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The	Probabilistic	Inverse	Problem

Example:	Seismic	Tomography	as	Classical	Least-Squares
• Seismic	signals	from	distant	

earthquakes,	recorded	along	a	profile

• Time	delays	compared	to	a	reference	
Earth	model

• Deviation	from	a	reference	Earth	model
• Smooth	models	(least-squares/Gaussian)

Example:	Seismic	Tomography	as	Classical	Least-Squares
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• Deviation	from	a	reference	Earth	model
• Smooth	models	(least-squares/Gaussian)

The	smoothness	of	Least	squares	models	is	not	
physically	and	geologically	acceptable!	

Example:	Seismic	Tomography	as	Classical	Least-Squares

Probabilistic	Inversion

Bayes	Theorem
From	the	definition	of	conditional	probability	density

we	get:

!(#|%) ≡ ! % # !(#)
!(%)

!((|)) ≡ !((, ))
!()) or !()|() ≡ !((, ))

!(()

Bayes	Theorem
From	the	definition	of	conditional	probability	density

we	get:

posterior
prior

likelihood

!(#|%) ≡ ! % # !(#)
!(%)

!((|)) ≡ !((, ))
!()) or !()|() ≡ !((, ))

!(()
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Total certainty

Total ignorance

Information	Theory	Formulation:	Tarantola-Valette Information	Theory	Formulation:	
Tarantola-Valette
From	the	definition	of	conjunction	of	information:

we	get,	in	the	joint	space	!×ℳ:

$ ∧ & (() ≡ $(()&(()
+(()

, -,/ ≡ $ ∧ & -,/ = $ -,/ & -,/
+(-,/)

from which

,1 / = 2
!
, -,/ 3-

Tarantola-Valette	Formulation
From	the	definition	of	conjunction	of	information:

we	get,	in	the	joint	space	!×ℳ:

$ ∧ & (() ≡ $(()&(()
+(()

, -,/ ≡ $ ∧ & -,/ = $ -,/ & -,/
+(-,/)

from which

,1 / = 2
!
, -,/ 3-

posterior prior

Forward
density

Null Information
Density

Two	Formulations	Compared

Classical Bayes Tarantola-
Valette

Spaces Separate ! and ℳ Joint !×ℳ

Information (Realizations of) 
$ and %

Distributions
over !×ℳ

Forward
Relation $ = '(%) *($,%)

Conditionals YES NO
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TV	Formulation	under	simplifying	conditions
If	the	data	are	a	priori	independent	of	the	model:

! ",$ = !& " !' $
and	if	the	data-model	relation	is	exact:
( ",$ = ( "|$ (($) = ( "|$ ,($) = - " − / $ ,($)

0' $ = 1
2
0 ",$ 3"

and	if	,(",$) is	constant,	we	get	the	Bayes-like:

= 1
2

!& " !' $ - " − / $
,(",$) 3"

= !& / $ !' $ ≡ 5& $ !' $
likelihood

Example: Lunar Tomography

From: Khan and Mosegaard (Journ. Geoph. Res. 2002)

# data = 354 
# unknowns 
=450 

Model	Parameters,	observable	parameters	
and	their	relation

• Data:
! = ($%, $',… , $))

• Physical	relation:

• Model	parameters:

+ = (,%,,',… ,,))

! = -(+)

Model	Parameters,	observable	parameters	
and	their	relation

• Data:
! = ($%, $',… , $))

• Physical	relation:

• Model	parameters:

+ = (,%,,', … ,,))

! = -(+)
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!" # = %& # '" #

The	prior probability	density	(data	
independent	of	model:

' (,# = '& ( '" #

The	Likelihood	Function (exact	theory):

The	posterior probability	density:

%& # = '& *(#)

Tarantola and Valette, 1982

'&(()

TV	Formulation	under	simplifying	conditions

PARAMETERIZATION	OF	A	
COMPLEX	SYSTEM

Choosing	the	Parameterization

The	complete	inversion	process

• Parameterize	the	Earth	structure	m:		! = #(%) to	
obtain	a	finite	set	of	model	parameters	!.

• Solve	an	inverse	problem	' = ((!) to	infer	information	
about	! from	data	'.
• Go	backwards	from	the	parameters	! to	arrive	at
statements	about	the	Earth	structure:		! → %.
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Model	Parameters,	observable	parameters	
and	their	relation

• Data:
! = ($%, $',… , $))

• Physical	relation:

• Model	parameters:

+ = (,%,,',… ,,))

! = -(+)

Conditions	satisfied	by	physical	laws

• They	must	have	a	unique	solution	(for	given	initial/boundary	
conditions)

• Their	predictions	must	be	independent	of	the	reference	frame

The	parameterization	process

• An	infinite	set	of	orthonormal	basis	functions				
!1($, &, '), !2($, &, '), !3($, &, '), …

• Parameters	,1,,2 ,…

The	parameterization	process

• Truncate	the	expansion	if	necessary
• Keep	many	parameters	to	ensure	an	accurate				
representation



01/01/2019

7

Example:	A	seismic	model	of	the	Earth

A	model	not	unlike	the	P-wave	velocity	in	the	Earth's	interior	

Example:	A	seismic	model	of	the	Earth

Representation	through	128	Fourier (sin/cos)-basis	functions		

True	model Approximated	model

Example:	A	seismic	model	of	the	Earth

Representation	through	256	Haar-basis	functions		

True	model Approximated	model

Invariant	results	from	different	bases

• Even	when	two	analysts	choose	different	set	of	
base	functions,	they	will	obtain	(almost)	the	
same	model.	

• The	result	is	invariant under	a	change	of	base	
functions.

• The	method	is	consistent:	There	is	agreement	
between	the	results	from	different	analysts.
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Sparse	Models Reasons	for	sparsity

• To	avoid	unnecessary	detail	(Occam’s	Razor)
• To	minimize	the	number	of	model	parameters	
• To	build-in	prior	knowledge	about	structure	

Example:	Different	sparse	models	of	the	Earth	
with	the	same	misfit:	The	Fourier	basis

Representation	through	4	Fourier (sin/cos)-basis	functions		

True	model Approximated	model

Representation	through	16	Haar-basis	functions		

True	model Approximated	model

Example:	Different	sparse	models	of	the	Earth	
with	the	same	misfit:	The	Haar	basis
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Sparse	Models:	Conclusions
• Sparse	models	are	inconsistent	(the	result	
depends	on	the	analyst’s	choice	of	basis	
functions).

• Simplicity,	measured	as	the	number	of	model	
parameters,	is	not	an	objective	concept	(depends	
on	basis	functions).

• If	it	can	be	established	from	external	information	
that	the	model	can	be	represented	sparsely	by	a	
certain	basis,	sparse	methods	may	be	useful.			

34

Front View 
of the Moon

with 
Apollo Stations

and 
Epicenters

Red: Shallow MQ
Green: Deep MQ

35

Sample Compressed Seismograms

[from Nakamura et al., Proc. LPSC 5th, 2883-2890, 1974] [From Nakamura, JGR 88, 677-686, 1983]

Seismic Velocity Profile to 1000 
km depth

Seismic Velocity Profile by 
MCMC Inversion

[From Khan and Mosegaard, JGR 107, 
10.1029/2001JE001658, 2002]
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The	Borel	Paradox

Computing	a	conditional	probability	density

K.-A. Lie et al. (2012)

Computing	a	conditional	probability	density

Same conditional  PDF ?K.-A. Lie et al. (2012)

The	Borel	Paradox
• Near-Cartesian	
reference	frame

• Equal	volumes	
have	equal	
probabilities

• Conditional	proba-
bility	density	is	
constant

A
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The	Borel	Paradox
• Non-Cartesian	
reference	frame

• Equal	volumes	
have	equal	
probabilities

• Conditional	proba-
bility	density	is	
not	constant

B

Conclusion	on	conditional	probability	
densities
• Conditional	probability	densities	are	
inconsistent,	because	different	analysts	may	
arrive	at	different	(conflicting)	results.

Conclusion	on	conditional	probability	
densities
• Conditional	probability	densities	are	
inconsistent,	because	different	analysts	may	
arrive	at	different	(conflicting)	results.

Borel’s paradox disappears if !(#) is replaced with

%(#) = !(#)/((#)
where ((#) is the homogeneous pdf (a constant 
volume density)

(Mosegaard and Tarantola, 2002)

END OF PART 1
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PROBABILISTIC	INFERENCE	
ABOUT	COMPLEX	
STRUCTURE

The	Least-Squares	Method

Fitting thermal conductivity and 
heat production to an observed 
temperature profile 

Fitting orbital parameters to an 
observed orbit of a double star 
component

Fitting a curve with the smallest sum-of-deviations

A	classical	example:	Seismic	tomography
• Seismic	signals	from	distant	

earthquakes,	recorded	along	a	profile

• Time	delays	compared	to	a	reference	
Earth	model

Seismic	tomography:	A	least-squares	result

• Deviation	from	a	reference	Earth	model
• Smooth	models	(least-squares/Gaussian)

The	smoothness	of	Least	squares	models	is	not	
physically	and	geologically	acceptable!	
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Complexity: Horizontally compressed sediments

Modified from Egholm et al., 2007

Complexity erased by Least Squares

The Least-Squares solution

Cordua & Mosegaard, 2014

Solutions	with	Geostatistical	
Constraints

Example: The Braided River Model
L(m) =C ⋅exp −

dobs − f (m)
2

2σ d
2

#

$
%
%

&

'
(
(

Likelihood Function:

A priori distribution:

σ (m) =C ⋅L(m)ρ(m)
A posteriori distribution

Classical Least-Squares Inversion

Gaussian distribution           
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A	Classical	Least-Squares	Solution

Least-squares solutions are usually too 
smooth to be geologically acceptable.

L(m) =C ⋅exp −
dobs − f (m)

2

2σ d
2

#

$
%
%

&

'
(
(

Likelihood Function:

A priori distribution:

σ (m) =C ⋅L(m)ρ(m)
A posteriori distribution

Probabilistic Inversion

Prior information defined by
geological prototype examples

Prior	information	defined	by
a	geological	prototype	example

“The subsurface model m is statistically
similar to a training image“ 

The Geostatistical Prior

“The subsurface model m is statistically
similar to a training image“ 

Training Image A statistically similar image
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Rakaia River, New Zealand.  
(Google Earth)

Congo River at the border of 
Congo and Democratic Republic 
of Congo. (Google Earth)

Examples	of	geo-information:	Braided	rivers
A simple model of a braided river
(Strebelle, 2002)

Sand Mudstone

A close-up of part of the 
pixeled model

Examples	of	geo-information:	Braided	rivers

Pattern	statistics	from	a	geological	model Pattern	statistics	from	a	geological	model
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The	frequency	distribution

(Normalized. Only non-zero entries)

Computing	the	probability	of	an	image		

What is the probability that 
this model is a realization of 
the same random process?

Reference Model

Freq.

Pattern #

Freq.

Pattern #

Combining	data	and	the	braided	river	model	into	a	
solution	to	the	inverse	problem

where dobs is the observed data, m is the Earth model, L is a 
likelihood function, and !"#$%&%&'()) is the probability of m, 
given the reference model.

+()) = -()|/012)!"#$%&%&'())

Joint probability from MRF theory
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Joint probability from MRF theory Joint probability from MRF theory

Joint probability from MRF theory Joint probability from MRF theory
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Joint probability from MRF theory Joint probability from MRF theory

S R

Joint probability from MRF theory

S R

Joint probability from MRF theory

S
R
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Joint probability from MRF theory

p(x) = p(Rk
k=1

K

∏ S k )

S R

A	PRACTICAL	EXAMPLE

Example:	Inversion	of	seismic	reflection	
data:	The	Inverse	Scattering	Problem	

Example:	Inversion	of	seismic	reflection	
data	
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Example:	Inversion	of	seismic	reflection	
data	
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Example:	Inversion	of	seismic	reflection	
data	

Record no.
0 1 2 3 4 5 6 7 8 9 10 11

Tw
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Data

Record no.
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w
ay

 ti
m
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5.4
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5.8

6

6.2

6.4

6.6

6.8

Noise

Data Noise from stationary assumption

Example:	Inversion	of	seismic	reflection	
data	

where	
m is	the	unknown	acoustic	impedance	in	the	Earth
D is	a	differentiation	operator
W is	convolution	with	the	seismic	pulse	(wavelet)

Bayesian	inversion
If		
• Noise	and	prior	information	is	Gaussian
• The	noise	covariance	matrix	is Cn
• m0 is	a	reference	model		(“best	guess”)
• Cm is	the	prior	covariance	matrix (a	priori	tolerance)

we	can	compute	the	maximum	posterior	model:

and	the	posterior	covariance	(the	model	parameter	
uncertainty)
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Example:	Inversion	of	seismic	reflection	
data

Record no.
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Seismic	pulse
(wavelet)

Example:	Inversion	of	seismic	reflection	
data
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Example:	Inversion	of	seismic	reflection	
data

Histogram	of	reflection	coefficients
from	igneous	intrusions	of	Rum,	
Scotland,	and	Great	Dyke,	Zimbabwe		

Example:	Inversion	of	seismic	reflection	
data

Maximum	a	posteriori	model	of	the	
zone	surrounding	the	crust/mantle	
interface	north	of	Scotland.
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Conclusions
• Although	consistency	is	a	serious	matter	in	

mathematical	physics,	it	is	often	ignored	in	
inverse	theory

We	have	looked	at	3	cases	of	inconsistency:

• Pitfalls	in	sparse	parameterizations
• Inconsistencies	when	using	subjective	
probabilities

• Lack	of	invariance	of	conditional	probability	
densities	

END


