elements from the remaining k - 1 boxes. In total  
we mark  ~(nk) elements. [] 

In the following sections we will define different families 
of graphs for which the nodes from these graphs can be 
parti t ioned such tha t  the labeling obeys the properties 
given in Lemma 6.1. 

6.2 A n c e s t o r  l a b e l i n g  s c h e m e s  To show a lower 
bound for an ancestor labeling l, we give a family .TA of 
logn  trees {T1,T2,- . .  ,~ogn},  each of size 2n + 1. We 
show tha t  for a subset S of the nodes from ~.4, where 
IS[ = n log n, there is a part i t ion P of $,  such that  any 
l, must obey the two properties in Lemma 6.1. This 
implies that  at least ~ ( n l o g n )  labels are needed and 

will conclude our proof. 
The tree T / in  .TA consists of a root node with n/2 i 

children. Each child v is the root of a pa th  p(v) of length 
2 i. Furthermore,  each node on these paths have a child 
which is a leaf not belonging to the path. 

We have [V(Ti)[ = 2(n/2i)2 / + 1 = 2n + 1. We let 
S be the subset of nodes from UA which belongs to a 
pa th  p(v), where v is a child of one of the root nodes in 
the family. Hence, IS] = n logn .  Box Bi is the subset of 
nodes from S which belongs to the tree Ti. The nodes 
from box Bi are parti t ioned into groups such that  two 
nodes from the same group belong to the same path. 
Next we show tha t  the two properties from Lemma 6.1 
must  be fulfilled for any labeling l in this partition. 

Consider the first property. Let Sl, s2 E Bi, sx ¢ s~. 
If sl  is an ancestor to s2, s2 cannot be an ancestor of 
sl .  Assume without loss of generality that  Sl is not 
an ancestor of s2 and let c be the leaf in Ti which is 
the child of s2. Since sl is not an ancestor of s2, sl 
cannot be ancestor of c. Therefore the decoder for the 
ancestor query, d~, must satisfy that  da(l(sl),l(c)) 
d~(l(s2), l(c)), which implies that  l(Sl) ~ l(s2). 

Next we consider the second property. Let 
Sl,S2, s3, s4 E S, where sl and s2 belongs to two dif- 
ferent groups in the same box. This implies that  there 
is no ancestor relation between sl and s2. Thus if 
l(Sl) = l(s3) and l(s2) = l(s4) there cannot be an ances- 
tor relation between s3 and s4 and therefore s3 and s4 
must  belongs to different groups. Hence, we have shown 
the following theorem: 

THEOREM 6.1. An ancestor labeling scheme for trees 
with n nodes needs label of length logn  + f~(loglogn). 

Using the same approach we obtain the following 
lower bounds. The proofs can be found in the full 
version of this paper. 

THEOREM 6.2. A connectivity labeling scheme for 
forests with n nodes, that assign unique labels, needs 
labels of length logn + O(loglogn).  

THEOREM 6.3. A sibling labeling scheme for trees with 
n nodes and maximum degree A, that assigns unique 
labels, needs labels of length log n + 12(log log A). 

THEOREM 6.4. A 1-relationship labeling for trees with 
n nodes needs labels of length log n + 12(log log n). 

THEOREM 6.5. A 2-restricted distance labeling scheme 
for trees with n nodes needs labels of length log n + 
f~ (log log n). 

THEOREM 6.6. A biconnectivity labeling scheme for 
graphs with n nodes needs labels of length log n + 
~(log log n). 
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