
689

Labeling Schemes for Small Distances in Trees

Stephen Alstrup* Philip Bille* Theis Rauhe*

Abstract

We consider labeling schemes for trees, supporting
various relationships between nodes at small distance.
For instance, we show that given a tree T and an integer
k we can assign labels to each node of T such that
given the label of two nodes we can decide, from these
two labels alone, if the distance between v and w is at
most k and if so compute it. For trees with n nodes
and k > 2, we give a lower bound on the maximum
label length of log n + ~(loglogn) bits, and for constant
k, we give an upper bound of log n + O(log log n).
Bounds for ancestor, sibling, connectivity and bi- and
triconnectivity labeling schemes are also presented.

1 I n t r o d u c t i o n

Motivated by applications in XML search engines, net-
work routing and implicit graph representation several
labeling schemes for trees have been developed, among
these [16, 22, 13, 10, 26, 1, 3, 8]. Given a tree, a labeling
scheme assigns a label, l(v), which is a binary string, to
each node v of the tree. Then, given only the labels
of two nodes we can compute some predefined function
of the two nodes. The main objective is to minimize
the maximum label length, i.e., the maximum number
of bits used in a label.

In this paper we consider labeling schemes for
various relationships between nodes of small distance
in trees. For instance we show, by giving upper and
lower bounds, that a labeling scheme supporting parent
and sibling queries requires labels of length log n +
O(log log n) 1. This improves a recent bound by Kaplan
and Milo [18] of l o g n + O (o ~) .

More generally, we say that two nodes v and w with
nearest common ancestor z are (kl, k2)-related if the
distance from v to z is kl and the distance from w to z
is k2. For a positive integer k, a k-relationship labeling
scheme is a labeling scheme for trees which supports
tests for whether v and w are (kl,k2)-related for all
nodes v and w and all positive integers kl, k2 < k.
In particular, a 1-relationship labeling scheme supports

--~IT"University of Copenhagen, Glentevej 67, DK-2400 Copen-
hagen NV, Denmark. Email: {stephen,beetle,theis}@it-c.dk

1log refers to the binary logarithm and log* is the nmnber of
times log should be iterated to get a constant.

tests for whether two nodes are (0, 0)-,(0, 1)-,(1, 0)- or
(1, 1)-related. That is, whether two nodes are identical,
one is the parent of the other or they are siblings.
For trees with n nodes we show, for k = 1, a lower
bound on the label length of logn + ~(loglogn) , and
for fixed, constant k we give an upper bound of log n +
O(log log n).

As noted in [18], a k-relationship labeling scheme
can be used to test whether or not the distance be-
tween two nodes is at most k, and if this is the case we
can compute the distance exactly. We call a labeling
scheme with this property a k-restricted distance label-
ing scheme. We give a lower bound showing that for
k = 2, a k-restricted distance labeling scheme requires
labels of length log n + l)(log log n). Hence, for constant
k, our k-relationship labeling scheme gives a k-restricted
distance labeling scheme which is optimal to within a
factor of log logn. This result improves a recent up-
per bound of logn + O (o ~) for k-relationship and
k-restricted distance labeling schemes given in [18]. In
contrast to the results for restricted distances Gavoille et
al. [13] shows that a labeling scheme for computing the
distance between any pair of nodes in a tree must use
labels of length O(log 2 n). In [10] it is shown that even if
the distances are allowed to be approximated to within
a factor of (1 + 1 / logn) we still need labels of length
O(lognloglogn) . Our result shows that for restricted
distances much smaller labels suffice. A 1-restricted la-
beling scheme supports tests for whether two nodes are
adjacent. Such a labeling scheme, called an adjacency
labeling scheme, was recently given for trees in [4], with
label length bounded by logn + O(log* n). Thus, there
is a provable gap between the label length of 1- and
2-restricted distance labeling schemes.

The above lower bounds is the result of a more
general new technique which we use to obtain lower
bounds for several types of labeling schemes and for
many of these we give matching upper bounds. Apart
from the above results we present the following.

Bi- a n d t r i c o n n e c t i v i t y l abe l ing schemes . As
an application of our k-relationship labeling scheme we
obtain a labeling scheme for general graphs for bicon-
nectivity (or 2-vertex connectivity) queries. Recently,
Katz et al. [21] considered labeling schemes for 1-,2-
,3- and m-vertex connectivity. They gave a labeling

690

scheme for biconnectivity using 31ogn bits. We show,
giving upper and lower bounds, that labels of length
logn + O(loglogn) is required. The labeling scheme
for triconnectivity (or 3-vertex connectivity) in [21] uses
the biconnectivity labeling scheme and has label length
bounded by 5 log n. Using our biconnectivity labeling
scheme we obtain a triconnectivity labeling scheme us-
ing labels of length 3 log n + O (log log n).

A n c e s t o r l abe l ing schemes . For trees with n
nodes we show that a labeling scheme for ancestor
queries must use labels of length log n + ~(loglog n).
This is the first non-trivial lower bound for the prob-
lem. Upper bounds using 2 [log n] bits were given
in [27, 17, 23]. Recently, Abiteboul, Kaplan and Milo [1]
gave an ancestor labeling scheme using labels of length
3/21ogn + O(log log n). Subsequently, this was im-
proved by Alstrup and Rauhe [3] bounding the label
length to l o g n + O (o ~) .

If no two nodes are assigned the same label we say
that the labels are unique. The above labeling schemes
all produce unique labels, whereas the lower bounds
also holds for labeling schemes that produce non-unique
labels. However, the following bounds shows that there
is a non-trivial complexity difference between labeling
schemes assigning unique and non-unique labels.

S ib l ing a n d c o n n e c t i v i t y l abe l ing schemes .
For sibling queries we give a labeling scheme using labels
of length [log n]. This labeling scheme will not assign
unique labels to the nodes of the tree. If uniqueness
is required, as in [16], we give upper and lower bounds
showing that such a labeling scheme uses labels of length
logn + O(loglogA), for trees of maximum degree A.
Extending the result for the sibling labeling scheme we
give a labeling scheme supporting connectivity queries
for forest using labels of length [log n] for forests with n
nodes. Again, these labels are not unique and if this is
required we show that such a labeling scheme requires
labels of length log n + O(log log n).

1.1 Related work Adjacency labeling schemes, were
introduced by Breuer and Folkman [5, 6] and efficient
labeling schemes were consider by Kannan, Naor and
Rudich in [16, 17]. In [22] distance labeling schemes
were introduced, i.e., labeling schemes that compute the
distance between any pair of nodes. Distance labeling
schemes for various types of graphs are given in [22,
20, 13, 11] and distance labeling schemes computing
approximate distances are given in [10, 25].

Recently, labeling schemes for various other rela-
tionships have been studied. Labeling schemes are given
for ancestor in [17, 1, 26, 3, 19, 8], for nearest common
ancestor in [2] and connectivity in [21]. Efficient label-
ing schemes are also applicable to routing schemes, see

e.g. [23, 26]. A survey on labeling schemes can be found
in [12].

1.2 O u t l i n e In Section 2 we give some preliminaries
and in Section 3, 4 and 5 we present the upper bounds
on relationship, bi- and triconnectivity, connectivity
and sibling labeling schemes. Lower bounds for these
schemes are shown in Section 6 together with lower
bounds for ancestor labeling schemes and the above
mentioned lower bound technique.

2 P r e l i m i n a r i e s

For a graph G we denote the set of nodes and edges by
V(G) and E(G). Let T be a rooted tree with n nodes.
The maximum degree of T is the maximum number of
children of any node v E V(T) . The distance between
two nodes v ,w E V(T) , denoted by dist(v,w), is the
number of edges on the unique simple path between v
and w. The depth of v is the distance between v and the
root of T. We let T(v) denote the subtree of T rooted at
a node v e V(T) . If w e V(T(v)) then v is an ancestor
of w and if w E V(T(v)) \ {v} then v is a proper ancestor
of w. If v is (proper) ancestor of w then w is a (proper)
descendant of v. A node z is a common ancestor of v and
w if it is an ancestor of v and w. The nearest common
ancestor of v and w, nca(v, w), is the common ancestor
of v and w of largest depth. For a node v of depth
d and i _< d, the i th level ancestor of v, A(v,i) , is the
ancestor of v of depth d - i . We call the node A(v, 1) and
A(v, 2) the parent (denoted parent(v)) and grandparent
of v respectively. Two nodes are siblings if they have
the same parent. A node with no children is a leaf and
otherwise an internal node. Two nodes in a forest are
connected if and only if there is a path between them.
A bit string of length n is a sequence a -- aoal . . . an-l ,
wherea i e {0,1},0 < i < n - 1 . For 0_< j < n - 1
the sequences a 0 , . . . , a j - 1 and an-j , . . . ,an-1 are the
j most significant bits and the j least significant bits
respectively. The standard binary representation of a
positive integer k is the unique bit string a 0 . . . a r - 1 ,
where r = [log k l and k = ~._-~ aj2 r - j - ' . The discrete
logarithm of k is the number ~og kJ. For two integers i
and j where i < j let [i,j] be the interval { i , . . . , j} .

L a b e l i n g schemes . A binary query (or simply
query) is a mapping f : V(G) × V(G) ~ X for some
set X. A labeling scheme for a family of graphs .T
supporting queries f l , . . . , fm (fi : V(G) x V(G) ~ X~)
is a tuple (e, d l , . . . , din) of mappings, where e is called
the encoder and di is called the decoder for the i th
query. The encoder e defines a label assignment, eG,
for all G E .~', which is a mapping of V(G) into bit
strings called labels. Given the labels of two nodes v
and w the i th decoder, di, then computes the i th query,

691

i.e., di(ea(v), ea(w)) = f i(v, w). f f the label assignment
eG is an injective mapping for all G E .T we say that
the labeling scheme assigns unique labels to the nodes.
A labeling scheme has label length bounded by s if the
maximum length of the labels assigned to a node in any
G E .T is bounded by s. We say that a labeling scheme
can be computed in time t if for any G E U there is
an encoder which assigns labels to all nodes in V(G) in
time t.

3 Upper bound for relationship labeling
schemes

3.1 A 1-relationship labeling scheme In this sec-
tion we give a 1-relationship labeling scheme which will
serve as a basis for our k-relationship labeling scheme
in the next section. As a consequence of this some of
the lemmas shown below will be more general than re-
quired for a 1-relationship labeling scheme. Our labeling
scheme assigns unique labels to each node and supports
both parent and sibling queries. As described, a label-
ing scheme with these properties implies a 1-relationship
labeling scheme. The labeling scheme has label length
bounded by logn + O(loglogn) for trees with n nodes.

Some of the techniques presented below are similar
to the ones used in [4]. Here a labeling scheme
supporting parent queries is given with labels of length
bounded by log n + O(log log n). This result is similar
to Lemma 3.7. In [4], however, only the parent query is
considered and it is shown that the label length can be
reduced to log n + O(log* n). In this section we instead
generalize the result to relationship queries. As noted
in the introduction we later show that our labels are the
smallest possible within a factor of log log n.

Let Tn denote the family of rooted trees with n
nodes. Let T E Tn. As in [14] we partition T into
disjoint paths. For a node v E V(T) let size(v) =
IV(T(v))[. We classify each node of T as either heavy
or light as follows. The root is light. For each internal
node v we pick a child w of v of maximum size among
the children of v and classify w as heavy. The remaining
children are light. We call an edge to a light child a light
edge, and an edge to a heavy child a heavy edge. For an
internal node v, let heavy(v) denote the heavy child of
v. Define the light subtree, L(w), rooted at the node w
as follows. If w is an internal node L(w) is the subtree
obtained from T(w) by cutting away T(heavy(w)) and
if w is a leaf L(w) = T(w). Let lightsize(v) = IV(L(v))[.
The light depth of a node v, lightdepth(v), is the number
of light edges on the path from v to the root.

LEMMA 3.1. ([1 4]) F o r any tree T with n nodes
lightdepth(v) < logn + O(1) for any v E T.

The nearest light ancestor of v (possibly v itself) is

denoted apex(v). By removing the light edges T is
partit ioned into heavy paths.

A key ingredient of the scheme is preorder numbers.
Order the tree T such that the rightmost child of an
internal node is the heavy node. The light children
may be in any particular order. A preorder depth first
traversal of T is obtained by first visiting the root and
then recursively visiting the children of the root from
left to right. The preorder number, pre(v), is the number
of nodes visited before v in this traversal, i.e., the root
will have number 0 and the rightmost leaf will have
number n - 1. The labels assigned by our labeling
scheme will encode pre(v) in the label of v using [log n 1
bits. This will ensure that the labels are unique. In the
rest of the label we will encode various smaller fields
using no more than O(loglogn) bits in total. In the
following we show how to test, for two nodes v and w,
if one is the parent of the other or if they are siblings
based on whether v and w are light or heavy nodes.

First define a node w to be a significant ancestor of
v if v E L(w). We have the following relation between
significant ancestors and the preorder numbering.

LEMMA 3.2. For all nodes v and w, v E L(w) if and
only if pre(v) e [pre(w), pre(w) + lightsize(w) - 1].

Proof. If w is a leaf, then v = w and lightsize(w) = 1.
Hence, pre(w) = pre(v) = p r e (w) + l igh ts ize (w)- 1
and the result follows. So assume w is an internal
node. Then, in a preorder traversal, v is visited at
the time of w or after and before heavy(w) if and
only if pre(w) < pre(v) < pre(heavy(w)). Since
pre(heavy(w)) = pre(w)+lightsize(w) the result follows.
[]

Consider the binary representation of pre(v) for
an internal node v. Let w = [logn] and f (v) =
[log lightsize(v)J. We define the significant preorder
number, spre(v), as a number in [pre(v),pre(v) +
lightsize(v) - 1] where all the f (v) least significant bits
are 0: If pre(v) rood 2I(v) = 0 then spre(v) = pre(v).
Otherwise spre(v) = pre(v) - (pre(v) mod 2I(~)) + 2I(v).
The following lemma states the relations we need be-
tween the preorder and significant preorder numbers.

LEMMA 3.3. For all nodes v and w the following holds:

(i) spre(v) E [pre(v), pre(v) + lightsize(v) - 1].

(ii) v = w if and only if lightdepth(v) = lightdepth(w)
and spre(v) = spre(w).

(iii) I f lightdepth(v) = lightdepth(w) then pre(w) <
pre(v) /f and only spre(w) < spre(v).

692

Proof. (i) If pre(v) mod 2 f(v) = 0 then spre(v) -- pre(v)
and since lightsize(v) > 1 for all v the result follows.
Otherwise 1 < pre(v)rood 2 I(v) < 2 f(') - 1 . Hence,
spre(v) >_ pre(v) - (2 l(v) - 1) + 2]~v) = pre(v) + 1 and
spre(v) _< pre(v) - 1 + 2 I(~) < pre(v) - 1 + lightsize(v).

(ii) If v = w the conditions are clearly satis-
fied. Conversely assume that v ¢ w and the condi-
tions are satisfied. Since v ¢ w and lightdepth(v) =
lightdepth(w) we have that v ~ L(w) and w
L(v). Then, by Lemma 3.2 pre(v) ~ [pre(w),pre(w) +
lightsize(w) - 1] and pre(w) ~ [pre(v),pre(v) +
lightsize(v) - 1] and hence these intervals must be dis-
joint. However, since spre(v) = spre(w) we have, by
(i), the contradiction that spre(v) E [pre(v),pre(v) +
lightsize(v) - 1] and spre(v) E [pre(w),pre(w) +
lightsize(w) - 1].

(iii) If pre(w) < pre(v) and lightdepth(v) =
lightdepth(w), then v ¢ L(w). By Lemma 3.2, pre(v) ¢
[pre(w),pre(w) + lightsize(w) - 1] and since pre(w) <
pre(v) we have pre(w) + lightsize(w) - 1 < pre(v). By
(i) it follows that spre(w) < spre(v). Conversely, since
spre(w) < spre(v) and lightdepth(v) = lightdepth(w)
we have by (ii) that v ~ w. Furthermore, as in the proof
of (ii), this implies that the intervals [pre(v),pre(v) +
lightsize(v)- 1] and [pre(w), pre(w) +lightsize(w)- 1] are
disjoint. By (i), spre(v) e [pre(v), pre(v) +l ights ize(v)-
1] and spre(w) E [pre(w), pre(w) + lightsize(w) - 1] and
since these intervals are disjoint and spre(w) < spre(v)
we have that pre(w) < pre(v). []

Note that by Lemma 3.3(ii) a node v is uniquely
identified by spre(v) and lightdepth(v). The following
lemma shows that the significant preorder number of
a significant ancestor can be represented efficiently. In
particular, spre(parent(v)) can be represented efficiently
if v is a light node.

LEMMA 3.4. Given pre(v) we can represent spre(w) for
each significant ancestor w of v using only log log n +
O(1) bits per significant ancestor.

Proof. Let w be a significant ancestor of v. Since
lightsize(w) < 2f(w)+l there can be, apart from
spre(w), at most one other number in the interval
[pre(w), pre(w)+lights ize(w)- 1] with all the f (w) l eas t
significant bits set to zero, i.e., the number spre(w) +
2 l(w). Let pre'(v) be pre(v) with all the f (w) least
significant bits set to zero. Since w is a significant an-
cestor of v, v E L(w) and thus, by Lemma 3.2, pre(v) E
[pre(w),pre(w) + lightsize(w) - 1]. Hence, prel(v) will
be either spre(w) - 2 f(w), spre(w) or spre(w) + 2f(w)
and therefore spre(w) is either pre~(v) + 2I(w), pre~(v)
or pre~(v) - 2 l(w). Clearly, representing f (w) and two
extra bits to distinguish these three cases we can corn-

pute spre(w) from pre(v). This can be represented by
[loglogn] + 2 bits since f (w) is bounded by logn. []

For each light node v we will encode lightdepth(v),
spre(v) and spre(parent(v)) in the label of v. By
Lemma 3.1 lightdepth(v) < logn + O(1), and can thus
be represented using loglogn + O(1) bits. Since the la-
bels encode pre(v) and v is light, we have by Lemma 3.4
that spre(v) and spre(parent(v)) can also be repre-
sented using loglogn + O(1) bits. By Lemma 3.3(ii),
lightdepth(v) together with spre(v) uniquely identifies
the node v. This immediately implies the following:

LEMMA 3.5. For a light node v and internal node w,
w is the parent of v if and only if lightdepth(v) =
lightdepth(w) + 1 and spre(parent(v)) = spre(w).

LEMMA 3.6. For two light nodes v and w, w and v are
siblings if and only iflightdepth(v) = lightdepth(w) and
spre(parent(v)) = spre(parent(w)).

Next we show how to handle the remaining cases.
Define diff_parent(v) = spre(v) -spre(parent(v)) and
leave it undefined for the root. For internal nodes, define
diff_heavy(v) = spre(heavy(v)) - sp re (v) and leave it
undefined for leaves. We will use the discrete logarithm
of diff_parent(v) and diff_heavy(v) to test for parentship
between two nodes on a heavy path. Since the discrete
logarithm is bounded by log n only [log log n 1 bits are
needed to represent each of these numbers.

LEMMA 3.7. For heavy node v and internal
node w, w is the parent of v if and only if
spre(w) < spre(v), lightdepth(v) = lightdepth(w)
and [log(spre(v) - spre(w))J = [logdiff_parent(v)J =
[log diff_heavy (w) J

Proof. For w = parent(v) it is straightforward, us-
ing 3.3, to verify that the conditions are satisfied.
Conversely, assume that a node w ¢ parent(v)
satisfies the conditions. Since spre(w) < spre(v)
and lightdepth(v) = lightdepth(w), we have by
Lemma 3.3(iii) that pre(w) < pre(v). Then,
since lightdepth(w) = lightdepth(heavy(w)) =
lightdepth(parent(v)) = lightdepth(v) and w
parent(v), this implies that pre(w) < pre(heavy(w)) <
pre(parent(v)) < pre(v). By Lemma 3.3(ii) and
(iii), also spre(heavy(w)) < spre(parent(v)) and
therefore s p r e (v) - spre(w) >_ (sp re (heavy(w)) -
spre(w)) + (spre(v) - spre(parent(w))) =
diff_heavy(w) + diff_parent(v). By the identities
Llog(spre(v) - spre(w))J = [log diff_parent(v)J =
[log diff_heavy(w)J this leads to the contradiction
spre(v) - spre(w) > diff_heavy(w) + diff_parent(v) >
2 • 2 l l ° g d i f f - p a x e n t (v) j ~-- 2 • 2 [l ° g (s p r e (v) - s p r e (w)) j >

spre(v) - spre(w). []

6 9 3

By the same reasoning we obtain the following:

LEMMA 3.8. For a heavy node v and light node w, v
and w are siblings i] and only if spre(parent(w)) <
spre(v), lightdepth(v) = lightdepth(w) - 1
and [log(spre(v) - spre(parent(w)))J -~
[log diff_parent(v)J = [log diff_heavy(parent(w))J.

Note that since any node has at most one heavy child
two heavy nodes v and w are siblings if and only if
v -- w. Since the labels are unique it is trivial to handle
this case.

Combining the above lemmas we obtain the 1-
relationship labeling scheme. For T E Tn let the encoder
eT(V), V e V(T), encode pre(v), lightdepth(v), spre(v),
[log diff_heavy(v)J and a type bit indicating if v is a light
or heavy node. Furthermore, if v is a light node encode
spre(parent(v)) and diff_heavy(parent(v)). If v is a
heavy node encode [log diff_parent(v)J. As described,
pre(v) uses [log n] bits and each of the other values
uses loglogn + O(1) bits each. For easy decoding we
represent each of the values in fixed sized fields in the
label of v. The first [log n] bits stores pre(v). The other
values are represented, in five fields (we leave one field
undefined when v is a light node) of the same length, in
the next 51oglogn + O(1) bits. At the end of the label
we store the type bit. We will assume that the decoder
does not know the value n, i.e., the decoder is not
specialized to trees of size n, but will work with any tree,
regardless of its size. Due to this restriction we cannot
compute [log n] directly and use this to extract the
preorder number and then the rest of the fields. Instead
we prefix the label with the binary representation of
the length of the field containing pre(v). Since the
length of this field is [log n] this can be done using
loglogn + O(1) bits. Now, we also need to store the
length of the bit string representing the length of pre(v),
but this can be done using a unary code of length at
most loglogn + O(1). In total the label length will be
bounded by log n + O(loglog n). By uniqueness of the
labels and Lemmas 3.5 - 3.8 it is straightforward to
construct decoders testing if two nodes are (0, 0)-,(0, 1)-
,(1, 0)- or (1, 1)-related. In summary we have:

THEOREM 3.1. For trees with n nodes there is a 1-
relationship labeling scheme with label length bounded
by logn + O(loglogn).

Finally, note that labels for all nodes in T can be com-
puted in O(n) time and queries can be implemented in
O(1) time per query assuming standard binary opera-
tions on a RAM.

3.2 A general k-relationship labeling scheme In
this section we generalize the result of the previous

section to a k-relationship labeling scheme. The scheme
extends the ideas of the first labeling scheme and has
label length bounded by log n + O (k 2 (log log n + log k)),
which for constant k is logn + O(loglogn).

We first extend the definition of diff_heavy(v)
and diff_parent(v) as follows. If v has a descendant
u on the same heavy path as v of distance m let
diff._h_des(v, m) = spre(u) - spre(v) and if there is no
such node u let diff_h_des(v,m) = 2n, i.e., the dis-
crete logarithm of 2n will be [log nJ + 1 indicating
that this is not an actual difference. Similarly, define
diff_h_anc(v, m) for the ancestor on the same heavy path
of v of distance m. Furthermore, for a node v we define
the index of v, index(v), as the number of nodes with the
same light depth as v and with smaller preorder num-
bers than v. We will use the following generalization of
Lemma 3.7:

LEMMA 3.9. For a heavy node v and internal node
w, w and v are on the same heavy path and w is
an ancestor off v of distance m > 1 if and only if
spre(w) < spre(v), lightdepth(v) = lightdepth(w),
[log spre(v) - spre(w)J = [log diff_h_anc(v, m)J =
[log diff_.h_des(w, m)J and index(v) mod m =
index(w) mod m.

Proo]. Let x denote the ancestor of v of distance
m on the heavy path of v. Similarly, let y denote
the descendant of w of distance m on the heavy
path of w. If x = w (or y = v) it is straight-
forward to check that the conditions are satisfied.
Conversely, assume that the conditions are satis-
fied and x ¢ w. Since [log(spre(v)-spre(w))J =
[log diff_h_anc(v, m)J = [log diff_h_des (w, m)J
both x and y exists and are on the same heavy
paths as v and w respectively. As in the proof of
Lemma 3.7, since lightdepth(w) = lightdepth(y) =
lightdepth(x) = lightdepth(v), spre(w) < spre(v),
index(v) rood m = index(w) mod rn and x ~ w, it fol-
lows that spre(y) < spre(x). Then spre(v) - spre(w) >
diff_h_des(w, m) + diff_h_anc(v, m). By the identities
[log(spre(v) - spre(w))j = [log diff_h_anc(v, m)J =
[log diff_h_des(w, m)J this leads to the contra-
diction spre(v) - spre(w) > diff_h_des(w,m) +
diff_h_anc(v, m) _ > 2 2 tlog diff±_z~c(v,~)J =
2 . 2 [l°g(spre(v)-spre(w))j > spre(v) - spre(w). []

The main idea in our labeling scheme is to store,
in the label of v, pre(v) and lightdepth(v) as be-
fore. Furthermore, for each significant ancestor w
of v of distance at most k we will represent spre(w)
together with diff_heavy(w, m), diff_parent(w, m) and
index(w) rood m, for 1 < m < k. Then, to test if two
nodes v and w are (kl, k2)-related we identify the heavy

694

path containing the nearest common ancestor of v and
w and compute distances to and on this heavy path.

T h e e n c o d e r . We can now describe the encoder
for our k-relationship labeling scheme. For T E 7~
let the label eT(V), V E V (T) encode pre(v) and
lightdepth(v). Furthermore, we store an ancestor table
of s entries, where s is the number of significant
ancestors of distance at most k from v. If w is the i th
significant ancestor of v, the i th entry in the ancestor
table will represent spre(w), dist(v,w) and a single
bit, called the apex bit, indicating whether or not the
distance to apex(w) is at most k. If this is so we
store dist(w, apex(w)) and otherwise leave this field
undefined. Furthermore, the i th entry also represents,
for 1 _< m < k, diff_heavy(w,m), diff_parent(w,m)
and index(w) mod m. Hence, number of bits used to
represent an entry is bounded by O (k log log n + k log k)
and thus the total number of bits used for the ancestor
table is at most O(k2 (log log n + logk)) . For efficient
computat ion of the queries we store a lookup table of k
entries. The i th entry stores the light depth of A(v , i).
Hence the lookup table uses at most O(k log log n) bits.
As before all the values are stored in fixed sized fields
and we prefix the label with small codes representing the
length of pre(v) and each of tables. In total the label
length is bounded by logn + O (k 2 (l o g l o g n + logk)) .
Computing the tables can be done in O(k) t ime per node
after O(n) t ime preprocessing and hence the labeling
scheme can be computed in O(nk) time.

T h e d e c o d e r . In the following we present the
decoder for our k-relationship labeling scheme. We first
present necessary and sufficient conditions for two nodes
v and w to be (kl, k2) related and then show how to test
these conditions using only the labels of v and w.

LEMMA 3.10. Let v , w E T and distances kl and k2
(not both zero) be given. Let v t be the significant ances-
tor of v such that l ightdepth(v t) = l ightdepth(A(v, kl))
and i f v ~ ~ v let v" be the significant ancestor of v
of light depth l ightdepth(A(v, kl) + 1. Otherwise let
v" = v. Similarly, define w' and w" for w. Then, v
and w are (k l ,k2)-re la ted i f and only i f one of the fol-
lowing disjoint conditions are satisfied.

w j, and are on (i) v ~ = v" w " different heavy paths,
dist(v, v ') = kl and dis t (w,w') = k2.

(ii) v ~ and w ~ are on the same heavy path, v ~ is a proper
ancestor o / w t, dist(wl,v t) = k2 - d i s t (w , w I) and
dis t (v ,v ') = kl.

(iii) v ~ and w ~ are on the same heavy path, w t is a proper
ancestor of v ' , dist(vl ,w I) = k l - d is t (v ,v I) and
dist(w, w') = k2

V~_--W~.,~Z

©~v "
wb (a)

(~ V '~
6w

(b)

Figure 1: Cases for Lemma 3.10. (a) case (i). (b) case
(ii).

Proof. The situation is illustrated in figure 1. Let
z = nca(v, w). If one of the conditions are satisfied
it is straightforward to check tha t v and w are (kl, k2)-
related. Conversely, if v and w are (kl, k2)-related then
z must be on the heavy pa th of v ~ and w ~ and z = v t or
z = w ~. If z = v' = w' then z is a significant ancestor
of both v and w. Hence, since not both of kl and k2
are zero, v" and w" must be on different heavy paths,
since otherwise there would be a common ancestor of
larger depth than z contradicting the assumption tha t
z = nca(v,w). If z = v ' ~ w' then v ' is a proper
ancestor of w ~ and if z = w' ~ v t then w' is a proper
ancestor of v t. Since v and w are (kl ,k2)-related the
distance conditions are satisfied. []

Given only the labels of the nodes v and w we can test if
they are (kl, k2)-related for kl, k2 <_ k as follows. First,
since the labels are unique it is trivial to test if v and
w are (0,0)-related. Hence, we will assume tha t tha t
not both of kl and k2 are zero. We will show how to
test each of the conditions in Lemma 3.10 using only
the labels. Using the lookup tables we first compute
the entries in the ancestor tables for the nodes v', v ' ,
w' and w ' . So assume tha t the values stored at these
entries of the tables are available. Using Lemma 3.3(ii)
we can check if v ~ = w ~. The distances dis t (v,v t) and
dist(w, w ~) are stored directly in the ancestor tables of
v and w and the first three conditions in (ii) and (iii)
can be checked using Lemma 3.9. Wha t remains is
to describe how to test if v" and w" are on different
heavy paths. Since the distances d i s t (v ' , a p e x (v '))
and d i s t (w ' , a p e x (w ')) are both smaller than k they
are available in the ancestor tables. If v" and w"
are on the same heavy pa th their distance must be
Id i s t (v ' , apex(v")) - d i s t (w ' , a p e x (w ')) l , and we can
thus apply Lemma 3.10 to test the condition. In
summary we have shown:

THEOREM 3.2. For trees with n nodes there is a k-
relationship labeling scheme with label length bounded

695

by log n + O (k 2 (log log n + log k)).

As noted the k-relationship labeling scheme can be
computed in O(nk) t ime and due to the lookup and
ancestor tables queries can be performed in 0(1) time.

4 Upper bounds for bi- and triconnectivity
labeling schemes

As an application of our k-relationship labeling scheme
of Section 3 we give a labeling scheme for biconnectivity.
Subsequently, we use a reduction from [21] to obtain
a labeling scheme for triconnectivity. Both labeling
schemes assigns unique labels. For a graph G with n
nodes the labeling scheme for bi- and triconnectivity
uses labels of length bounded by logn + O(loglogn)
and 3 log n + O(log log n) respectively.

We first give some preliminaries. Let G be a graph.
A set of paths P connecting two nodes v and w in G is
vertex-disjoint if each node except v and w appears in
at most one pa th p E P. We define v and w to be m -
vertex connected if there is a set of vertex-disjoint paths
of size m connecting v and w. We say that v and w are
bi- or triconnected if they are 2- or 3-vertex connected
respectively. A cut-node is a node whose removal (and
all incident edges) disconnects the graph. A block of a
graph G is a maximally connected subgraph without a
cut-node. By maximality, different blocks of G overlap
in at most one node, which is then the cut-node. Using
Menger's theorem (see e.g. [9]) it can be shown that
two nodes v, w E V(G) are biconnected if and only if
they are within the same block and the block has at
least 3 nodes.

We define the block graph B of G. Each node in
G is represented by a unique node in B and each node
in B either represents a node in G or a block with at
least three nodes in G. The edges of B are defined as
follows. Let v be a node in G and let B(v) denote the
set of blocks in G tha t contains v and has at least three
nodes. For each node representing a block b E B(v)
there is an edge to the node representing v in B. A node
in B representing a node in G that is not contained in
any block with at least three nodes is not incident to
any other node in B. By the maximali ty of blocks we
have:

LEMMA 4.1. The block graph B of a graph G is a forest
of unroofed trees.

Using depth-first search [24] we can compute the
block forest in linear time. We root each tree in the
forest as follows: If the tree contains only one node this
node is the root. Otherwise the tree contains at least
one node representing a block and we arbitrari ly root
the tree in such a node. By B~ we denote the rooted
version of the block forest B.

LEMMA 4.2. Two nodes v and w are biconnected in G
if and only if, in the block forest of rooted trees Br, v
and w are siblings, v is the grandparent of w or vice
v e r 8 a .

Proof. If v and w are biconnected in G then they are
contained in the same block with at least tree nodes, and
hence they are incident to the same node representing a
block. In B~, this implies tha t v and w are either siblings
or one is the grandparent of the other. Conversely,
if v and w are siblings or one is the grandparent of
the other in Br, then they are incident to the same
node representing a block. Hence, they are contained
in the same block with at least tree nodes and are thus
biconnected. []

To test the conditions in Lemma 4.2 we extend our
k-relationship labeling scheme to handle the more gen-
eral case of forests. Add an extra root node connected
to each root of the trees in the forest. This produces
a tree where we then apply our k-relationship labeling
scheme. The modifications needed to handle a special
root node are straightforward to implement. Using a 2-
relationship labeling scheme for the forest Br we obtain
by Lemma 4.2:

THEOREM 4.1. For graphs with n nodes there is a
biconnectivity labeling scheme that assigns unique labels
with label length bounded by log n + O(log log n).

Since we can compute the block forest Br in O(n) t ime
the labeling scheme can be computed in O(n) t ime and
with the 2-relationship labeling scheme queries can be
answered in O(1) time.

As noted in the introduction we can use our bi-
connectivity labeling scheme to obtain a triconnectivity
labeling scheme using a reduction from [21]. Here a la-
beling scheme for triconnectivity is given using labels
of length bounded by 51ogn. By Lemmas 3.3, 3.4 and
3.6 in [21] and Theorem 4.1 we obtain the following im-
provement.

THEOREM 4.2. For graphs with n nodes there is a
triconnectivity labeling scheme that assigns unique labels
with label length bounded by 3 logn + O(log logn).

5 Upper bounds for sibling and connectivity
labeling schemes

In this section we consider labeling schemes for sibling
queries and connectivity queries in forest. First we
consider sibling queries. If two nodes in the same tree
can be given the same label, we can label the nodes with
label of length [log n] as follows; parti t ion the nodes
into groups such that two nodes are siblings if and only if
they belong to the same group. This construction gives

696

g _< n groups, which are numbered 1, 2 . . . g . Nodes in
the same group are given the same label, namely the
number of the group. Now, two nodes are siblings if
and only if they have the same label.

THEOREM 5.1. For trees with n nodes there is a sibling
labeling scheme with label length bounded by [log n].

Next we show how to assign unique labels for trees
with maximum degree A. We group the nodes as
above. We assign to each node v two numbers: A group
number, g(v) to answer sibling queries as above and an
individual number i(v) to make its label unique. Two
nodes in the same group will be given the same group
number. Assume we have g groups gl ,g2""gg. Let
Ig/I be the number of nodes in g/. Using a Huffman
code [15] we give each node in group g~, a group number
of length log n - log Ig/I + O(1). The individual numbers
given to the nodes in group g / a r e simply 1,2,- .-Ig/] , of
length log Ig/I + O(1). In total we use logn + O(1) bits
for the group and individual numbers, however coding
these two numbers as one label, we also need to be
able to separate these two numbers given the label of
a node. We use the first O(log log A) bits of the label
to code the length of the individual number as follows.
The individual number in a tree with maximum degree

is at most A, and can be represented with at most
q = log A + O(1) bits. To represent the length of the
individual number we need O(log q) = O(log log A) bits.
Now, we also need to represent the length of the bit
string representing the length of the individual number,
but this can be done simply by using an unary code of
length O(log log A).

THEOREM 5.2. For trees with n nodes and maximum
degree ~ there is a sibling labeling scheme that as-
signs unique labels with label length bounded by log n +
O(log log A).

Using the same observations, grouping connected nodes,
we get.

THEOREM 5.3. For forests with n nodes there is a
connectivity labeling scheme that assigns unique labels
with label length bounded by logn + O(loglogn) .

It is straightforward to compute the above labeling
schemes in O(n) time and answer queries in O(1) time
assuming standard binary operations on a RAM.

6 L o w e r b o u n d s

In this section we present a lower bound technique and
subsequently give lower bounds for ancestor, connec-
tivity, sibling, 1-relationship, 2-restricted distance and
biconnectivity labeling schemes.

A test for whether or not v is an ancestor of w we
denote as an ancestor test, whereas a test for either v is
ancestor of w or vice versa is called a weak ancestor test.
A lower bound for weak ancestor tests is clearly a lower
bound for ancestor tests. The lower bound presented
in this paper is for weak ancestor tests. We will use
the following technique to show this lower bound: First
we give a family of trees .T'A where each tree consist
of cn nodes for a constant c. We then show that any
labeling scheme (which may use non-unique labels) for
weak ancestor queries need to use ~ (n l o g n) different
labels for ~A. If m different labels are necessary,
then the label length must be at least log m. Since
log(cnlogn) = logn + ~(loglogn) , for any constant c,
we establish the lower bound. A similar construction is
used for the other lower bounds.

In some cases, e.g. in [7], the goal is to minimize the
average length of labels instead of the maximum. We
note that , using the above technique, our lower bounds
also holds for the average length of labels.

6.1 L o w e r b o u n d t e c h n i q u e Let S be a set of
elements and let 1 : S ~ D be a function labeling S
with elements from some domain T). We will assume
ISI = nk, where k is an integer < logn and n is a power
of two. We define a parti t ion P of S into k boxes each of
n elements. The elements in the i th box, 1 < i < logn,
denoted B/ are parti t ioned into n/2 / groups each of 2 /
elements.

LEMMA 6.1. Let S, l and k be as described above. If
there exists a partition P such that the two properties
hold:

(i) For two different elements Sl,S2 E S, if Sl and s2
belong to the same box, then l(sl) ~ l(s2).

For elements sl, s2, s3, s4 E S, if81 and s2 belong to
two different groups in the same box, l(sl) : l(sa)
and l(s2) = l(s4), then s3 and s4 belong to two
different groups.

then IVl =

Proof. We will say the function l associate labels to
the elements from 8. The elements associated with the
same label we denote as neighbors. In the following we
give a strategy to choose a subset S' of elements from
S, guaranteeing that for all Sl,S2 E S', where s l ¢ s2,
sl and s2 will not be neighbors. We call a strategy with
such a guarantee for a safe strategy. The number of
labels needed by l for S will be at least the size of S'
since IDI > ISII when choosing S' by a safe strategy.
An element chosen to belong to S', we say is a marked
element. Hence, no two elements with the same label

697

will be marked. If one or more elements from a group are
marked we say the group is marked. For a box B we let
M(B) denote the number of marked groups belonging
to the box.

We first mark elements from the box Bk, and next
for Bi in order of decreasing i. All elements in Bk
will be marked. From the first property of Lemma 6.1
there are no neighbors in the same box and the marking
is therefore safe. When marking elements from the
remaining boxes Bi, i < k, we keep the invariant tha t
M(Bi) < n/2 i+1. Hence, we will at most mark elements
from half of the groups belonging to Bi.

Let F(i) be the set of groups belonging to the boxes
By, j > i, and let M(F(i)) be the number of marked
groups belonging to F(i). Since we keep the invariant
that M(Bi) < n/2 TM , for i < k, we have that , for i < k,

_ S - ' j = k - l - ~ 2 i+l = n[2 i. Next, we M(F(i)) < n[2 k + ,-,j=i '~l
describe how to mark elements from Bi, after marking
elements from Bj, j > i. If a group in Bi includes an
element with a marked neighbor in Bj , j > i, we denote
the group as closed. If a group not is closed we denote
it as open.

Let Sl, s2 E Bi belong to two different groups. If Sl
has a marked neighbor s3 and s2 has a marked neighbor
s4 then by the second property of Lemma 6.1, s3 and
s4 must belong to two different marked groups from
F(i + 1). Hence, for each closed group in Bi we can
associate a marked group from F(i + 1) which will
not be associated to any other groups in Bi. Since
the number of groups in Bi is n/2 i and we keep the
invariant that M(F(i + 1)) <_ n/2 TM, at least n /2 TM

of the groups in Bi will be open. Since the elements
from the open groups does not have a marked neighbor
and none of them are neighbors by the first property of
Lemma 6.1 it is safe marking all elements from n/2 I+1
groups of Bi. Doing this we keep the invariant, at most
marking elements from half of the groups in Bi, i < k.
Summarizing, we mark all elements in Bk, and half of
the elements from the remaining k - 1 boxes. In total
we mark ~(nk) elements. []

In the following sections we will define different families
of graphs for which the nodes from these graphs can be
parti t ioned such tha t the labeling obeys the properties
given in Lemma 6.1.

6.2 A n c e s t o r l a b e l i n g s c h e m e s To show a lower
bound for an ancestor labeling l, we give a family .TA of
logn trees {T1,T2,- . . ,~ogn}, each of size 2n + 1. We
show tha t for a subset S of the nodes from ~.4, where
IS[= n log n, there is a part i t ion P of $, such that any
l, must obey the two properties in Lemma 6.1. This
implies that at least ~ (n l o g n) labels are needed and

will conclude our proof.
The tree T / in .TA consists of a root node with n/2 i

children. Each child v is the root of a pa th p(v) of length
2 i. Furthermore, each node on these paths have a child
which is a leaf not belonging to the path.

We have [V(Ti)[= 2(n/2i)2 / + 1 = 2n + 1. We let
S be the subset of nodes from UA which belongs to a
pa th p(v), where v is a child of one of the root nodes in
the family. Hence, IS] = n logn . Box Bi is the subset of
nodes from S which belongs to the tree Ti. The nodes
from box Bi are parti t ioned into groups such that two
nodes from the same group belong to the same path.
Next we show tha t the two properties from Lemma 6.1
must be fulfilled for any labeling l in this partition.

Consider the first property. Let Sl, s2 E Bi, sx ¢ s~.
If sl is an ancestor to s2, s2 cannot be an ancestor of
sl . Assume without loss of generality that Sl is not
an ancestor of s2 and let c be the leaf in Ti which is
the child of s2. Since sl is not an ancestor of s2, sl
cannot be ancestor of c. Therefore the decoder for the
ancestor query, d~, must satisfy that da(l(sl),l(c))
d~(l(s2), l(c)), which implies that l(Sl) ~ l(s2).

Next we consider the second property. Let
Sl,S2, s3, s4 E S, where sl and s2 belongs to two dif-
ferent groups in the same box. This implies that there
is no ancestor relation between sl and s2. Thus if
l(Sl) = l(s3) and l(s2) = l(s4) there cannot be an ances-
tor relation between s3 and s4 and therefore s3 and s4
must belongs to different groups. Hence, we have shown
the following theorem:

THEOREM 6.1. An ancestor labeling scheme for trees
with n nodes needs label of length logn + f~(loglogn).

Using the same approach we obtain the following
lower bounds. The proofs can be found in the full
version of this paper.

THEOREM 6.2. A connectivity labeling scheme for
forests with n nodes, that assign unique labels, needs
labels of length logn + O(loglogn).

THEOREM 6.3. A sibling labeling scheme for trees with
n nodes and maximum degree A, that assigns unique
labels, needs labels of length log n + 12(log log A).

THEOREM 6.4. A 1-relationship labeling for trees with
n nodes needs labels of length log n + 12(log log n).

THEOREM 6.5. A 2-restricted distance labeling scheme
for trees with n nodes needs labels of length log n +
f~ (log log n).

THEOREM 6.6. A biconnectivity labeling scheme for
graphs with n nodes needs labels of length log n +
~(log log n).

698

R e f e r e n c e s

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact
labeling schemes for ancestor queries. In Proceedings of
the twelfth annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 547-556, 2001.

[2] S. Alstrup, C. GavoiUe, H. Kaplan, and T. Rauhe.
Nearest common ancestors : A survey and a new dis-
tributed algorithm. In In Proceedings of the fourteenth
annual ACM Symposium on Parallel Algorithms and
Architecture (SPAA), 2002.

[3] S. Alstrup and T. Ranhe. Improved labeling schemes
for ancestor queries. In Prooceedings off the thir-
teenth annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2002.

[4] S. Alstrup and T. Rauhe. Small induced universal
graphs and compact implicit graph representations. In
Proceedings of the fourtythird annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2002.

[5] M. A. Breuer. Coding vertexes of a graph. IEEE
Transactions on Information Theory, IT-12:148-153,
1966.

[6] M. A. Breuer and J. Folkman. An unexpected result
on coding vertices of a graph. Journal of Mathematical
Analysis and Applications, 20:583-600, 1967.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
In Proceedings of the thirteenth annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002.

[8] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic
xml trees. In Prooceedings of the twentyfirst annual
ACM Symposium on Principles off Database Systems
(PODS), 2002.

[9] R. Diestel. Graph Theory. Springer-Verlag, 2000.
[10] C. Gavoille, M. Katz, N. Katz, C. Paul, and D. Peleg.

Approximate distance labeling schemes. In Proceed-
ings of the ninth annual European Symposium on Al-
gorithms (ESA), volume 2161 of LNCS, pages 476-488.
Springer Verlag, 2001.

[11] C. Gavoille and C. Paul. Split decomposition and dis-
tance labeling: an optimal scheme for distance heredi-
tary graphs. In Proceedings of the ninth European Con-
ference on Combinatories, Graph Theory and Applica-
tions~ 2001.

[12] C. Gavoille and D. Peleg. Compact and localized dis-
tributed data structures. Technical Report RR-1261-
01, Laboratoire Bordelais de Recherce en Informatique,
2001.

[13] C. Gavoille, D. Peleg, S. Perennes, and R. Ra~z.
Distance labeling in graphs. In Proceedings of the
twelfth annual A CM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2001.

[14] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM Journal of
Computing, 13(2):338-355, 1984.

[15] D. A. Huffman. A methode for construction of
minimum-redundancy codes. Proceedings of the IRE,
1952.

[16] S. Ka~nan, M. Naor, and S. Rudich. Implicit repre-
sentation of graphs. In Proceedings of twentieth an-
nual ACM-SIAM Symposium On Theory off Computing
(STOC), 1988.

[17] S. Kannan, M. Naor, and S. Rudich. Implicit represen-
tation of graphs. SIAM Journal on Discrete Mathemat-
ics, 1992. Preliminary version appeared in STOC'88.

[18] H. Kaplan and T. Milo. Short and simple labels for
small distances and other functions. In Proceeding
of the seventh Workshop on Algorithms and Data
Structures, LNCS, 2001.

[19] H. Kaplan, T. Milo, and R. Shabo. A comparison of
labeling schemes for ancestor queries. In Proceedings
off the thirteenth annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002.

[20] M. Katz, N. Katz, and D. Peleg. Distance labeling
schemes for well-seperated graph classes. In Proceed-
ings of the seventeenth Symposium on Theorectical As-
pects of Computer Science (STACS), volume 1170 of
LNCS. Springer Verlag, 2000.

[21] M. Katz, N. A. Katz, A. Korman, and D. Peleg. La-
beling schemes for flow and connectivity. In Proceed-
ings of the thirteenth annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2002.

[22] D. Peleg. Proximity-preserving labeling schemes and
their applications. In Graph-Theoretic Concepts in
Computer Science, twentyfifth international workshop,
volume 1665 of LNCS, pages 30--41. Springer Verlag,
1999.

[23] N. Santoro and R. Khatib. Labeling and implicit
routing in networks. The computer Journal, 28:5-8,
1985.

[24] R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146-
160, 1972.

[25] M. Thorup and U. Zwick. Approximate distance ora-
cles. In In Proceedings of the thirteenth annual ACM-
SIAM Symposium on Theory of Computing (STOC),
pages 1-10, 2001.

[26] M. Thorup and U. Zwick. Compact routing schemes.
In In Proceedings of the thirteenth annual A CM Sympo-
sium on Parallel Algorithms and Architecture (SPAA),
volume 13, 2001.

[27] A. K. Tsakalidis. Maintaining order in a generalized
linked list. Aeta Informatica, 21(1):101-112, 1984.

