
Numer Algor (2010) 53:67–92
DOI 10.1007/s11075-009-9310-3

ORIGINAL PAPER

Algorithms and software for total variation image
reconstruction via first-order methods

Joachim Dahl · Per Christian Hansen ·
Søren Holdt Jensen · Tobias Lindstrøm Jensen

Received: 14 October 2008 / Accepted: 19 June 2009 /
Published online: 8 July 2009
© Springer Science + Business Media, LLC 2009

Abstract This paper describes new algorithms and related software for total
variation (TV) image reconstruction, more specifically: denoising, inpainting,
and deblurring. The algorithms are based on one of Nesterov’s first-order
methods, tailored to the image processing applications in such a way that,
except for the mandatory regularization parameter, the user needs not specify
any parameters in the algorithms. The software is written in C with interface
to Matlab (version 7.5 or later), and we demonstrate its performance and use
with examples.

This work is part of the project CSI: Computational Science in Imaging, supported by grant
no. 274-07-0065 from the Danish Research Council for Technology and Production Sciences.
J. Dahl’s work was carried out at Aalborg University.

J. Dahl
AnyBody Technology A/S, Niels Jernes Vej 10,
9220 Aalborg Ø, Denmark
e-mail: dahl.joachim@gmail.com

P. C. Hansen (B)
Department of Informatics and Mathematical Modelling,
Technical University of Denmark, Building 321,
2800 Lyngby, Denmark
e-mail: pch@imm.dtu.dk

S. H. Jensen · T. L. Jensen
Department of Electronic Systems, Aalborg University,
Niels Jernesvej 12, 9220 Aalborg Ø, Denmark

S. H. Jensen
e-mail: shj@es.aau.dk

T. L. Jensen
e-mail: tlj@es.aau.dk

68 Numer Algor (2010) 53:67–92

Keywords Total variation · Denoising · Inpainting · Deblurring ·
First-order methods · Matlab

Mathematics Subject Classifications (2000) 65K19 · 65R32

1 Introduction

Image reconstruction techniques have become important tools in computer
vision systems and many other applications that require sharp images obtained
from noisy and otherwise corrupted ones. At the same time the total variation
(TV) formulation has proven to provide a good mathematical basis for several
basic operations in image reconstruction [5], such as denoising, inpainting,
and deblurring. The time is ripe to provide robust and easy-to-use public-
domain software for these operations, and this paper describes such algorithms
along with related Matlab and C software. To our knowledge, this is the
first public-domain software that includes all three TV image reconstruction
problems. The software is available from http://www.netlib.org/numeralgo in
the file na28, the Matlab files have been tested on Matlab versions 7.5–7.8, and
they require version 7.5 or later.

We note that some Matlab codes are already available in the public domain,
see the overview in Table 1. In Section 7 we compare the performance of our
algorithms with those in Table 1; such a comparison is not straightforward
as these codes solve slightly different problems and do not use comparable
stopping criteria. Our comparisons show that our algorithms indeed scale well
for large-scale problems compared to the existing methods.

The optimization problems underlying the TV formulation of image restora-
tion cannot easily be solved using standard optimization packages due to
the large dimensions of the image problems and the non-smoothness of
the objective function. Many customized algorithms have been suggested
in the literature, such as subgradient methods [1, 7], dual formulations [4, 24],
primal-dual methods [6, 16, 21], graph optimization [9], second-order cone
programming [13], etc. However, the implementation of all these methods for
large-scale problem is not straightforward.

Our algorithms are based on recently published first-order methods de-
veloped by Nesterov [17–20], but tailored specifically to the problems in
image restoration that we consider. The new first-order methods have O(1/ε)

complexity, where ε is the accuracy of the solution. These methods show
promising potential in large-scale optimization but have, so far, been used only
scarcely for image processing algorithms—except for very recent work in [2]
and [22].

Compared to [22], we provide practical complexity bounds and stopping
criteria, we included inpainting into Nesterov’s framework, and we use rank
reduction to improve the speed and numerical stability of the deblurring
algorithm. Our approach allows us to choose all necessary parameters in the
algorithms in a suitable fashion, such that only the regularization parameter

http://www.netlib.org/numeralgo

Numer Algor (2010) 53:67–92 69

Table 1 Freely available Matlab codes for TV reconstruction

Code: tvdenoise—denoising.
Author: Pascal Getreuer, Dept. of Mathematics, UCLA, Los Angeles.
Comments: Chambolle’s algorithm [4] (dual formulation), stopping criterion, very fast,

also treats color images.
Availability: Matlab Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16236

Code: perform_tv_denoising—denoising.
Author: Gabriel Peyré, CNRS, CEREMADE, Université Paris Dauphine.
Comments: Chambolle’s algorithm [4] (dual formulation), no stopping criterion, fast.
Availability: Toolox—A Toolbox for General Purpose Image Processing:

www.ceremade.dauphine.fr/∼peyre/matlab/image/content.html

Code: TVGP—denoising.
Authors: M. Zhu, Dept. of Mathematics, UCLA, Los Angeles.

S. Wright, Dept. of Computer Sciences, Univ. of Wisconsin, Madison.
T. F. Chan, Dept. of Mathematics, UCLA, Los Angeles.

Comments: Gradient projection algorithm for the dual formulation, software, stopping
criterion, very fast. Described in [24].

Availability: TV-Regularized Image Denoising Software:
www.cs.wisc.edu/∼swright/TVdenoising

Code: SplitBregmanROF—denoising.
Authors: Tom Goldstein and Stanley Osher, Dept. of Mathematics,

UCLA, Los Angeles.
Comments: Bregman iterations, C++ code with Matlab mex interface, stopping criterion,

very fast. Described in [14].
Availability: Split Bregman Denoising:

www.math.ucla.edu/∼tagoldst/code.html

Code: tv_dode_2D—inpainting.
Author: Carola-Bibiane Schönlieb, Centre for Mathematical Sciences,

Cambridge University, UK.
Comments: Script with built-in stopping criterion, no interface, slow. Described in [11].
Availability: Domain Decomposition for Total Variation Minimization:

homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_dode_numerics.
htm

Code: Fixed_pt and Primal_dual—deblurring.
Author: Curtis R. Vogel, Dept. of Mathematical Sciences,

Montana State University, Bozeman.
Comments: Scripts with no stopping criteria or interface. Described in [21].
Availability: Codes for the book Computational Methods for Inverse Problems:

www.math.montana.edu/∼vogel/Book/Codes/Ch8/2d

Code: FTVdG—deblurring.
Authors: Junfeng Yang, Nanjing University, China.

Yin Zhang, Wotao Yin, and Yilun Wang, Dept. of Computational and
Applied Mathematics, Rice University, Houston.

Comments: Script with stopping criteria, fast, treats color images. Described in [23].
Availability: FTVd: A Fast Algorithm for Total Variation based Deconvolution.

www.caam.rice.edu/∼optimization/L1/ftvd/v3.0/

must be specified by the user. More experienced users can set additional
parameters if needed. Our algorithms and implementations are robust, user
friendly, and suited for large problems.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16236
http://www.ceremade.dauphine.fr/~peyre/matlab/image/content.html
http://www.cs.wisc.edu/~swright/TVdenoising
http://www.math.ucla.edu/~tagoldst/code.html
http://homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_dode_numerics.htm
http://homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_dode_numerics.htm
http://www.math.montana.edu/~vogel/Book/Codes/Ch8/2d
http://www.caam.rice.edu/~optimization/L1/ftvd/v3.0/

70 Numer Algor (2010) 53:67–92

Our paper starts with a brief summary of the notation in Section 2. We then
present our three methods for TV-based denoising, inpainting, and deblurring
in Sections 3–5; the presentation follows that of Nesterov, but with a simplified
notation tailored to our image processing applications. Next, in Section 6 we
illustrate the use of our methods and software with three examples, and in
Section 7 we demonstrate the performance and the computational complexity
of our methods. Brief manual pages for the Matlab functions are given in
Appendix A.

2 Notation

In this package we consider m × n grayscale images, represented by the image
arrays B (the noisy/corrupted image) and X (the reconstructed image). For
our mathematical formulation it is convenient to represent the images by the
two vectors x and b of length mn, given by

x = vec(X), b = vec(B),

where “vec” denotes column-wise stacking.
Associated with each pixel Xij is a 2 × 1 gradient vector, and we approxi-

mate this gradient via finite differences. To set the notation, we first define two
m × n arrays X ′

c and X ′
r with the finite-difference approximations to the partial

derivatives in the directions of the columns and rows:

X ′
c = Dm X, X ′

r = X DT
n ,

where the two matrices Dm and Dn hold the discrete approximations to the
derivative operators, including the chosen boundary conditions. Then we write
the gradient approximation for pixel ij as the 2 × 1 vector

D(ij) x =
((

X ′
c

)
ij(

X ′
r

)
ij

)
∈ R

2×1, (1)

where the notation (ij) for the subscript denotes that we operate on the
pixel with index ij, and D(ij) is a matrix of dimensions 2 × mn. For one-sided
difference approximations at the “inner pixels”, we have

D(ij) = [
ei+1+(j−1)m − ei+(j−1)m , ei+ jm − ei+(j−1)m

]T
,

in which ek denotes the kth canonical unit vector of length mn. We also define
the matrix D (of dimensions 2mn × mn) obtained by stacking all the D(ij)

matrices:

D =
⎛
⎜⎝

D(11)

...

D(mn)

⎞
⎟⎠ . (2)

Numer Algor (2010) 53:67–92 71

In Appendix B we show that the 2-norm of this matrix satisfies ‖D‖2
2 ≤ 8. The

approximation to the gradient norm satisfies ‖D(ij) x‖2
2 = (X ′

c)
2
ij + (X ′

r)
2
ij.

We also need to introduce the vector u ∈ R
2mn of dual variables, and similar

to before we use the notation u(ij) for the 2-element sub-vector of u that
conforms with (2) and corresponds to pixel ij.

The total variation (TV) of a function f (s, t) in a domain Ω is defined as
the 1-norm of the gradient magnitude, i.e.,

∫
Ω

‖∇ f‖2 ds dt in which ‖∇ f‖2
2 =

(∂ f/∂s)2 + (∂ f/∂t)2. For our discrete problem, we define the analogous discrete
TV function associated with the image X as

T (x) =
m∑

i=1

n∑
j=1

‖D(ij) x‖2, (3)

i.e., the sum of all the 2-norms of the gradient approximations.
In our algorithms we need to extract elements of a vector x ∈ R

N specified
by an index-set I = {i1, i2, . . . , i|I|} with indices ik between 1 and N. Here,
|I| denotes the number of elements in I. If all the elements in I are distinct
(i.e., ik �= il when k �= l), then the complementary set is Ic := {1, . . . , N} \ I =
{ j1, j2, . . . , jN−|I|} again with indices jk between 1 and N.

3 Denoising

Given a noisy image B = Xexact + noise, the discrete TV denoising problem
amounts to minimizing T (x) subject to a constraint on the difference between
the reconstruction x and the data b . This ensures that the reconstructed image
is closely related to the noisy image, but “smoother” as measured by the TV
function (3). The discrete TV denoising problem can thus be formulated as

minimize
∑m

i=1
∑n

j=1 ‖D(ij) x‖2

subject to ‖x − b‖2 ≤ δ,
(4)

which is a second-order cone programming problem (SOCP) [3]. The dual
problem is also a SOCP, given by

maximize −δ ‖DTu‖2 + b T DTu

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . , m, j = 1, . . . , n,
(5)

where u ∈ R
2mn is the dual variable. The two problems have the same optimal

value, because Slater’s constraint qualification is satisfied, cf. [3]. The SOCP
in (4) can, in principle, be solved using standard interior-point algorithms, but
the large dimensions typically render such an approach intractable.

72 Numer Algor (2010) 53:67–92

3.1 The first-order method

Instead of using interior point algorithms, we adapt a first-order algorithm
developed by Nesterov [17, 18] (similar to the approaches in [2] and [22]).
Nesterov’s algorithm is an efficient scheme for minimization of saddle point
problems over bounded convex sets. The basic idea of this algorithm is to
make a smooth O(ε)-approximation with Lipschitz continuous derivatives
to the non-differentiable TV function, and then subsequently minimize this
approximation using an optimal first-order method for minimization of convex
functions with Lipschitz continuous derivatives.

To adapt the TV denoising problem to Nesterov’s method, we follow [3,
§5.4] and rewrite (4) as a saddle point problem of the form

min
x∈Qp

max
u∈Qd

uT D x,

where we have defined the primal and dual feasible sets

Qp = {x | ‖x − b‖2 ≤ δ} ,

Qd = {
u | ‖u(ij)‖2 ≤ 1, i = 1, . . . , m, j = 1, . . . , n

}
.

To each set Qp and Qd we associate a so-called prox-function, which we choose
as, respectively,

fp(x) = 1
2‖x − b‖2

2 and fd(u) = 1
2‖u‖2

2.

These functions are bounded above as

�p = max
x∈Qp

fp(x) = 1
2δ2 and �d = max

u∈Qd

fd(u) = 1
2 mn.

As a smooth approximation for T (x) we then use an additive modification of
T (x) with the prox-function associated with Qd:

Tμ(x) = max
u∈Qd

{
uT D x − μ fd(u)

}
. (6)

The approximation Tμ(x) then bounds T (x) as Tμ(x) ≤ T (x) ≤ Tμ(x) + μ�d,
meaning that if we set μ = ε/(2�d) = ε/(mn) then we have an (ε/2)-
approximation of T (x). Furthermore, following [18], it can be shown that Tμ(x)

has Lipschitz continuous derivatives with constant

Lμ = μ−1‖D‖2
2 ≤ 8/μ,

and its gradient is given by

∇Tμ(x) = DTu,

where u is the solution to (6) for a given x.

Numer Algor (2010) 53:67–92 73

Nesterov’s optimal first-order method for minimizing the convex function
Tμ(x) with Lipschitz continuous derivatives is listed in Fig. 1. We terminate the
algorithm when the duality gap satisfies

m∑
i=1

n∑
j=1

‖D(ij) x‖2 + δ‖DTu‖2 − uT D b < ε.

When the iterations are stopped by this criterion, leading to the solution xε ,
then we are ensured that the found solution is close to the exact solution x∗ in
the sense that T (xε) − T (x∗) < ε. We remark that with our formulation of the
problem it is difficult to relate the parameter ε to the error ‖xε − x∗‖2 a priori
(while this is possible in the dual formulation in [24] where the primal variable
is a function of the dual variable).

By specifying the threshold ε for the duality gap, we can determine the
parameter μ = ε/(mn) used in the TV denoising algorithm to evaluate Tμ(x)

(6). Nesterov showed in [18] that at most

N = 4‖D‖2

ε

√
�p �d (7)

iterations are required to reach an ε-optimal solution. For the discrete TV
denoising algorithm we obtain the bound

Ndenoise = 2‖D‖2

ε
δ
√

mn ≤ 4
√

2mn
ε

δ. (8)

We return to the choice of ε in Section 7.

3.2 Efficient implementation

The key to an efficient implementation of our algorithm is to evaluate g[k] in
step 1) and solve the two subproblems 2) and 3) efficiently. This is ensured
by our choice of prox-functions fp and fd. By a simple change of variables it

Fig. 1 Nesterov’s first-order
method for discrete TV
denoising. We stop the
iterations when the duality
gap is less than ε

74 Numer Algor (2010) 53:67–92

turns out that all three quantities can be written as the solution to a simple
quadratically constrained problem of the form

minimize 1
2 θTθ − θTc

subject to ‖θ‖2 ≤ η,

whose solution is simply given by θ = c / max{1, ‖c‖2/η} . In step 1) we must
evaluate g[k] = ∇Tμ(x[k]) and it is easy to show that the gradient is given by
∇Tμ(x[k]) = DTu[k], where u[k] is given by

u[k] = arg max
u∈Qd

uT D x[k] − μ

2
‖u‖2

2.

The mn sub-vectors u[k]
(ij) of u[k] are thus given by

u[k]
(ij) = D(ij)x[k] / max

{
μ, ‖D(ij)x[k]‖2

}
.

In step 2) it follows from a simple variable transformation that

y[k] = (
Lμ

(
x[k] − b

)− g[k]) / max
{
Lμ,

∥∥Lμ

(
x[k] − b

)− g[k]∥∥
2 / δ

}+ b ,

and in step 3) we similarly obtain

z[k] = −w[k]/ max
{
Lμ,

∥∥w[k]∥∥
2 / δ

}+ b ,

where we have introduced w[k] = ∑k
i=0

1
2 (i + 1) g[i].

The computations in each of the steps 1) to 4) are done efficiently in O(mn)

operations. If needed, the algorithm is also very easily to parallelize; the
subproblem 1) can be divided in several separate problems, and steps 2) and 3)
can be executed in parallel. The memory requirements are also very modest,
requiring only memory for storing the five mn-vectors g[k], w[k], x[k], y[k], z[k],
plus a temporary mn-vector—which is equivalent to the storage for 6 images
in total. By exploiting the structure of D, it is not necessary to store the vector
u[k] but only u[k]

(ij).

4 Inpainting

In this section we extend the total-variation denoising algorithm to include
inpainting, i.e., the process of filling in missing or damaged parts of a (possibly
noisy) image, cf. [5]. The basic idea is still to compute a reconstruction that is
“smooth” in the TV sense, and identical to the data in all the non-corrupted
pixels (or close to these data if they are noisy).

Specifically, let I be the index set for x corresponding to the corrupted pixels
in X. The complementary index set Ic is the set of non-corrupted pixels. The
basic TV inpainting problem can then be formulated as

minimize
∑m

i=1
∑n

j=1 ‖D(ij) x‖2

subject to ‖ (x − b)Ic‖2 ≤ δ,

Numer Algor (2010) 53:67–92 75

with the dual problem

maximize −δ‖(DTu)Ic‖2 + b T
Ic

(DTu)Ic

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . , m, j = 1, . . . , n

(DTu)I = 0.

In this primal-dual formulation, the dual feasible set is not simple because of
the equality constraint (DTu)I = 0 and hence the subproblem in step 1) of
Fig. 1 will be complicated. Instead we bound the primal feasible set by adding
an artificial norm-constraint on the pixels in the inpainting region, leading to
the revised formulation

minimize
∑m

i=1
∑n

j=1 ‖D(ij) x‖2

subject to ‖(x − b)Ic‖2 ≤ δ

‖(x − d)I‖2 ≤ γ,

(9)

for some suitable vector d and parameter γ > 0. The dual problem correspond-
ing to (9) is then

maximize −δ ‖(DTu)Ic‖2 + b T
Ic

(DTu)Ic − γ ‖(DTu)I‖2 + dT
I (DTu)I

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . , m, j = 1, . . . , n ,
(10)

and now we have simple constraints (similar to the denoising problem).
It is important that d and γ in (9) are chosen such that ‖(x − d)I‖2 < γ holds

for the solution of the original problem. The pixel intensity in the inpainted
region is always bounded by the intensity of the non-corrupted pixels, i.e., the
vector of inpainted pixels satisfies

x∗
I ∈ P =

{
z | min

i∈Ic

bi ≤ z j ≤ max
i∈Ic

bi, ∀ j ∈ I
}

.

If we then set the elements of the vector d to

d j = 1
2

(
max
i∈Ic

bi + min
i∈Ic

bi

)
∀ j ∈ I,

i.e., d is the midpoint in the set P, then we have

‖(x∗ − d)I‖2 ≤ max
xI∈P

‖xI − dI‖2 = 1
2

(
max
i∈Ic

bi − min
i∈Ic

bi

)√|I| := γ,

which we then select as our γ . These settings guarantee that we have an
artificial norm-constraint that is inactive at the solution. The primal set is now
Q′

p = {x | ‖(x − b)Ic‖2 ≤ δ, ‖(x − d)I‖2 ≤ γ }, and as the prox-function for this
set we use

f ′
p(x) = 1

2

∥∥(x − b)Ic

∥∥2
2 + 1

2

∥∥ (x − d)I
∥∥ 2

2 (11)

with upper bound �′
p = 1

2 (γ 2 + δ2). As prox-function for Qd (which is un-
changed) we again use fd(u) = 1

2‖u‖2
2 and μ is chosen similarly as in Section 3.

Regarding the implementation issues, only step 2) and step 3) in the
algorithm from Fig. 1 change in the TV inpainting algorithm. Note that the

76 Numer Algor (2010) 53:67–92

two cone constraints in (9) are non-overlapping and that the norms in the prox-
function (11) are partitioned in the same way as the constraints. Hence, the two
index sets of y[k] in step 2) can be computed separately, and they are given by

y[k]
Ic

= (Lμ

(
x[k] − b

)− g[k])
Ic

/ max
{
Lμ,

∥∥ (Lμ

(
x[k] − b

)− g[k])
Ic

∥∥
2 / δ

}
+ bIc

y[k]
I = (Lμ

(
x[k] − d

)− g[k])
I / max

{
Lμ,

∥∥(Lμ

(
x[k] − d

)− g[k])
I
∥∥

2 / γ
}
+ dI .

Similarly in step 3) we have

z[k]
Ic

= −w
[k]
Ic

/ max
{
Lμ,

∥∥∥w[k]
Ic

∥∥∥
2
/δ
}

+ bIc ,

z[k]
I = −w

[k]
I / max

{
Lμ,

∥∥∥w[k]
I

∥∥∥
2
/γ
}

+ dI .

The upper bound for the number of iterations in the discrete TV inpainting
algorithm becomes

Ninpaint = 2‖D‖2

√
(γ 2 + δ2)mn · 1

ε
≤ 4

√
2mn
ε

√
γ 2 + δ2. (12)

Note that γ enters the bound in the same way as δ. However, while δ is typically
small—of the same size as the errors in the data—the parameter γ is of the
same size as the norm of the inpainted pixels xI . This illustrates the difficulty
of the inpainting problem, in terms of computational complexity—compared
to the denoising problem—when using Nesterov’s method with our choices of
prox-functions.

Similarly to Section 3, the complexity of each of the subproblem is O(mn)

with the same memory requirement.

5 Deblurring for reflexive boundary conditions

In addition to denoising and inpainting, it is natural to consider TV deblurring
of images, where the blurring is modelled by a linear operator, i.e., the blurred
image is given by

b = K xexact + noise,

in which K ∈ R
mn×mn is a known matrix that represents the linear blurring in

the image B [15]. TV deblurring then amounts to computing a reconstruction
which is, once again, “smooth” in the TV sense and fits the noisy data b within
a tolerance δ that acts as the regularization parameter. Hence the discrete TV
deblurring problem can be formulated as

minimize
∑m

i=1
∑n

j=1 ‖D(ij) x‖2

subject to ‖Kx − b‖2 ≤ δ.

Numer Algor (2010) 53:67–92 77

Here we only consider spatially invariant blurring with a doubly symmetric
point spread function and reflexive boundary conditions, for which the ma-
trix K can be diagonalized by a two-dimensional discrete cosine transform
(DCT) [15]. The algorithm is easily extended to other matrices K that can be
diagonalized efficiently by an orthogonal or unitary similarity transform (e.g.,
the discrete Fourier transform for general point spread functions and periodic
boundary conditions), or by singular value decomposition of smaller matrices,
such as is the case for separable blur where K is a Kronecker product.

We thus assume that K can be diagonalized by an orthogonal similarity
transform,

CKCT = Λ = diag(λi), (13)

where the matrix C represents the two-dimensional DCT, and Λ is a real
diagonal matrix with the eigenvalues of K. Then by a change of variables
x̄ = Cx and b̄ = Cb we obtain the equivalent TV deblurring problem in the
DCT basis

minimize
∑m

i=1
∑n

j=1 ‖D(ij)CT x̄‖2

subject to ‖Λ x̄ − b̄‖2 ≤ δ.

We note that multiplications with C and CT are implemented very efficiently
by means of the DCT algorithm with complexity mn log(max{m, n}). In our
software we use the C package FTTW [10, 12], and it is needed only for TV
deblurring. FFTW is known as the fastest free software implementation of
the Fast Fourier Transform algorithm. It can compute transforms of real- and
complex-valued arrays (including the DCT) of arbitrary size and dimension,
and it does this by supporting a variety of algorithms and choosing the one it
estimates or measures to be preferable in the particular circumstance.

5.1 Rank reduction

Often Λ is singular—either exactly or within the accuracy of the finite-
precision computations—in which case the feasible set {x | ‖Λ x̄ − b̄‖2 ≤ δ}
is unbounded, and as such the problem cannot be solved using Nesterov’s
method. Moreover, when the condition number cond(Λ) = maxi |λi|/ mini |λi|
is large (or infinite), we experience numerical difficulties and slow convergence
of the algorithm.

To overcome these difficulties we apply the well-known approach of rank
reduction and divide the eigenvalues into two partitions: One set with suffi-
ciently large values indexed by I = { i | |λi| > ρ‖K‖2}, and the complementary
set indexed by Ic. Here, ‖K‖2 = max j |λ j|, and ρ is a parameter satisfying
0 < ρ < 1. We also define the diagonal matrix Λρ whose diagonal elements
are given by

(Λρ)ii =
{

λi if i ∈ I
0 else,

78 Numer Algor (2010) 53:67–92

and we note that Λρ is the closest rank-|I| approximation to Λ. The default
value of ρ in our software is ρ = 10−3

We then solve a slightly modified deblurring problem obtained by replacing
the matrix K with the implicitly defined rank-deficient approximation

Kρ = CTΛρ C .

The corresponding rank-reduced TV deblurring problem is thus

minimize
∑m

i=1
∑n

j=1 ‖D(ij)CT x̄‖2

subject to ‖(Λ x̄ − b̄)I‖2 ≤ δ

‖x̄Ic‖2 ≤ γ,

(14)

where x̄Ic should be considered as unconstrained variables. The parameter γ

must therefore be chosen sufficiently large such that the constraint ‖x̄Ic‖2 ≤ γ

is inactive at the solution. The extra constraint is added for the same reason as
in the inpainting problem, namely, to keep the dual feasible set simple.

In addition to improving the numerical stability and reducing the number
of iterations, rank-reduced deblurring can also be seen as another way of
imposing regularization on the ill-posed problem by reducing the condition
number for the problem from cond(Λ) to cond(Λρ) ≤ 1/ρ.

Choosing γ to guarantee that the γ -bound is inactive is difficult without
making γ too large and thereby increasing the number of iterations. We
assume without loss of generality that we can scale K such that ‖xexact‖2 ≈
‖b‖2. This means that a solution which is properly regularized will also have
‖x̄‖2 = ‖x‖2 ≈ ‖b̄‖2 ≈ ‖b‖2. Our software therefore scales K and selects

γ = √
mn‖b‖∞,

which guarantees that γ is sufficiently large. If the artificial γ -bound in (14)
is active at the solution, then this is a sign that the problem might not be
sufficiently regularized due to a too large value of δ.

We remark that the first inequality constraint in problem (14) is infeasible
unless ‖(Λ x̄)I − b̄I‖2

2 + ‖b̄Ic‖2
2 ≤ δ2, i.e., δ must always be large enough to

ensure that ‖b̄Ic‖2 ≤ δ, which is checked by our software. This is no practical
difficulty, because δ must always be chosen to reflect the noise in the data. The
requirement ‖b̄Ic‖2 ≤ δ simply states that δ must be larger than the norm of
the component of b in the null space of Kρ , and according to the model (13)
this component is dominated by the noise.

With the notation ΛI = diag(λi)i∈I , the dual problem of (14) is

maximize −δ ‖Λ−1
I
(
CDTu

)
I ‖2 − γ ‖ (CDTu

)
Ic

‖2 + b̄ T
IΛ−1

I
(
CDTu

)
I

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . , m, j = 1, . . . , n.
(15)

As the prox-function for the primal set Q′′
p = {x̄ | ‖(Λ x̄ − b̄)I‖2 ≤ δ, ‖x̄Ic‖2 ≤

γ } we use

f ′′
p (x̄) = 1

2‖x̄‖2
2.

Numer Algor (2010) 53:67–92 79

The corresponding upper bound �′′
p = maxx̄∈Q′′

p
f ′′
p (x̄) can be evaluated numer-

ically as the solution to a trust-region subproblem discussed below. We can
bound it as

�′′
p ≤ 1

2

(
‖Λ−1

I b̄I‖2
2 + γ 2

)
≤ 1

2

(‖b‖2
2

ρ2‖K‖2
2

+ γ 2
)

.

The upper bound for the number of iterations is

Ndeblur = √
8‖D‖2

√
�′′

p mn · 1
ε

≤ 4
√

2mn
(‖b‖2

2

ρ‖K‖2
2

+ mn‖b‖2
∞

)
· 1
ε
. (16)

5.2 Implementation

Compared to the TV denoising algorithm from Section 3 there are a few
changes in the implementation. In step 1) the computation of u[k]

(ij) now takes
the form

u[k]
(ij) = D(ij)CT x̄[k]/ max

{
μ, ‖D(ij)CT x̄[k]‖2

}
,

which is computed in mn log(max{m, n}) complexity. For the computations in
steps 2) and 3), first note that the two cones in Q′′

p are non-overlapping because
I ∩ Ic = ∅, and the subproblems can therefore be treated as two separated
cases as we had for the inpainting algorithm in Section 4. The minimizers y[k]

I
and z[k]

I can be found (via simple changes of variables) as the solution to the
well-studied trust-region subproblem [8], i.e., as the solution to a problem of
the form

minimize 1
2 θTθ − cTθ

subject to ‖L θ − y‖2 ≤ η
(17)

where L = diag(i) is a diagonal matrix. We first check whether c satisfies
the constraint, i.e., if ‖L c − y‖2 ≤ η then θ = c. Otherwise, we find the global
minimum of the (non-convex) problem, using Newton’s method to compute
the unique root λ > − mini{i} of the so-called secular equation [8, §7.3.3]

qT (L−2 + λ I
)−2

q =
mn∑
i=1

q2
i(

−2
i + λ

)2 = η,

where I is the identity matrix and

q = L−1c − L−2 y .

Once the root λ has been found, the solution to (17) is given by

θ = L−1
(

b + (L−2 + λ
)−1

q
)

.

As the staring value for λ in Newton’s method, we can use the solution from
the previous (outer) iteration in Nesterov’s method. Our experience is that this
limits the number of Newton iterations in the trust-region method to just a few

80 Numer Algor (2010) 53:67–92

iterations each with complexity O(mn), i.e., in practice the cost of computing
the solution to steps 2) and 3) is still O(mn).

The minimizers y[k]
Ic

and z[k]
Ic

are both computed as the solution to the
quadratic constrained problems. For step 2) we obtain

y[k]
I = θ in (17) with c = x[k]

I − g[k]
I L−1

μ , L = ΛI , and η = δ,

y[k]
Ic

=
(
Lμ x[k]

Ic
− g[k]

Ic

)
/ max

{
Lμ,

∥∥∥(Lμ x[k]
Ic

− g[k]
Ic

)∥∥∥
2

/ γ
}

,

and in step 3) we similarly have

z[k]
I = θ in (17) with c = −w

[k]
I L−1

μ , L = ΛI , and η = δ,

z[k]
Ic

= −w
[k]
Ic

/ max
{
Lμ,

∥∥∥w[k]
Ic

∥∥∥
2

/ γ
}

.

The bound �′′
p on the primal set can be obtained a priori as

�′′
p = 1

2

(‖θ‖2
2 + γ 2) ,

where θ here is the solution to the problem

minimize − 1
2 θTΛIΛIθ + b T

IΛIθ

subject to ‖θ‖2 ≤ η

which can be solved using the same method as the previous trust region
problem.

The complexity of step 1) in the TV deblurring algorithm increases, com-
pared to the previous two algorithms, since we need to compute a two-dimensi-
onal DCT of the current iterate x[k] as well as an inverse two-dimensional DCT
of g[k], i.e., the complexity per iteration of the algorithm is thus dominated
by these mn log(max{m, n}) computations. The memory requirements of the
algorithm is increased by the vectors holding q, q element-wise squared, and
the diagonal elements of L−2 to avoid re-computation, plus and an extra
temporary vector, leading to a total memory requirement of about 10mn.

6 Numerical examples

In this section we give numerical examples that illustrate the three TV algo-
rithms from the previous sections. All the algorithms are implemented in the C
programming language, and the examples are run on a 2 GHz Intel Core 2 Duo
computer with 2 GB of memory running the Linux operating system and using
a single processor. We provide the three m-files TVdenoise, TVinpaint, and
TVdeblur such that the C functions can be used from Matlab, and we also
provide corresponding demo Matlab scripts that generate the examples in this
section.

Numer Algor (2010) 53:67–92 81

In the first example we consider the TV denoising algorithm from Section 3.
The top images in Fig. 2 show the pure 512 × 512 image and the same image
corrupted by additive white Gaussian noise with standard deviation σ = 25,
leading to a signal-to-noise ratio 20 log10(‖X‖F/‖X − B‖F) = 15 dB. For our
TV reconstructions, we choose the parameter δ such that it reflects the noise
level in the image [13],

δ = τ
√

mn σ , (18)

where σ is the standard deviation of the noise, and τ is factor close to one. The
two bottom images in Fig. 2 show TV reconstructions for τ = 0.85 and 1.2; the

Fig. 2 Example of TV denoising. Top: clean and noisy images of size 512 × 512. Bottom: TV
reconstructions for two different choices of the parameter τ in (18)

82 Numer Algor (2010) 53:67–92

first choice leads to a good reconstruction, while the second choice is clearly
too large, leading to a reconstruction that is too smooth in the TV sense (i.e.,
large domains with the same intensity, separated by sharp contours).

In the second example we illustrate the TV inpainting algorithm from
Section 4, using the same clean image as above. Figure 3 shows the damaged
image and the TV reconstruction. The white pixels in the corrupted image
show the missing pixels, and we also added noise with standard deviation
σ = 15 to the intact pixels. There is a total of |I| = 27, 452 damaged pixels,
corresponding to about 10% of the total amount of pixels. In the reconstruc-
tion we used

δ = τ
√|Ic|σ, (19)

which is a slight modification of (18) to reflect the presence of corrupted pixels.
In the example we used τ = 0.85.

The third example illustrates the TV deblurring algorithm from Section 5,
again using the same clean image. Figure 4 shows the blurred and noise image
and three TV reconstructions. We use Gaussian blur with standard deviation
3.0, leading to a coefficient matrix K with a numerically infinite condition
number, and the standard deviation of the Gaussian noise is σ = 3. The
regularization parameter δ is chosen by the same equation (18) as in denoising.

For τ = 0.2, Fig. 4 shows that we obtain an under-regularized solution dom-
inated by inverted noise. The choice τ = 0.45 gives a sufficiently piecewise-
smooth image with satisfactory reconstruction of details, while τ = 1.0 leads to
an over-regularized image with too few details.

Fig. 3 Example of TV inpainting: damaged and noisy 512 × 512 image (same clean image as in
Fig. 2), and the TV reconstruction

Numer Algor (2010) 53:67–92 83

Fig. 4 Example of TV deblurring: blurred and noisy 512 × 512 image (same clean image as in
Fig. 2), and TV reconstructions with three different values of τ

The computations associated with the blurring use the algorithm given in
[15], and from the same source we use the Matlab functions dcts2, idcts2,
and dctshift for the associated computations with the DCT.

7 Performance studies

The choice of ε obviously influences the computing time, and we choose to
design our software such that the number of iterations remains unchanged
when the image size is scaled—i.e., we want the bounds Ndenoise (8), Ninpaint

(12), and Ndeblur (16) to be independent of the problem size mn. In order
to achieve this, instead of setting an absolute ε in the stopping criterion we

84 Numer Algor (2010) 53:67–92

use a relative accuracy εrel (with default value εrel = 10−3 for denoising and
inpainting and εrel = 10−2 for deblurring), and then we set

ε =
{ ‖b‖∞ mn εrel, for denoising and deblurring

‖bIc‖∞ mn εrel, for inpainting.
(20)

This choice, together with (18) and (19), leads to the bounds

Ndenoise ≤ 4
√

2
εrel

τ σ

‖b‖∞

Ninpaint ≤ 4
√

2
εrel

√(
τ σ

‖bIc‖∞

)2 |Ic|
mn

+
(

maxi∈Ic bi − mini∈Ic bi

2 ‖bIc‖∞

)2 |I|
mn

Ndeblur ≤ 4
√

2
εrel

√
1 +

(
1

ρ maxi |λi|
)2

≈ 4
√

2
εrel

1
ρ maxi |λi| .

For denoising, the bound is proportional to the relative noise level, as desired.
For inpainting, the situation is more complex, but if the noise dominates then
we have the same bound as in denoising, and otherwise the bound is propor-
tional to the square root of the fraction of missing pixels. For deblurring, the
bound is dominated by the term involving the smallest eigenvalue ρ maxi |λi| in
the rank-deficient approximation.

To demonstrate the computational performance of our TV denoising algo-
rithm, we created several smaller problems by extracting sub-images of the
original clean image, and in each instance we added Gaussian white noise with
standard deviation σ = 25 (similar to the previous section). We then solved
these TV denoising problems using the default parameter εrel = 10−3 and for
three different values of τ , and the actual number of iterations needed to solve
the problem to ε-accuracy are shown in Fig. 5. We see that with the choice

Fig. 5 The number of
iterations in TVdenoise
needed to compute an
ε-accurate solution to the TV
denoising problem, for
varying image dimensions and
three values of the
parameter τ . The standard
deviation of the image noise
is σ = 25, and as stopping
criterion we used the default
value εrel = 10−3. For the
three values of τ , the bounds
for Ndenoise are 278, 472,
and 666, respectively

50

100

150

200

250

300

350

Dimensions

Ite
ra

tio
ns

τ=0.5

τ=0.85

τ=1.2

52
2

64
2

86
2

128
2

256
2

512
2

Numer Algor (2010) 53:67–92 85

of ε in (20), the actual number of iterations is indeed almost independent of
the problem size (except for unrealistic large τ). We also see that the actual
number of iterations is approximately proportional to τ , and the bounds for
Ndenoise are somewhat pessimistic overestimates.

While the number of iterations is almost independent of the problem size,
the computing time increases with the problem size because each iteration has
O(mn) complexity. Figure 6 shows the computing time for our TV denoising
algorithm TVdenoise, and the dashed reference line confirms that the com-
puting time is approximately linear in the problem size mn.

We compared our code with the codes tvdenoise, perform_
tv_denoising, TV_GPBBsafe (from TVGP) and SplitBregmanROF from
Table 1 (TV_GPBBsafe was chosen because it is the fastest method from
TVGP for which convergence is guaranteed). These codes solves the Lagrange
formulation of the TV denoising by minimizing problems on the form

T (x) + 1
2λ

‖x − b‖2
2 . (21)

There is equivalence between the regularized and the constrained TV denois-
ing formulations. If we set

δ = λ ‖DTu∗‖2, (22)

Dimensions

128 2 256 2 512 2

10
-1

10
0

10
1

T
im

e
(s

ec
.)

Fig. 6 The computing times (in seconds) for our TV denoising algorithm TVdenoise as a
function of problem size mn, for the case σ = 25, τ = 0.85, and εrel = 10−3. The dashed reference
line without markers confirms that the computing time for TVdenoise is approximately linear in
the problem size. We also show the computing times tvdenoise, perform_tv_denoising,
TV_GPBBsafe (from TVGP) and SplitBregmanROF listed in Table 1. The dotted reference
line without markers shows that the computing time for first two of the mentioned algorithms
is approximately O((mn)1.3), whereas SplitBregmanROF scales approximately linear

86 Numer Algor (2010) 53:67–92

where u∗ is the solution to the dual problem (5), then the two problems (4) and
(21) are equivalent [13].

First we solved (5) to high accuracy with εrel = 10−6 for 100 different
noise realizations, and then used (22) to obtain the corresponding Lagrange
multiplier λ. We then picked the highest number of iterations for tvdenoise,
perform_tv_denoising, and TV_GPBBsafe such that these codes re-
turned a solution xR slightly less accurate than the solution x from our code,
i.e.,

Rdenoise(x) ≤ Rdenoise(xR)

where

R(x) =
m−1∑
i=2

n−1∑
j=2

‖D(ij) x‖2 + 1
2λ

‖(x − b)J ‖2
2 , (23)

where J is the index set of all inner pixels. The image boundaries are removed
in (23) to reduce the effect of the boundary conditions imposed by the different
algorithms.

The average computing times are shown in Fig. 6, and we see that
the codes tvdenoise, perform_tv_denoising, and TV_GPBBsafe (for
larger images) have a complexity of about O((mn)1.3) as confirmed by the
dotted reference line. For large images perform_tv_denoising is the
slowest of these codes, while tvdenoise and TV_GPBBsafe are faster.
The code SplitBregmanROF is the fastest and it scales with a complexity
of about O(mn). For the image dimensions shown, our code is faster than
perform_tv_denoising but slower than tvdenoise, TV_GPBBsafe, and
SplitBregmanROF. However, due to the lower complexity our algorithm
scales as good as SplitBregmanROF.

For the TV inpainting algorithm the computing times depend on image
dimensions and noise level as well as on the number and distribution of the
missing pixels. We illustrate this with an example with noise level σ = 15
(similar to Fig. 3, and with the parameters τ = 0.85 and εrel = 10−3). The
problem shown in Fig. 3 (with the text mask) is solved in 28.1 s. However,
if we generate a mask with same number of missing pixels located in a circle
(of radius 93 pixels) in the middle of the image, then the computing time is
only 6.8 s. Finally, with no missing pixels the problem reduces to the denoising
problem, and it is solved in 3.2 s.

Table 2 Performance studies
for inpainting, using our
software TVinpaint and the
script tv_dode_2D from
Table 1

Time Its. Ninpaint

TVdenoise
Inpaint text 28.1 s 751 954
Inpaint circle 6.8 s 190 958
Denoise 3.2 s 93 283
tv_dode_2D
Inpaint text 729.5 s 142

Numer Algor (2010) 53:67–92 87

Table 3 Performance studies
for deblurring of the image in
Fig. 4

τ Time Its. Ndeblur

0.20 15.7 s 174 1767
0.45 13.7 s 152 1766
1.00 19.4 s 222 1764

For comparison we also used the script tv_dode_2D from Table 1, which
solves the problem in 729.5 s using default parameters. The Lagrange mul-
tiplier λ was selected such that the two components in (23) for TVinpaint
were slightly smaller than those for tv_dode_2D.

Table 2 lists the computing times, the actual number of iterations, and the
upper bound Ninpaint for the three variations of the inpainting problem. We see
that Ninpaint is indeed an upper bound for the number of iterations, and that it
can be very pessimistic if the problem is “easy.”

For the TV deblurring algorithm the computing times depend on image
dimensions, the noise level σ , and the parameters τ and ρ. The performance
results for the examples in Fig. 4, obtained with the default ρ = 10−3, are
listed in Table 3. The bound Ndeblur is extremely pessimistic, because it is
independent of δ (and thus τ), and we see that the actual number of iterations
depends on τ .

It follows from the complexity bound for Ndeblur that the number of itera-
tions also depends on the relative threshold ρ in our rank reduction. Table 4
reports the performance results for the same deblurring problem as above
with varying ρ and fixed τ = 0.6. As expected we see that the computing time
depends on ρ. The smaller the ρ the more ill conditioned the problem and
therefor the longer the computing time.

The last column shows the relative error Rρ = ‖xρ − x10−7‖2/‖x10−7‖2 in the
solutions for ρ = 10−1, 10−2, . . . , 10−6 compared to the solution for ρ = 10−7.
Interestingly, the relative error between the reconstructions computed for
ρ = 10−3 and 10−7 is only about 3% (the images are virtually identical to the
eye), while there is a factor of almost 10 in computing time. Hence we choose
the default value ρ = 10−3 to allow fast experiments with the factor τ ; when
a suitable τ has been found the user may choose a smaller ρ to improve the
accuracy of the solution. (For ρ ≥ 10−2 the rank reduction has a substantial
and undesired regularizing effect on the solution.)

Table 4 Performance studies
for deblurring when varying
the rank reduction threshold
ρ and using τ = 0.6

ρ Time Its. Ndeblur Rρ

10−1 11.6 s 138 6.2 · 102 0.042
10−2 11.7 s 134 6.4 · 102 0.037
10−3 15.6 s 173 1.7 · 103 0.033
10−4 25.8 s 308 1.6 · 104 0.028
10−5 48.5 s 552 1.6 · 105 0.021
10−6 83.0 s 945 1.7 · 106 0.012
10−7 143.2 s 1574 1.7 · 107

88 Numer Algor (2010) 53:67–92

Fig. 7 Example of TV deblurring of the noisy and blurred image from Fig. 4 using FTVdG (left)
and TVdeblur (right) with ρ = 10−3

We compared our code with the code FTVdG from Table 1, which solves the
TV deblurring problem by minimizing

T (x) + 1
2λ

‖K̃x − b‖2
2, (24)

where the matrix K̃ represents spatial invariant blurring with periodic bound-
ary conditions. Using the default settings, we first select λ such that the TV –
ignoring boundary elements – of the FTVdG solution xFTVdG is approximately
the same as for our solution xTVdeblur. The solutions are shown in Fig. 7 and
the corresponding results are summarized in Table 5, where

R̃(x) =
m−1∑
i=2

n−1∑
j=2

‖D(ij) x‖2 + 1
2λ

‖K̃x − b‖2
2.

These results demonstrate that although we can reproduce the value of the
TV with the default settings of FTVdG, we are not able to obtain the same
reconstruction, reflected in the fact that R̃(xFTVdG) > R̃(xTVdeblur).

Table 5 Comparison of the deblurring algorithms TVdeblur and FTVdG. The parameters are
chosen such that the solutions have the same TV equal to 106

‖K̃x − b‖2
2 R̃(x) Time (s)

TVdeblur 4.66 · 103 1.63 · 106 13.7
FTVdG (default) 5.81 · 103 1.95 · 106 10.6
FTVdG (modified) 5.79 · 103 1.99 · 106 27.9

Numer Algor (2010) 53:67–92 89

The table also shows results for a test with modified FTVdG settings β = 216

and ε = 10−5, cf. [23]. Here we needed to use a slightly different λ such that the
above-mentioned TV requirement still holds. Table 5 shows that even with the
modified settings, we are not able to obtain a much better solution as measured
by R̃(xFTVdG). In fact, it was not possible to adjust the settings for FTVdG such
that R̃(xFTVdG) < 1.1 R̃(xTVdeblur).

8 Conclusion

Total variation (TV) formulations provide a good basis for reconstruction of
noisy, corrupted, and blurred images. In this paper we present easy-to-use
public domain software for TV denoising, inpainting, and deblurring, using
recently developed first-order optimization algorithms with complexity O(1/ε),
where ε is the accuracy of the solution. Each iteration in our algorithms only
requires moderate computation, of the order O(mn) for denoising and inpaint-
ing, and O(mn log max{m, n}) for deblurring. Image deblurring often involves
highly ill-conditioned matrices, and to improve both speed and numerical
stability we use the technique of rank-reduction for such problems.

Our codes are written in C with Matlab interfaces, and they are available
from www.netlib.org/numeralgo in the file na28. The codes are robust, user
friendly (they require no extra parameters), and they are suited for large
problems. The Matlab files have been tested on Matlab versions 7.5–7.8, and
they require version 7.5 or later.

Acknowledgements We wish to thank Michela Redivo Zaglia, Giuseppe Rodriguez, and an
anonymous referee for many valuable comments that helped to improve the paper and the
software.

Appendix A: The matlab functions

TVdenoise

X = TVdenoise(B,delta)
[X,info] = TVdenoise(B,delta,eps_rel)

This function solves the TV denoising problem

minimize TV(X) subject to ‖X− B‖F ≤ delta

where B is a noisy image, X is the reconstruction, and delta is an upper bound
for the residual norm. The TV function is the 1-norm of the gradient magnitude,
computed via neighbor pixel differences. At the image borders, we imposed
reflexive boundary conditions for the gradient computations.

The parameter delta should be of the same size as the norm of the image
noise. If the image is m × n, and σ is the standard deviation of the image noise

http://www.netlib.org/numeralgo

90 Numer Algor (2010) 53:67–92

in a pixel, then we recommend to use delta = τ
√

mn σ , where τ is slightly
smaller than one, say, τ = 0.85.

The function returns an ε-optimal solution X, meaning that if X∗ is the exact
solution, then our solution X satisfies

TV(X) − TV(X∗) ≤ ε = max(B(:)) mneps_rel,

where eps_rel is a specified relative accuracy (default eps_rel = 10−3). The
solution status is returned in the stuct info; write help TVdenoise for more
information.

TVinpaint

X = TVinpaint(B,M,delta)
[X,info] = TVinpaint(B,M,delta,eps_rel)

This function solves the TV inpainting problem

minimize TV(X) subject to ‖X(Ic) − B(Ic)‖F ≤ delta

where B is a noisy image with missing pixels, Ic are the indices to the intact
pixels, X is the reconstruction, and delta is an upper bound for the residual
norm. The TV function is the 1-norm of the gradient magnitude, computed
via neighbor pixel differences. At the image borders, we imposed reflexive
boundary conditions for the gradient computations.

The information about the intact and missing pixels is given in the form
of the mask M, which is a matrix of the same size as B, and whose nonzero
elements indicate missing pixels.

The parameter delta should be of the same size as the norm of the image
noise. If the image is m × n, and σ is the standard deviation of the image noise
in a pixel, then we recommend to use delta = τ

√
mn σ , where τ is slightly

smaller than one, say, τ = 0.85.
The function returns an ε-optimal solution X, meaning that if X∗ is the exact

solution, then our solution X satisfies

TV(X) − TV(X∗) ≤ ε = max(B(Ic)) mneps_rel,

where eps_rel is the specified relative accuracy (default eps_rel = 10−3).
The solution status is returned in the stuct info; write help TVinpaint for
more information.

TVdeblur

X = TVdeblur(B,PSF,delta)
[X,info] = TVdeblur(B,PSF,delta,eps_rel,rho,gamma)

This function solves the TV deblurring problem

minimize TV(X) subject to ‖PSF � X− B‖F ≤ δ

where B is a blurred noisy image, X is the reconstruction, and delta is an upper
bound for the residual norm. The TV function is the 1-norm of the gradient

Numer Algor (2010) 53:67–92 91

magnitude, computed via neighbor pixel differences. At the image borders, we
imposed reflexive boundary conditions for the gradient computations.
PSF � X is the image X convolved with the doubly symmetric point spread

function PSF using reflexive boundary conditions. In the code, the blurring
matrix that represents PSF is replaced by a rank-deficient well-conditioned
approximation obtained by neglecting all eigenvalues smaller than rho times
the largest eigenvalue (default rho = 10−3).

The parameter delta should be of the same size as the norm of the image
noise. If the image is m × n, and σ is the standard deviation of the image noise
in a pixel, then we recommend to use δ = τ

√
mn σ , where τ is smaller than

one, say τ = 0.55.
The parameter gamma is a an upper bound on the norm of the solution’s

component in the subspace corresponding to the neglected eigenvalues. The
default value is gamma = √

mn max(B(:)) which should be sufficient for most
problems.

The function returns an ε-optimal solution X, meaning that if X∗ is the exact
solution, then our solution X satisfies

TV(X) − TV(X∗) ≤ ε = max(B(:)) mneps_rel,

where eps_rel is a specified relative accuracy (default eps_rel = 10−2).
The solution status is returned in the stuct info; write help TVdeblur for
more information.

Appendix B: The norm of the derivative matrix

The matrix D defined in (2) can always be written as [15]

D = �

(
In ⊗ Lm

Ln ⊗ Im

)
,

where � is a permutation matrix, Ip is the identity matrix of order p, and
Lp is the chosen p × p first-derivative matrix with SVD Lp = U p�pVT

p . We
note that since Lp is a sparse matrix with 1 and −1 as the only two nonzero
elements per row, it follows that ‖Lp‖∞ = 2. The 2-norm of D satisfies ‖D‖2

2 =
λmax(DT D), the largest eigenvalue of DT D, and hence we consider this matrix:

DT D = (In ⊗ Lm)T(In ⊗ Lm) + (Ln ⊗ Im)T(Ln ⊗ Im)

= In ⊗ LT
mLm + LT

n Ln ⊗ Im

= VnVT
n ⊗ Vm�2

mVT
m + Vn�

2
nVT

n ⊗ VmVT
m

= (Vn ⊗ Vm)
(
In ⊗ �2

m + �2
n ⊗ Im

)
(Vn ⊗ Vm)T

Since the middle matrix is diagonal, it follows that

λmax
(
DT D

)=λmax
(
�2

m

)+λmax
(
�2

n

)=‖Lm‖2
2 + ‖Ln‖2

2 ≤ ‖Lm‖2
∞ + ‖Ln‖2

∞ =8.

We note that a completely different proof is given in [4, Thm. 3.1].

92 Numer Algor (2010) 53:67–92

References

1. Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of
JPEG images. J. Math. Imaging Vis. 23, 199–211 (2005)

2. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math.
Imaging Vis. 34, 307–327 (2009)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge
(2004)

4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math.
Imaging Vis. 20, 89–97 (2004)

5. Chan, T.F., Shen, J.: Image processing and analysis: variational, PDE, wavelet, and stochastic
methods. SIAM, Philadelphia (2005)

6. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based
image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

7. Combettes, P.L., Pennanen, T.: Generalized mann iterates for constructing fixed points in
Hilbert spaces. J. Math. Anal. Appl. 275, 521–536 (2002)

8. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. SIAM, Philadelphia (2000)
9. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation. Part I: fast

and exact optimization. J. Math. Imaging Vis. 26, 261–276 (2006)
10. FFTW: Freely available C subroutine library for computing the discrete Fourier transform

(DFT) in one or more dimensions. http://www.fftw.org (2009)
11. Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and 1-

minimization. SIAM J. Numer. Anal. (2009, in press)
12. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93,

216–231 (2005)
13. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based

image restoration. SIAM J. Sci. Comput. 27, 622–645 (2005)
14. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J.

Imaging Sci. 2, 323–343 (2009)
15. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering.

SIAM, Philadelphia (2006)
16. Krishnan, D., Ping, L., Yip, A.M.: A primal-dual active-set methods for non-negativity con-

strained total variation deblurring problems. IEEE Trans. Image Process. 16, 2766–2777 (2007)
17. Nesterov, Yu.: Introductory lectures on convex optimization. Kluwer, Dordrecht (2004)
18. Nesterov, Yu.: Smooth minimization of nonsmooth functions. Math. Program. Ser. A 103,

127–152 (2005)
19. Nesterov, Yu.: Excessive gap technique in non-smooth convex optimization. SIAM J. Optim.

16, 235–249 (2005)
20. Nesterov, Yu.: Gradient methods for minimizing composite objective functions. CORE Dis-

cussion Papers series, Université Catholique de Louvain, Center for Operations Research and
Econometrics. http://www.uclouvain.be/en-44660.html (2007)

21. Vogel, C.R.: Computational methods for inverse problems. SIAM, Philadelphia (2002)
22. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization

under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)
23. Yang, J., Zhang, Y., Yin, W., Wang, Y.: A new alternating minimization algorithm for total

variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)
24. Zhu, M., Wright, S., Chan, T.F.: Duality-based algorithms for total-variation-regularized image

restoration. Comput. Optim. Appl. (2008). doi:10.1007/s10589-008-9225-2

http://www.fftw.org
http://www.uclouvain.be/en-44660.html
http://dx.doi.org/10.1007/s10589-008-9225-2

	Algorithms and software for total variation image reconstruction via first-order methods
	Abstract
	Introduction
	Notation
	Denoising
	The first-order method
	Efficient implementation

	Inpainting
	Deblurring for reflexive boundary conditions
	Rank reduction
	Implementation

	Numerical examples
	Performance studies
	Conclusion
	Appendix A: The matlab functions
	Appendix B: The norm of the derivative matrix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

