UQ of Model Discrepancy using Gaussian Processes with applications to sound field control

Nicolai André Brogaard Riis

Tuesday 18th December, 2018 UQ for IP Workshop, Lyngby, Denmark

Sound field control part is joint work with:

Franz M. Heuchel & Diego Cavides Nozal

Collaborators:

Yiqiu Dong, Per Christian Hansen & Johnathan M. Bardsley

DTU Compute

Department of Applied Mathematics and Computer Science

 $f(x+\Delta x)=\sum_{i=1}^{\infty}\frac{dx}{dx}$

Consider the physical system

$$y = \mathcal{P}(x) + e,$$

DTU

Consider the physical system

$$y = \mathcal{P}(x) + e,$$

where \mathcal{P} is a physical "forward" operator, x the input, y the measured output and e measurement noise.

• Generally \mathcal{P} is very complex to model, so we use an approximation $\mathcal{M}(x, \theta)$. (e.g. some of the physics is "taken out", the model is linearised etc.)

DTU

Consider the physical system

$$y = \mathcal{P}(x) + e,$$

- Generally \mathcal{P} is very complex to model, so we use an approximation $\mathcal{M}(x, \theta)$. (e.g. some of the physics is "taken out", the model is linearised etc.)
- $\mathcal{M}(x,\theta)$ will depend on model parameters θ . We need to estimate these.

DTU

Consider the physical system

 $y = \mathcal{P}(x) + e,$

- Generally \mathcal{P} is very complex to model, so we use an approximation $\mathcal{M}(x, \theta)$. (e.g. some of the physics is "taken out", the model is linearised etc.)
- $\mathcal{M}(x,\theta)$ will depend on model parameters θ . We need to estimate these.
- We are interested in approximating $\mathcal{P}(x)$ as accurately as possible. (It may later be used for inference, extrapolation etc.)

DTU

Consider the physical system

 $y = \mathcal{P}(x) + e,$

- Generally \mathcal{P} is very complex to model, so we use an approximation $\mathcal{M}(x, \theta)$. (e.g. some of the physics is "taken out", the model is linearised etc.)
- $\mathcal{M}(x,\theta)$ will depend on model parameters θ . We need to estimate these.
- We are interested in approximating $\mathcal{P}(x)$ as accurately as possible. (It may later be used for inference, extrapolation etc.)
- It is the case that \mathcal{M} is a simplification of \mathcal{P} and thus there are some phenomena that \mathcal{M} does not capture. Can we take this model discrepancy into account?

The typical model approximation:

$$y = \mathcal{P}(x) + e$$
$$\approx \mathcal{M}(x, \theta) + e$$

The model discrepancy approximation:

$$y = \mathcal{P}(x) + e$$

= $\mathcal{M}(x, \theta) + (\mathcal{P}(x) - \mathcal{M}(x, \theta)) + e$
 $\approx \mathcal{M}(x, \theta) + \delta_{\beta}(x) + e$

where (in this talk) $\delta_{\beta}(x)$ is a Gaussian Process (more on those soon).

References on model discrepancy: [Kennedy 2001], [Brynjarsdóttir 2014], ...

Improved accuracy of model and tighter uncertainty bounds.

Using model: $y = \mathcal{M}(x, \theta) + e$

Posterior samples

Improved accuracy of model and tighter uncertainty bounds.

Using model: $y = \mathcal{M}(x, \theta) + \frac{\delta_{\beta}(x)}{\delta_{\beta}(x)} + e$

True Posterior samples

$\mathcal{M} + \delta_{\beta}$: Model + Gaussian Process

Introduction What does it need?

The model discrepancy approximates

$$\delta_{\beta}(x) \approx \mathcal{P}(x) - \mathcal{M}(x,\theta).$$

Typically we need either one of the following.

- Strong prior on model discrepancy.
- Enough observations of $\mathcal{P}(x) + e$.

- Theory: Gaussian Processes
- Theory: Bayesian inversion / parameter estimation
- Application: Toy example
- Application: Sound field control for outdoor concerts

Theory: Gaussian Processes

Theory: Gaussian Processes Gaussian Processes

A Gaussian Process (GP) is completely specified by its mean and covariance function. For a process $\delta(x)$ we define the mean and covariance as

$$m(x) = \mathbb{E}[\delta(x)]$$

$$k(x, x') = \mathbb{E}[(\delta(x) - m(x))(\delta(x') - m(x'))]$$

and write the GP as

 $\delta(x) \sim \mathcal{GP}(m(x), k(x, x')).$

Theory: Gaussian Processes Gaussian Processes

A Gaussian Process (GP) is completely specified by its mean and covariance function. For a process $\delta(x)$ we define the mean and covariance as

$$m(x) = \mathbb{E}[\delta(x)]$$

$$k(x, x') = \mathbb{E}[(\delta(x) - m(x))(\delta(x') - m(x'))]$$

and write the GP as

$$\delta(x) \sim \mathcal{GP}(m(x), k(x, x')).$$

Example: The zero mean and squared exponential GP:

$$m(x) = 0$$

$$k_{s,l}(x, x') = s^2 \exp\left(-\frac{\|x - x'\|^2}{2l^2}\right)$$

Theory: Gaussian Processes Gaussian Processes as prior distribution

For a fixed grid, $\mathbf{x} \in \mathbb{R}^m$, the GP defines a normal distribution, i.e,

 $\mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}),$

where $\boldsymbol{\mu} = m(\mathbf{x}) \in \mathbb{R}^m$ and $\mathbf{K} = k(\mathbf{x}, \mathbf{x}) \in \mathbb{R}^{m \times m}$.

For a fixed grid, $\mathbf{x} \in \mathbb{R}^m$, the GP defines a normal distribution, i.e,

 $\mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}),$

where $\mu = m(\mathbf{x}) \in \mathbb{R}^m$ and $\mathbf{K} = k(\mathbf{x}, \mathbf{x}) \in \mathbb{R}^{m \times m}$.

Thus if we use the GP as a prior on $\delta(x)$, we may define the vector

$$\boldsymbol{\delta}_{\mathbf{x}} \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}).$$

We can then estimate (from measured data) δ_x , and then determine $\delta(x)$ on another domain x^* by conditioning on x^*, x, δ_x .

Theory: Gaussian Processes Gaussian Process conditioning

If $\delta(x)$ follows a GP, we may define two vectors δ_x and δ_{x^*} from the GP, which will follow a joint normal:

$$\begin{bmatrix} \boldsymbol{\delta}_{\mathbf{x}} \\ \boldsymbol{\delta}_{\mathbf{x}^*} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}^*) \\ k(\mathbf{x}^*, \mathbf{x}) & k(\mathbf{x}^*, \mathbf{x}^*) \end{bmatrix} \right)$$

Then using results of joint normal distributions, we may condition on x, δ_x and x^* to get δ_{x^*} as follows.

$$\begin{split} & \boldsymbol{\delta}_{\mathbf{x}^*} | \mathbf{x}^*, \mathbf{x}, \boldsymbol{\delta}_{\mathbf{x}} \\ & \sim \mathcal{N} \left(k(\mathbf{x}^*, \mathbf{x}) k(\mathbf{x}, \mathbf{x})^{-1} \boldsymbol{\delta}_{\mathbf{x}}, \, k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{x}) k(\mathbf{x}, \mathbf{x})^{-1} k(\mathbf{x}, \mathbf{x}^*) \right) \end{split}$$

For more details see, e.g., [Rasmussen 2006].

Theory: Gaussian Processes Summary of model discrepancy approach

Consider the problem of determining the following model from observations

$$\mathbf{y} = \mathcal{M}(\mathbf{x}, \boldsymbol{\theta}) + \boldsymbol{\delta}_{\mathbf{x}} + \mathbf{e},$$

where $\mathbf{e} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}), \boldsymbol{\theta} \sim \pi(\boldsymbol{\theta})$ and $\boldsymbol{\delta}_{\mathbf{x}} = \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x})) = \mathcal{N}(0, \mathbf{K})$. First estimate $[\boldsymbol{\theta}; \boldsymbol{\delta}_x] \in \mathbb{R}^{p+m}$ from observations. Then define the model:

$$\mathcal{M}(\mathbf{x}^*, \boldsymbol{ heta}) + \boldsymbol{\delta}_{\mathbf{x}^*} \,|\, \mathbf{x}^*, \mathbf{x}, \boldsymbol{\delta}_{\mathbf{x}}.$$

The conditional mean is given by

$$\mathbf{y}_{\rm cm}^*(\boldsymbol{\theta}) = \mathcal{M}(\mathbf{x}^*, \boldsymbol{\theta}) + k(\mathbf{x}^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}\boldsymbol{\delta}_{\mathbf{x}}.$$

The full distribution is given by

$$\mathcal{N}(\mathbf{y}_{cm}^*(\boldsymbol{\theta}), K_{\mathbf{x}^*\mathbf{x}}),$$

where $K_{\mathbf{x}^*\mathbf{x}} = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, \mathbf{x}^*).$

12 DTU Compute

Theory: Gaussian Processes Summary of model discrepancy approach

Consider the problem of determining the following model from observations

$$\mathbf{y} = \mathcal{M}(\mathbf{x}, \boldsymbol{\theta}) + \boldsymbol{\delta}_{\mathbf{x}} + \mathbf{e},$$

where $\mathbf{e} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}), \boldsymbol{\theta} \sim \pi(\boldsymbol{\theta})$ and $\boldsymbol{\delta}_{\mathbf{x}} = \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x})) = \mathcal{N}(0, \mathbf{K})$. First estimate $[\boldsymbol{\theta}; \boldsymbol{\delta}_x] \in \mathbb{R}^{p+m}$ from observations. Then define the model:

$$\mathcal{M}(\mathbf{x}^*, \boldsymbol{\theta}) + \boldsymbol{\delta}_{\mathbf{x}^*} \,|\, \mathbf{x}^*, \mathbf{x}, \boldsymbol{\delta}_{\mathbf{x}}.$$

The conditional mean is given by

$$\mathbf{y}_{\rm cm}^*(\boldsymbol{\theta}) = \mathcal{M}(\mathbf{x}^*, \boldsymbol{\theta}) + k(\mathbf{x}^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}\boldsymbol{\delta}_{\mathbf{x}}.$$

The full distribution is given by

$$\mathcal{N}(\mathbf{y}_{cm}^*(\boldsymbol{\theta}), K_{\mathbf{x}^*\mathbf{x}}),$$

where $K_{\mathbf{x}^*\mathbf{x}} = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, \mathbf{x}^*).$

12 DTU Compute

Theory: Bayesian inversion / parameter estimation

Given model

$$y = \mathcal{M}(x, \theta) + e, \quad e \sim \mathcal{N}(0, \sigma^2 I), \ \theta \sim \pi(\theta).$$

Bayes rule yields:

 $\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta),$

where the likelihood is

$$\pi(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x,\theta)\|_2^2\right),$$

and hence posterior is given by

$$\pi(\theta|y) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x,\theta)\|_2^2\right)\pi(\theta).$$

Given model

$$y = \mathcal{M}(x, \theta) + e, \quad e \sim \mathcal{N}(0, \sigma^2 I), \ \theta \sim \pi(\theta).$$

Bayes rule yields:

 $\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta),$

where the likelihood is

$$\pi(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x,\theta)\|_2^2\right),$$

and hence posterior is given by

$$\pi(\theta|y) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x,\theta)\|_2^2\right)\pi(\theta).$$

Including hyper parameters

$$\pi(\theta, \alpha, \sigma | y) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - \mathcal{M}(x, \theta)\|_2^2\right) \pi(\theta | \alpha) \pi(\alpha) \pi(\sigma).$$

For more details see, e.g., [Bardsley 2018], ...

14 DTU Compute

Theory: Bayesian inversion / parameter estimation Model discrepancy approximation

Given model

 $y = \mathcal{M}(x, \theta) + \delta_x + e, \quad e \sim \mathcal{N}(0, \sigma^2 I), \ \theta \sim \pi(\theta), \ \delta_x \sim \mathcal{N}(0, K_x)$ Assuming δ_x independent of θ (!) Bayes rule yields:

 $\pi(\theta, \delta_x | y) \propto \pi(y | \theta, \delta_x) \pi(\theta) \pi(\delta_x),$

where the likelihood is

$$\pi(y|\theta, \delta_x) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x, \theta) - \delta_x\|_2^2\right)$$

and hence posterior is given by

$$\pi(\theta|y) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - \mathcal{M}(x,\theta) - \delta_x\|_2^2\right) \pi(\theta)\pi(\delta_x)$$

Theory: Bayesian inversion / parameter estimation Model discrepancy approximation

Given model

 $y = \mathcal{M}(x, \theta) + \delta_x + e, \quad e \sim \mathcal{N}(0, \sigma^2 I), \ \theta \sim \pi(\theta), \ \delta_x \sim \mathcal{N}(0, K_x)$ Assuming δ_x independent of θ (!) Bayes rule yields:

$$\pi(\theta, \delta_x | y) \propto \pi(y | \theta, \delta_x) \pi(\theta) \pi(\delta_x),$$

where the likelihood is

$$\pi(y|\theta, \delta_x) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - \mathcal{M}(x, \theta) - \delta_x\|_2^2\right)$$

and hence posterior is given by

$$\pi(\theta|y) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - \mathcal{M}(x,\theta) - \delta_x\|_2^2\right) \pi(\theta)\pi(\delta_x)$$

Hyper parameters

$$\pi(\theta, \alpha, \beta, \sigma | y) \\ \propto \exp\left(-\frac{1}{2\sigma^2} \|y - \mathcal{M}(x, \theta) - \delta_x\|_2^2\right) \pi(\theta | \alpha) \pi(\alpha) \pi(\delta_x | \beta) \pi(\beta) \pi(\sigma)$$

Theory: Bayesian inversion / parameter estimation Model discrepancy: The linear Gaussian case

Suppose $\theta \sim \mathcal{N}(\theta_0, \mathbf{K}_{\theta})$ and that the model is linear, i.e., $\mathcal{M}(\mathbf{x}, \theta) = \mathbf{A}\theta$. Then we have the posterior

$$\pi(\boldsymbol{\theta}|\mathbf{y}) \propto \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{G}\mathbf{u}\|_2^2 - \frac{1}{2}\mathbf{u}^T \mathbf{K}^{-1}\mathbf{u}\right)$$
$$\propto \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{G}\mathbf{u}\|_2^2 - \frac{1}{2} \|\mathbf{L}\mathbf{u}\|_2^2\right),$$

with MAP estimate

$$\mathbf{u}_{\mathrm{map}} = \frac{1}{\sigma^2} \|\mathbf{y} - \mathbf{G}\mathbf{u}\|_2^2 + \|\mathbf{L}\mathbf{u}\|_2^2,$$

where

$$\mathbf{G} = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} oldsymbol{ heta} \\ oldsymbol{\delta}_{\mathbf{x}} \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}
ight),$$

 $\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\boldsymbol{\theta}} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{\mathbf{x}} \end{bmatrix} \text{ and } \mathbf{L}^T \mathbf{L} = \mathbf{K}.$

16 DTU Compute

Application: Toy example

Toy example set-up

Application: Toy example Standard approximation with MCMC solver: PyMC code

```
https://github.com/pymc-devs/pymc3
#hyper priors
sigma = pm.Gamma('sigma', alpha=1, beta=1e-4)
eta = pm.Gamma('eta', alpha=1, beta=1e-4)
#Prior
theta = pm.Normal('theta',mu=0,sd=eta)
#Expected value of outcome
mu = theta * x
#Likelihood
y = pm.Normal('y', mu=mu, sd=sigma, observed=d)
```

Application: Toy example Standard approximation with MCMC solver: solution

20 DTU Compute

Application: Toy example How much δ is needed to better fit the measurements?

Application: Toy example Including Gaussian Process

```
#Hyper priors
sigma = pm.Gamma('sigma', alpha=1, beta=1e-4)
eta = pm.Gamma('eta', alpha=1, beta=1e-4)
s = pm. HalfNormal('s', sd = 1)
    = pm. HalfNormal('l', sd = 1)
Т
#Define GP
      = pm.gp.Latent(cov_func=(s**2)*pm.gp.cov.ExpQuad(1,l))
gp
#Priors
theta = pm. Normal('theta', mu=0, sd=eta)
delta = gp.prior('delta',X=x[:,None])
#Expected value of outcome
mu = theta * x + delta
#likelihood
y = pm.Normal('y', mu=mu, sd=sigma, observed=d)
```

Application: Toy example DTU Model discrepancy approximation with MCMC solver: PyMC code

Recall that once $\delta_{\mathbf{x}}$ is estimated, we can sample $\delta_{\mathbf{x}^*}$ on a new grid \mathbf{x}^* since

$$\begin{split} & \boldsymbol{\delta}_{\mathbf{x}^*} | \mathbf{x}^*, \mathbf{x}, \boldsymbol{\delta}_{\mathbf{x}} \\ & \sim \mathcal{N} \left(k(\mathbf{x}^*, \mathbf{x}) k(\mathbf{x}, \mathbf{x})^{-1} \boldsymbol{\delta}_{\mathbf{x}}, \, k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{x}) k(\mathbf{x}, \mathbf{x})^{-1} k(\mathbf{x}, \mathbf{x}^*) \right) \end{split}$$

Application: Toy example Including Gaussian Process

Application: Sound field control for outdoor concerts

Concerts in cities cause nearby residents to complain about the loud music.

From Danish news agency TV2:

Tivoli skruer op for lyden til ny sæson trods naboklager

Lydniveauet til udvalgte koncerter på Plænen i Tivoli hæves med syv decibel, når Tivoli lørdag åbner op for sin hidtil længste sommersæson.

Koncerterne i Tivoli kan fremover nydes syv decibel højere, når forlystelsesparken slår dørene op for sommersæsonen. Her ses Nile Rodgers på scenen i sommeren sidste år.

Foto: Torben Christensen - Ritzau Scanpix

https://www.tv2lorry.dk/artikel/tivoli-skruer-op-lyden-til-ny-saeson-trods-naboklager

Application: Sound field control for outdoor concerts A possible solution

Active sound cancellation from a secondary set of loudspeakers.

Application: Sound field control for outdoor concerts A possible solution

Active sound cancellation from a secondary set of loudspeakers.

Application: Sound field control for outdoor concerts A possible solution

Active sound cancellation from a secondary set of loudspeakers.

How do we model the sound waves from sources to the BZ and DZ?

Application: Sound field control for outdoor concerts A simple mathematical model

Assuming free-field conditions with monopole source.

Transfer function for each frequency *f*:

$$H_{ij}: \theta \mapsto (\theta_1 + \hat{\imath}\theta_2) \frac{\exp(\hat{\imath}kR_{ij})}{R_{ij}}$$

where $R_{ij} = ||\mathbf{r}_i - \mathbf{s}_j||_2$, is the distance from source \mathbf{s}_j to location \mathbf{r}_i and k = k(f) is the wave number.

Application: Sound field control for outdoor concerts A simple mathematical model: 1D Illustration

Transfer function for loudspeaker given $\theta = (0.65, 0.5)$ and k = 2. We are plotting the instantaneous pressure:

$$\operatorname{Re}\left((\theta_1 + \hat{\imath}\theta_2)\frac{\exp(\hat{\imath}kR)}{R}\right)$$

Transfer function for loudspeaker given $\theta = (0.65, 0.5)$ and k = 2. We are plotting the instantaneous pressure:

$$\operatorname{Re}\left((\theta_1 + \hat{\imath}\theta_2)\frac{\exp(\hat{\imath}kR)}{R}\right)$$

Define optimization problem to acquire control filters:

$$\min_{w} \|H_{\hat{\theta}}^{\text{sec,BZ}}w\|_2^2 + \|H_{\hat{\theta}}^{\text{sec,DZ}}w + H_{\hat{\theta}}^{\text{pri,DZ}}\mathbf{1}\|_2^2,$$

where $H_{\hat{\theta}}^{\mathbf{s},\mathbf{r}}$ of size $\#\mathbf{s} \times \#\mathbf{r}$ contain (estimated) the transfer functions for each combination of source s and location \mathbf{r} .

The notation $\rm pri$ and $\rm sec$ denotes all the primary and secondary sources and $\rm BZ$ and $\rm DZ$ are all points in the Bright and Dark Zone respectively.

Application: Sound field control for outdoor concerts Two problems

• Problem 1: Estimate model paramters $\hat{\theta}$ from measurements d

$$d_{ij} = (\theta_1 + \hat{\imath}\theta_2) \frac{\exp(\hat{\imath}kR_{ij})}{R_{ij}} + e_1 + \hat{\imath}e_2, \quad e_i \sim \mathcal{N}(0, \sigma^2 I), \tag{1}$$

for all sources \mathbf{s}_j and receivers \mathbf{r}_i . Here $i = 1, \dots, n_{\mathrm{mic}}$ and $j = 1, \dots, n_{\mathrm{LS}}$

• Problem 2: Estimate control filters w.

$$\min_{w} \|H_{\hat{\theta}}^{\mathrm{BZ}}w\|_{2}^{2} + \|H_{\hat{\theta}}^{DZ}w + H_{\theta}^{\mathrm{DZ}}\mathbf{1}\|_{2}^{2},$$
(2)

where

$$H_{kj}: (\theta_1 + i\theta_2) \frac{\exp(ikR_{kj}^*)}{R_{kj}^*}.$$

Here $k=1,\ldots,n_{
m cp}$ and $j=1,\ldots,n_{
m LS}$

Application: Sound field control for outdoor concerts Example: Estimated transfer function

In outdoor concerts there may be many factors that influence the sound wave such as wind, temperature, reflections etc.

Application: Sound field control for outdoor concerts Example: Estimated transfer function

Application: Sound field control for outdoor concerts Example: Estimated transfer function

Application: Sound field control for outdoor concerts Example: Sound field control

Application: Sound field control for outdoor concerts Example: Sound field control

Application: Sound field control for outdoor concerts Including the model discrepancy using Gaussian Processes

• Problem 1: Estimate model parameters $\hat{\theta}, \delta$ from model

$$d_{ij} = (\theta_1 + i\theta_2) \frac{\exp(ikR_{ij})}{R_{ij}} + \delta^r_{R_{ij}} + i\delta^{i}_{R_{ij}} + e_1 + ie_2, \quad e_i \sim \mathcal{CN}(0, \sigma^2 I), \quad (3)$$

for all sources \mathbf{s}_j and receivers \mathbf{r}_i . Here $\delta_R \sim \mathcal{N}(0, K_R)$. Here $i = 1, \dots, n_{\text{mic}}$ and $j = 1, \dots, n_{\text{LS}}$

• Problem 2: Estimate control filters w.

$$\min_{w} \|H_{\hat{\theta}}^{\mathrm{BZ}}w\|_{2}^{2} + \|H_{\hat{\theta}}^{DZ}w + H_{\theta}^{\mathrm{DZ}}\mathbf{1}\|_{2}^{2}, \tag{4}$$

where

$$H_{kj}: (\theta_1 + i\theta_2) \frac{\exp(ikR_{kj}^*)}{R_{kj}^*} + \delta_{R_{kj}^*}^r | R^*, R, \delta_R^r + i\delta_{R_{kj}^*}^i | R^*, R, \delta_R^i$$

Here $k=1,\ldots,n_{
m cp}$ and $j=1,\ldots,n_{
m LS}$

Application: Sound field control for outdoor concerts Example: Estimating model parameters (including GP)

Application: Sound field control for outdoor concerts Example: Sound field control (including GP)

Application: Sound field control for outdoor concerts Results on real data

Sound field control in anechoic chamber

Application: Sound field control for outdoor concerts

Results on real data

Estimated using model (mean)

Application: Sound field control for outdoor concerts

Results on real data

Estimated using model + GP (mean)

- We are able to improve the model predictions and thus improve the sound field control by including a model discrepancy term described by a Gaussian Process
- Real world results show that the process works, but requires a lot of observations.

Future work:

- More accurate forward model so model discrepancy is less complex \implies fewer observations needed.
- More specialized covariance functions to match the actual model discrepancy \implies fewer observations needed.
- Non-Gaussian Processes?

[Bardsley 2018] J. Bardsley. Computational uncertainty quantification for inverse problems. SIAM, 2018.

[Brynjarsdóttir 2014] J. Brynjarsdóttir and A. O'Hagan. "Learning about Physical Parameters: the Importance of Model Discrepancy". Inverse Problems. 30.11 (2014): 114007.

[Kennedy 2001] M. C. Kennedy and A. O'Hagen. "Baysian calibration of computer models". J. R. Statist. Soc. B, 63.3 (2001): 425-464.

[Rasmussen 2006] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.