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* Seismic signals from distant
earthquakes, recorded along a profile

* Time delays compared to a reference
Earth model

The Probabilistic Inverse Problem

Example: Seismic Tomography as Classical Least-Squares
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* Deviation from a reference Earth model
* Smooth models (least-squares/Gaussian)
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Example: Seismic Tomography as Classical Least-Squares
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* Deviation from a reference Earth model
* Smooth models (least-squares/Gaussian)

The smoothness of Least squares models is not
physically and geologically acceptable!

]
Bayes Theorem

From the definition of conditional probability density

f&xy) f&xy)
f&Iy) = =7y or fOR) =—55
we get:
_ f(dim)f (m)
Y (O

Probabilistic Inversion

I
Bayes Theorem

From the definition of conditional probability density

f&xy) f&xy)
fXly) = ——— Ty fy10) = ——= T

we get:

mld) = f(dlm)f(m)

1 f@
/ prior

likelihood

posterlor
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Information Theory Formulation: Tarantola-Valette

| =]

Total certainty

| Total ignorance

Xo
w(x) l l

Tarantola-Valette Formulation

From the definition of conjunction of information:

(0 AB)(X) = pP(X)0(x)

—_— 7 Null Information
U(X) € Dpensity

we get, in the joint space DXM:

posterior prior ag
p(d, m)6(d, m)
. g(dm)=(pA0)(dm)=
(@m) = (o A0)(d m) = Z2 s

Forward

from which density

o, (m) = fD o(d,m) dd

Information Theory Formulation:
Tarantola-Valette

From the definition of conjunction of information:

p(x)0(x)
H(x)

we get, in the joint space DXM:

(pAO)(X) =

p(d, m)6(d, m)
p(d, m)

o(dm)=(pAB)(dm)=
from which

Oy (m) = f o(d, m) dd
D

Two Formulations Compared

: Tarantola-
Classical Bayes
Valette

Spaces Separate D and M  Joint DXM

Information (Realizations of) Distributions
dand m over DXM

Forward

Relation o= g A

Conditionals YES NO
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I
TV Formulation under simplifying conditions

If the data are a priori independent of the model:
p(d,m) = pg(d)pm(m)

and if the data-model relation is exact:
6(d,m) = 6(djm)6(m) = 6(d/m)u(m) = §(d — g(m))u(m)
and if u(d, m) is constant, we get the Bayes-like:
Gy (m) = j o(d,m) dd
D

_ f pa(d)pp(m)§(d — g(m)) id
D p(d, m) likelihood

pa(g(m))p,(m) = Ly (m)py,(m)

Model Parameters, observable parameters
and their relation

 Data:
d = (dl, dz, 'dM)

+ Physical relation:
d = g(m)

- Model parameters:

m = (ml,mz, ,mM)

Example: Lunar Tomographv

# data = 354
# unknowns
oo~ =450

10 2 14

6 8
Velocity [km/s]

From: Khan and Mosegaard (Journ. Geoph. Res. 2002)

]
Model Parameters, observable parameters

and their relation ———
—

- Data:

d = (dl, dz, ,dM)

« Physical relation:
d = g(m)

* Model parameters:

m = (mq, My, ..., My)

01/01/2019



TV Formulation under simplifying conditions

The prior probability density (data
independent of model:

p(d,m) = pg(d)p;,(m)

The Likelihood Function (exact theory):

Lg(m) = py(g(m))

Signal amplitude

The posterior probability density:

Om(m) = L, (m)p,,(m)

Tarantola and Valette, 1982

Choosing the Parameterization

PARAMETERIZATION OF A
COMPLEX SYSTEM

I
The complete inversion process

- Parameterize the Earth structure m: m = f(m) to
obtain a finite set of model parameters m.

- Solve an inverse problem d = g(m) to infer information
about m from data d.

+ Go backwards from the parameters Im to arrive at

statements about the Earth structure: m —» m.
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Model Parameters, observable parameters
and their relation

- Data:
d - (dl, dz, ,dM)

- Physical relation:
d = g(m)

- Model parameters:

m = (ml, ms, ...,mM)

The parameterization process

¢ An infinite set of orthonormal basis functions

(pl(‘xl Y, Z), (pZ(xl Y, Z): <p3(x: Y, Z),
e Parameters my, my, ...

m(x.y.Z) = Z my, Pn(X,y,2)
n=1

Conditions satisfied by physical laws

¥(m)

- They must have a unique solution (for given initial/boundary
conditions)

- Their predictions must be independent of the reference frame

The parameterization process

* Truncate the expansion if necessary
* Keep many parameters to ensure an accurate
representation

M
m(x,y,z) = Z my @n(X,,2)

n=1
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Example: A seismic model of the Earth

16000

14000

12000 Mantle
Outer Core
10000
173 Inner Core
I m } 8000
s

6000
4000

2000

0
0 0.1 0203 04 0506 07 08 09
Depth (Earth Radii)

A model not unlike the P-wave velocity in the Earth's interior

Example: A seismic model of the Earth

16000 16000
14000 14000
12000 12000
10000 10000
73 vp
m_| 8000 [1] 8000
s s
6000 6000
4000 4000
2000 2000
0 0
0 0.102 0304 0506 0708 09 0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
Depth (Earth Radii) Depth (Earth Radii)
True model Approximated model

Representation through 256 Haar-basis functions

Example: A seismic model of the Earth

16000 16000
14000 14000
12000 12000
10000 10000
Vp Vp
m | 8000 [ﬂ] 8000
6000 6000
4000 4000
2000 2000
0 0
0 01020304 0506 0708 09 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
Depth (Earth Radii) Depth (Earth Radii)
True model Approximated model

Representation through 128 Fourier (sin/cos)-basis functions

Invariant results from different bases

* Even when two analysts choose different set of
base functions, they will obtain (almost) the
same model.

* The result is invariant under a change of base
functions.

* The method is consistent: There is agreement
between the results from different analysts.
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Sparse Models

“Extraordinary ...
claims require #&
extraordinary ¥&.

evidence”
Carl Sagan

thelogicofscience.com

Example: Different sparse models of the Earth
with the same misfit: The Fourier basis

16000 16000
14000 14000
12000 12000
10000 10000
74 73
m] 8000 [ 1‘ 8000
B s
6000 6000
4000 4000
2000 2000

0 0
0 0.1 0203 04 05 0.6 07 08 09 0 01 02 03 04 05 06 07 08 09
Depth (Earth Radii) Depth (Earth Radii)

True model Approximated model

Representation through 4 Fourier (sin/cos)-basis functions

Reasons for sparsity

* To avoid unnecessary detail (Occam’s Razor)
* To minimize the number of model parameters
* To build-in prior knowledge about structure

Example: Different sparse models of the Earth
with the same misfit: The Haar basis

16000 16000
14000 14000
12000 12000
10000 10000

p Vp

m] 8000 m] 8000

N s
6000 6000
4000 4000
2000 2000

0
0 0.1 02 03 04 05 0.6 0.7 03 0.9 0 01 02703 04 05 06 07 08 09 1
Depth (Earth Radii) Depth (Earth Radii)

True model Approximated model

Representation through 16 Haar-basis functions
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Sparse Models: Conclusions

* Sparse models are inconsistent (the result
depends on the analyst’s choice of basis
functions).

» Simplicity, measured as the number of model
parameters, is not an objective concept (depends
on basis functions).

* Ifit can be established from external information
that the model can be represented sparsely by a
certain basis, sparse methods may be useful.

Sample Compressed Seismograms

DEEP SHALLOW METEOROID
MOONQUAKE MOONQUAKE IMPACT

[ v ]

LPX —ommmee———] Y—W——-
|

SPZ —+————p

t_1973:156: 1100 t1973:072: 0800 t_1972:134:0850  10min

[from Nakamura et al., Proc. LPSC 5th, 2883-2890, 1974]
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Front View
of the Moon
with
Apollo Stations
and
Epicenters

Red: Shallow MQ
Green: Deep MQ

Seismic Velocity Profile to 1000
km depth

Velocity, km/s
3] 4 5 6 7/ 8 9

200

400 s

Depth, km

800 |

1000 T F—

[From Nakamura, JGR 88, 677-686, 1983]

Seismic Velocity Profile by
MCMC Inversion

[From Khan and Mosegaard, JGR 107,
10.1029/2001JE001658, 2002]
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Computing a conditional probability density

N\
N\

K-A. Lie et al. (2012)

The Borel Paradox

Computing a conditional probability density The Borel Paradox

&8

Same conditional PDF ?

* Near-Cartesian
reference frame
A
* Equal volumes
have equal
probabilities

* Conditional proba-
bility density is
constant

K-A. Lie et al. (2012)

10



e
The Borel Paradox

¢ Non-Cartesian
reference frame
* Equal volumes

have equal
probabilities

» Conditional proba-
bility density is
not constant

Conclusion on conditional probability
densities

* Conditional probability densities are
inconsistent, because different analysts may
arrive at different (conflicting) results.

Borel’s paradox disappears if f(X) is replaced with

9 = fO/ux)

where p(x) is the homogeneous pdf (a constant
volume density)

(Mosegaard and Tarantola, 2002)

I
Conclusion on conditional probability
densities

* Conditional probability densities are
inconsistent, because different analysts may
arrive at different (conflicting) results.

01/01/2019

END OF PART 1
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PROBABILISTIC INFERENCE
ABOUT COMPLEX
STRUCTURE

A classical example: Seismic tomograph

7

* Seismic signals from distant
earthquakes, recorded along a profile

* Time delays compared to a reference
Earth model

01/01/2019

The Least-Squares Method

Fitting a curve with the smallest sum-of-deviations

3 . v 15
. .
) 10
2
A
1 / d 0
. s . o
c . . ')
° -10,
L
=K
_2n ] 0 1 2 0% S5 Sl =5 0 5 10 15 2
Fitting thermal conductivity and Fitting orbital parameters to an
heat production to an observed observed orbit of a double star
temperature profile component

Seismic tomography: A least-squares result

-12 -10 -8 -6 -4 -2 o 2 4 6 8 10 12
Velocity perturbation (%)

* Deviation from a reference Earth model
* Smooth models (least-squares/Gaussian)

The smoothness of Least squares models is not
physically and geologically acceptable!
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Complexity: Horizontally compressed sediments

6
<

—
e«

ﬂ

-

Modified from Egholm et al., 2007

Solutions with Geostatistical
Constraints

Example: The Braided River Model

Complexity erased by Least Squares
‘Unknown’ subsurface

Observed data from the subsurface

Travel time [s]

Data number

The Least-Squares solution

S Cordua & Mosegaard, 2014

Classical Least-Squares Inversion
Likelihood Function:

| dobs - f(m)||2 ]

2
20,

L(m)=C-exp

A priori distribution:

Gaussian distribution

A posteriori distribution
o(m)=C- L(m)p(m)

01/01/2019
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A Classical Least-Squares Solution

Prior information defined by
a geological prototype example

3,

L

Probabilistic Inversion
Likelihood Function:

) dm—f(m)||2]

2
20,

L(m)=C"-exp

A priori distribution:

Prior information defined by
geological prototype examples

i

A posteriori distribution
o(m) = C+ L(m)p(m)

The Geostatistical Prior

3,

L

Training Image A statistically similar image

01/01/2019
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Examples of geo-information: Braided rivers

7 Rakaia River, New Zealand.
(Google Earth)

Congo River at the border of
Congo and Democratic Republic
of Congo. (Google Earth)

Pattern statistics from a geological model

—-—l
p B

Examples of geo-information: Braided rivers

A simple model of a braided river
(Strebelle, 2002)

S ——
. Sand D Mudstone

A close-up of part of the
pixeled model

Pattern statistics from a geological model

p B

01/01/2019
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The frequency distribution

(Normalized. Only non-zero entries)

0.08

0.06

0.04 1

0.02 ¢

Combining data and the braided river model into a
solution to the inverse problem

o(m) = L(mldObs)ptraining (m)

where d°" is the observed data, m is the Earth model, Lis a
likelihood function, and p¢ygining (M) is the probability of m,
given the reference model.

Computing the probability of an image
e ol

What is the probability that
this model is a realization of
the same random process?

Freq. [freq.
Patterfi # Patterfy #

Joint probability from MRF theory

\

Reference Model

]

01/01/2019
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Joint probability from MRF theory

Joint probability from MRF theory

Joint probability from MRF theory

Joint probability from MRF theory

01/01/2019
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Joint probability from MRF theory Joint probability from MRF theory
S R
X<
1 e

Joint probability from MRF theory

S R

Joint probability from MRF theory

O
R (<20

01/01/2019
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Joint probability from MRF theory

S R

p)=] [ p(RS )

Example: Inversion of seismic reflection
data: The Inverse Scattering Problem

A PRACTICAL EXAMPLE

o thrust fault
< normal fault
===: deep seismic profile

‘ff:cincident gravity prof.

Example: Inversion of seismic reflection
data

Field File Number
19.46 20.71 21.96 23.21 24.46 35.71 36.96 38.21

01/01/2019
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Example: Inversion of seismic reflection
data

Field File Number

Time (s)

Approximate Depth (km)

Example: Inversion of seismic reflection
data

d= Gm=WDm

where

m is the unknown acoustic impedance in the Earth
D is a differentiation operator

W is convolution with the seismic pulse (wavelet)

Example: Inversion of seismic reflection
data

Data

g

56

Two-way time

Two-way time

68 68,
CHEl 3 4 7 10 1 o
Record no. Record no.

Data Noise from stationary assumption

Bayesian inversion

* Noise and prior information is Gaussian
e The noise covariance matrix is C,

*  myis areference model (“bestguess”)
* Cpis the prior covariance matrix (a priori tolerance)

we can compute the maximum posterior model:
Myose =My + (67C;'6 + €)™ 67C' (d — Gmy)

and the posterior covariance (the model parameter
uncertainty)

Cpost = (GTC;IG + Cr;zl)_l

01/01/2019
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Example: Inversion of seismic reflection
data

5 30
52 20
5.4 10
56 0
58
E -10
=
% ¢ 20
2
Fe2
R IR 150 200 250 300
64 Time (ms)
°° Seismic pulse
o (wavelet)
Record no.
Data

Example: Inversion of seismic reflection
data

0 T T T
0.2 01 00 01 02

Histogram of reflection coefficients
from igneous intrusions of Rum,
Scotland, and Great Dyke, Zimbabwe

Example: Inversion of seismic reflection
data

> = S
Froquency
5 8 8

®

Two-way Time
>

Noise distribution  Noise auto-covariance

9

S

>

&

Record no.

Estimated noise

Example: Inversion of seismic reflection

data s Log Acoustic Impedance

Two-way Time
o o o o o
N o (=] o » N

o
~

6.6

6.8 -
5 6 7 8 9 10 11

0 1 2 3 4
Location no.

Maximum a posteriori model of the
zone surrounding the crust/mantle
interface north of Scotland.

01/01/2019
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e e
Conclusions

» Although consistency is a serious matter in
mathematical physics, it is often ignored in

inverse theory END

We have looked at 3 cases of inconsistency:

» Pitfalls in sparse parameterizations

* Inconsistencies when using subjective
probabilities

* Lack of invariance of conditional probability
densities
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