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Chaotic Systems

After a predictable interval, any changes (initial values, parameters, solver
settings) lead to unpredictable deviations. Options:

@ deal with predictable time intervals only (Weather)
@ deal with behaviour after predictability (Climate).

@ How to create cost functions for parameters of a chaotic system?
Distinguish chaotic variability of a fixed system from systematic
change between different systems?
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Summary statistics and MCMC for climate models

Long time: summary statistics for climate models ?

In order to find "typical’ behaviour of a chaotic climate system,
observations and simulations may be averaged in space and time to create
'summary statistics’.

Schematic for Global
Atmospheric Model
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Summary statistics and MCMC for climate models

Long time: summary statistics for climate models ?

@ If the statistics of the summary expression is known, a likelihood is
formulated which yields the posterior for the model parameters.
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Summary statistics and MCMC for climate models

Long time: summary statistics for climate models ?

@ If the statistics of the summary expression is known, a likelihood is
formulated which yields the posterior for the model parameters.

@ The approach was implemented for the ECHAMS5 climate model, using
likelihoods based on monthly global and zonal net radiation averages.

Jérvinen, H., Réaisdanen, P., Laine, M., Tamminen, J., llin, A., Oja, E., Solonen, A., H.H.: Estimation of

ECHAMS5 climate model closure parameters with adaptive MCMC, Atmos. Chem. Phys., Vol. 10, nro. 2,

9993-10002, 2010.
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MCMC for climate models

MCMC samples for the 'closure’ (subgrid—scale) parameters of climate
models (ECHAMDb). Technically possible,

e No good initial proposal: use DRAM (adaptive 2 proposals)
e High CPU, short chains: parallel chains
@ High CPU: minimize calculations by Early Rejection
A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, H. Jarvinen: Efficient MCMC for Climate model

Parameter Estimation: Parallel Adaptive chains and Early Rejection. Bayesian Analysis, 7, Number 2, pp 1-22,

2012.

Next: minimize likelihood evaluations by surrogate construction of the
parameter posterior. LA-MCMC (Local Approximation MCMC).
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Summary statistics and MCMC for climate models

Faster MCMC: parallel AM with inter-chain adaptation
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Faster MCMC: parallel AM with inter-chain adaptation

0 500 1000 0 500 1000
MCMC step MCMC step
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Faster MCMC: early rejection

Evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.
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Summary statistics and MCMC for climate models

Faster MCMC: early rejection

Evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.

COST FUNCTION VALUE

6
MONTH
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Summary statistics and MCMC for climate models

Faster MCMC: early rejection

Evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.

COST FUNCTION VALUE

N m

1 2 83 4 5 6 7 8 9 10 11 12
Early rejection month

6
MONTH
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Summary statistics and MCMC for climate models

Faster MCMC: early rejection

Evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.

COST FUNCTION VALUE

i

1 2 83 4 5 6 7 8 9 10 11 12
Early rejection month

6
MONTH

This simple trick can save 10%-80% of CPU, case depending.
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Summary statistics and MCMC for climate models

Example: climate model MCMC results

CAULOC

CMFCTOP
o =3
S

CMFCTOP

CPRCON

CPRCON
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Summary statistics and MCMC for climate models

Example: climate model MCMC results

CAULOC

CMFCTOP
o =3
S

CMFCTOP

CPRCON

e Direct, naive summary statistics (projections) do not identify the
parameters, i.e., characterise the simulated trajectories.
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Summary statistics and MCMC for climate models

Parameter estimation, standard methods: state
augmentation, filter likelihood

e Using Kalman filter, integrate out the state space, what remains gives
a likelihood for parameters.

e Standard way for linear time series (DLM, Dynamical Linear Models)
and SDE (stochastic differential equations) systems. Less standard for
chaotic dynamics, but can be implemented with EKF.

e BUT:

o Filtering not available for large scale systems, due to memory and CPU.
o Each filter algorithm has built-in "tuning parameters’ (model error

covariance, linearization ...). The amount of bias introduced by them 7
e Only for 'short’ assimilation time integrations.

Without filtering: heuristic sampling of parameters using existing ensembles
of predictions. 'EPPES’ implemented at ECMWF.
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Chaotic dynamics: likelihood by attractor

Example: 3D Lorenz, Unpredictable Data. Initial part of a time series:

Figure: Observation samples (the red circles) for 3D Lorenz.
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Likelihood by attractor

Likelihood based on fractal concepts

Fractal dimensions of chaotic attractors, such as the Hausdorff dimension
or box-counting, approximate the internal properties of the underlying
attractor via numerically simulated trajectories. How to employ them to
define a distance between chaotic trajectories?

We want to separate the model variability due to initial values etc, but
with fixed model parameters from that due to different model
parameters.

Key idea: interprete the time-varying, chaotic trajectories as samples
from a fixed attractor.
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Likelihood by attractor

|dea of Likelihood

Simulations of a model give samples from the underlying 'strange’ attractor.
Create a training set of simulations — or one long enough time series — to

characterize statistically the variability of the points, to define a likelihood
for the 'internal’ variability.

Figure: Two sets of samples, with given number (N=800) of points
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Likelihood by attractor

Correlation dimension for fractal sets

Denote by s;,i = 1,2, ..., N points of a trajectory vector s € R", evaluated
at time points t;. For R > 0 set

C(R.N)=1/N*) _#(|Isi = sjll < R)
i
and define then the correlation integral as the limit
C(R) = limy_oo C(R, N). So we take the total number of points closer

than R, normalize by the number of pairs N? and take the limit. Not that
for each N we have 1/N < C(R,N) < 1.

If v is the dimension of the trajectory, we should have
C(R) ~ R
and the Correlation Dimension v is defined as the limit

v= Igi]o log C(R)/ log(R).
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Likelihood by attractor

Distance via a generalized correlation sum

o Fix a radius Ry, large enough for each ball B(s;, R) to contain all the
points s;, j # i

o Select smaller radii by R = b=*Ry, with k =1,2,..., M. Select M
and the base b (e.g., M =10, b =2).

The generalized correlation vector y = (yx), k =1,..., M, between

4
0,

trajectories s = s(f, x) and § = s(6, X) is given by
.yk:C(RkaNaeaxvéai):1/N22#(HSI'_§J'H<Rk)7 (1)
i

where 0,8 denote the respective model parameters and x, X the initial
values. For 6 = 0, % = x the formula reduced to the original definition of
the correlation sum.
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Likelihood by Correlation Vector

Characterize the 'within variability’ of a fixed chaotic system
o Create an ensemble of point sets from the attractor (subsamples of a
time series, or simulated values s = s(fp, x) if 6y known).
e Compute the distance matrix between (all) different trajectory pairs,
to get the values yy .

@ The stochastic vector (yx), k = 1,...M (the empirical CDF of
distances) turns out to be Gaussian (by CLT, Donsker's theorem, etc)
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Likelihood by Correlation Vector

We treat the above vectors y = C(Ry, N, 0g, x,00,X),k =1,...,M as
"'measurements’ of the variability of a chaotic trajectory with a given fixed
model parameter. Construct the respective likelihood:

@ Obtain y = C(R, N, 6y, x, by, X) from repeated simulations (or, get
them from a long enough empirical time series).
o Create the empirical likelihood function: compute mean and

covariance.

For any other parameter 6 and trajectory s(f) compute the distance matrix
from the reference trajectory, and the respective C(Rk, N, 6, x,0,X), to
evaluate the likelihood for 6.

HH, Leonid Kalachev, Janne Hakkarainen Generalized Correlation integral vectors:
A distance concept for chaotic dynamical systems. Chaos, 25, 2015.
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Example: Likelihood for 3D Lorenz

o Test the Gaussianity of values y, = C(Rk, N, o, x, 0o, X), by the usual
x? test: calculate the mean value 119 and covariance matrix ¢ of the
training set.

o The statistics of the expression (10 — y)Zg (10 — y) should obey the
X3, distribution for a Gaussian y,

(1o — ¥)Xg (ko — ¥) ~ X (2)
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Example: Likelihood for 3D Lorenz
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Figure: Normality check of the correlation integral vector by the x? test for the
Lorenz 63 system. Left: with 10 radius values used. Right: with 92 radius values
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Likelihood by attractor

Inference as a pseudo-marginal MCMC algorithm

Due to chaoticity and randomised x the likelihood is non-deterministic.

Sampling can be interpreted as from the joint distribution of the initial
values and model parameters.

Denote the likelihood function of y, evaluated for an arbitrary 6 by
Ty, (0, x). The target distribution for 6 is given as

ﬂ(ﬁ):/Tgo(G,x)/\(x)dx,

where \(x) is the distribution of the initial values x. Here, Ty, (0, x) is
unknown, but an empirical approximation can be created as above.

The method is a bivariate Markov chain, (6, Tp)n>0, where T, are
auxiliary variables that are non-negative, unbiased estimators of the
underlying intractable target density 7(60,): a pseudo-marginal algorithm.
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Example: Chua7

=a-(Y—h);

X—-Y+Z

_ﬁ.Y;

((mg —m) - (IX +al —|X —al)
ml—mg)« |X—|—C2|—|X—C2|
m2—m3)« |X+C3|—|X—C3|
m3—m4)- |X+C4|—|X—C4|

( ( )
( ( )
( ( )
(msy —ms) - (|X + cs| — [ X — cs])
( ( )
( ( )

> N-<- X
I

ms — mg) - (| X + cs| — [ X — c
me —mz) - (|X + c7| = [X — ¢

4+ x|

(a, 6, mgp, My, My, M3, Mg, My, Mg, My, C1,C2,C3,C4,Cs, Cp, C7) =
(14,20,0.9/7,—3/7,0.5, —0.3429, 0.36, —0.24, 0.36, —0.24,
—0.3429,1,2.15,6.2,9,14,25) , (Xo, Yo, Zo) = (0.1,0.1,0.1);

ft = 240000, no = 16000, ns = 4000,

M = My =10, Ry =2.9, b=1.88, Ry e = 2.49, by = 1.82.
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Likelihood by attractor
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Figure: Chua 7 model: measurements and 2D posterior marginal distributions.

e X,Y,Z measured, without and with 1% relative error. Results with
2% and 6% relative accuracies.

o Note:Extended state vector used, 5 = (s, ds/dt).
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High dimensional, high CPU systems

So far 3D chaotic systems. But the challenges are
@ High state space dimension: need for effective, parallel distance
calculations
@ High model simulation CPU: need for efficient parallel calculations for

e model simulation numerics
e ensemble computations
o parallel MCMC sampling

o Greatly benefit from the LA posterior surrogate sampling approach
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LA-MCMC

Evaluating the likelihood at every step can became prohibitively
expensive when the dimensionality and the complexity of the system
increase;

The key idea in the LA-MCMC is to build a cheap local polynomial
approximation of the likelihood that will converge to the true one as
the chain proceeds;

The local polynomial approximation is built on a subset
(neighborhood) of the set of full likelihood evaluations defined as
support points;

To guarantee the convergence of the polynomial approximation to the
"true" likelihood, the number of support points must increase as the
chain proceeds;

The refinement strategy, i.e. when and where to make a new
likelihood evaluation and add it to the support points, is the key to
obtain the optimal efficiency of the algorithm.
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LA-MCMC

In our case, the likelihood is stochastic

The refinement strategies for deterministic cost functions might lead to
over refinement when applied to stochastic likelihoods as CIL.

Davis et al 2018, proposes an optimal strategy for stochastic likelihood
(ongoing joint work with Y. Marzouk et al, MIT)
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Surrogate sampling by Local Approximation MCMC

0.09

0.08 |- 4

Figure: Ratio between the # of expensive cost function evaluations every 2000
elements of the chain (LA-MCMC/AM).
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Surrogate sampling by Local Approximation MCMC

Kuramoto-Shivashinsky
Find the parameters that produce the 'same’ attractor approximation for
the system

Uy = —UUx — NlUxx — Y Uxxxx- (3)
An example result:

x10°%
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5 . distribution
Initial

parameler

48
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36
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0.46 047 0.48 0.49 05 0.51 0.52 0.53

Figure: The posterior of the KS parameters
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Surrogate sampling by Local Approximation MCMC

Kuramoto-Shivashinsky

The solution can be represented by Fourier series:

+oo

. (27, 2r
u(x,t) = jz_% [Aj(t)sm (LJX> + Bj(t)cos <LJX>:| . (4)
which leads to
Aj(t) = a1 j?A(t) + azj* A(t) + Fi(Aj(t)), (5)
Bi(t) = B1j°B(t) + B2j* B(t) + F2(Bj(t)). (6)

where F1(-) and F»(-) are nonlinear. The right hand sides allow
vectorization with respect to coefficient j for efficient simulation of, say,
Runge-Kutta iterations. Also, it is possible to run thousands independent
ensemble simulations at once.
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Surrogate sampling by Local Approximation MCMC

Here,

The training set consists of en ensemble of 64 trajectories of 1024
equidistant measurements in the interval [ty 150000] (¢, = 500, to
escape initial values)

One such trajectory would take about 103 seconds.

But we only need to take representative samples from the attractor,
whatever sampling times.

We take 8 equidistant measurements from an ensemble of 128
members in intervals [t;, t; + 4500]

The initial states for ensemble members by 128 different samples from
the training set.

The computational time needed for one representative sample creation
is reduced from 103 to 2.5 seconds.
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Surrogate sampling by Local Approximation MCMC

Kuramoto-Shivashinsky
Two same, two different (!) solutions, with parameters inside/outside the
sampled posterior

100
150

o 1000 3000 1000 2000 3000
Init. param.:(n=0.5,1=3.9e-3) Intern. param.:(n=0.517,4=3.516e-3)

50

100
150
200
250

1000 2000 3000 1000 2000 3000
Extern. param.:(n=0.5,4=3.7e-3) Far Extern. param.:(y=0.53,4=4.9e-3)

Figure: Top/bottom row: simulations with parameters inside/outside posterior
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Surrogate sampling by Local Approximation MCMC

Conclusion

@ The CIL approach provides a likelihood for chaotic dynamics,
extensively tested in low dim systems

@ Complex, high dimensional chaotic systems a challenge, but possible
by

Parallel numerics

Parallel (ensemble) simulations

Parallel chains

Surrogate sampling for the parameter posterior

@ Next: back to NWP models! (Ensemble runs by the OpenlFS
environment, provided by ECMWF and FMI)

@ Also,

o SDE systems, after slight modifications.
e Standard deterministic systems, after slight modifications
o Random Turing patterns by (deterministic) reaction-diffusion systems.
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