UQ IN HIGHLY NON-LINEAR, MULTI-PARAMETER INVERSE PROBLEMS

Klaus Mosegaard Niels Bohr Institute University of Copenhagen Denmark

The Probabilistic Inverse Problem

Bayes Theorem

From the definition of conditional probability density

$$f(\mathbf{x}|\mathbf{y}) \equiv \frac{f(\mathbf{x}, \mathbf{y})}{f(\mathbf{y})}$$
 or $f(\mathbf{y}|\mathbf{x}) \equiv \frac{f(\mathbf{x}, \mathbf{y})}{f(\mathbf{x})}$

we get:

$$f(\mathbf{m}|\mathbf{d}) \equiv \frac{f(\mathbf{d}|\mathbf{m})f(\mathbf{m})}{f(\mathbf{d})}$$

Bayes Theorem

From the definition of conditional probability density

$$f(\mathbf{x}|\mathbf{y}) \equiv \frac{f(\mathbf{x}, \mathbf{y})}{f(\mathbf{y})}$$
 or $f(\mathbf{y}|\mathbf{x}) \equiv \frac{f(\mathbf{x}, \mathbf{y})}{f(\mathbf{x})}$

we get:

Information Theory Formulation:
Tarantola-Valette
From the definition of conjunction of information:

$$(\rho \land \theta)(\mathbf{x}) \equiv \frac{\rho(\mathbf{x})\theta(\mathbf{x})}{\mu(\mathbf{x})}$$
we get, in the joint space $\mathcal{D} \times \mathcal{M}$:

$$\sigma(\mathbf{d}, \mathbf{m}) \equiv (\rho \land \theta)(\mathbf{d}, \mathbf{m}) = \frac{\rho(\mathbf{d}, \mathbf{m})\theta(\mathbf{d}, \mathbf{m})}{\mu(\mathbf{d}, \mathbf{m})}$$
from which

$$\sigma_m(\mathbf{m}) = \int_{\mathcal{D}} \sigma(\mathbf{d}, \mathbf{m}) \, d\mathbf{d}$$

Tarantola-Valette Formulation	
From the definition of conjunction of infor	mation:
$(\rho \land \theta)(\mathbf{x}) \equiv \frac{\rho(\mathbf{x})\theta(\mathbf{x})}{\mu(\mathbf{x})}$	Null Information Density
we get, in the joint space $\mathcal{D} \times \mathcal{M}$: posterior $\sigma(\mathbf{d}, \mathbf{m}) \equiv (\rho \wedge \theta)(\mathbf{d}, \mathbf{m}) = \frac{\rho(\mathbf{d}, \mathbf{m})\theta(\mathbf{d}, \mathbf{m})}{\mu(\mathbf{d}, \mathbf{m})}$	d, m)
from which	Forward density
$\sigma_m(\mathbf{m}) = \int_{\mathcal{D}} \sigma(\mathbf{d}, \mathbf{m}) d\mathbf{d}$	

Two Formulations Compared		
Classical Bayes	Tarantola- Valette	
Separate ${\mathcal D}$ and ${\mathcal M}$	Joint $\mathcal{D} { imes} \mathcal{M}$	
(Realizations of) ${f d}$ and ${f m}$	Distributions over $\mathcal{D} \times \mathcal{M}$	
$\mathbf{d} = g(\mathbf{m})$	$\theta(\mathbf{d},\mathbf{m})$	
YES	NO	
	Classical BayesClassical BayesSeparate D and \mathcal{M} (Realizations of) \mathbf{d} and \mathbf{m} $\mathbf{d} = g(\mathbf{m})$ YES	

Model Parameters, observable parameters and their relation

• Data:

$$\mathbf{d} = (d_1, d_2, \dots, d_M)$$

Physical relation:

$$\mathbf{d} = g(\mathbf{m})$$

Model parameters:

$$\mathbf{m} = (m_1, m_2, \dots, m_M)$$

Tarantola and Valette, 1982

The complete inversion process

- Parameterize the Earth structure m: $\mathbf{m} = f(m)$ to obtain a finite set of *model parameters* \mathbf{m} .
- Solve an inverse problem $\mathbf{d} = g(\mathbf{m})$ to infer information about \mathbf{m} from data \mathbf{d} .
- Go backwards from the parameters \mathbf{m} to arrive at statements about the Earth structure: $\mathbf{m} \rightarrow m$.

Model Parameters, observable parameters and their relation

• Data:

$$\mathbf{d} = (d_1, d_2, \dots, d_M)$$

• Physical relation:

 $\mathbf{d} = g(\mathbf{m})$

Model parameters:

$$\mathbf{m} = (m_1, m_2, \dots, m_M)$$

The parameterization process

- An infinite set of orthonormal basis functions $\varphi_1(x, y, z), \varphi_2(x, y, z), \varphi_3(x, y, z), \dots$
- Parameters m_1, m_2, \dots

$$m(x, y, z) = \sum_{n=1}^{\infty} m_n \varphi_n(x, y, z)$$

The parameterization process

- Truncate the expansion if necessary
- Keep many parameters to ensure an accurate representation

$$m(x, y, z) = \sum_{n=1}^{M} m_n \varphi_n(x, y, z)$$

Invariant results from different bases

- Even when two analysts choose different set of base functions, they will obtain (almost) the same model.
- The result is **invariant** under a change of base functions.
- The method is **consistent**: There is agreement between the results from different analysts.

Sparse Models

Reasons for sparsity

- To avoid unnecessary detail (Occam's Razor)
- To minimize the number of model parameters
- To build-in prior knowledge about structure

Sparse Models: Conclusions

- Sparse models are inconsistent (the result depends on the analyst's choice of basis functions).
- Simplicity, measured as the number of model parameters, is not an objective concept (depends on basis functions).
- If it can be established from external information that the model can be represented sparsely by a certain basis, sparse methods may be useful.

9

Conclusion on conditional probability densities

• Conditional probability densities are **inconsistent**, because different analysts may arrive at different (conflicting) results.

Conclusion on conditional probability densities

• Conditional probability densities are **inconsistent**, because different analysts may arrive at different (conflicting) results.

Borel's paradox disappears if $f(\mathbf{x})$ is replaced with

 $g(\mathbf{x}) = f(\mathbf{x})/\mu(\mathbf{x})$

where $\mu(\mathbf{x})$ is the *homogeneous* pdf (a constant *volume density*)

PROBABILISTIC INFERENCE ABOUT COMPLEX STRUCTURE

The Least-Squares Method

Fitting a curve with the smallest sum-of-deviations

temperature profile

Solutions with Geostatistical Constraints

Example: The Braided River Model

Examples of geo-information: Braided rivers Examples of geo-information: Braided rivers Rakaia River, New Zealand. A simple model of a braided river (Google Earth) (Strebelle, 2002) Sand Mudstone Congo River at the border of Congo and Democratic Republic of Congo. (Google Earth) A close-up of part of the pixeled model

Combining data and the braided river model into a solution to the inverse problem

$$\sigma(\mathbf{m}) = L(\mathbf{m}|\mathbf{d}^{obs})\rho_{training}(\mathbf{m})$$

where \mathbf{d}^{obs} is the observed data, \mathbf{m} is the Earth model, L is a likelihood function, and $\rho_{training}(\mathbf{m})$ is the probability of \mathbf{m} , given the reference model.

Example: Inversion of seismic reflection data

d = Gm = WDm

where

m is the unknown acoustic impedance in the Earth *D* is a differentiation operator

W is convolution with the seismic pulse (wavelet)

Bayesian inversion

If

- Noise and prior information is Gaussian
- The noise covariance matrix is C_n
- **m**₀ is a reference model ("best guess")
- C_m is the prior covariance matrix (a priori tolerance)

we can compute the maximum posterior model:

$$m_{post} = m_0 + (G^T C_n^{-1} G + C_m^{-1})^{-1} G^T C_n^{-1} (d - G m_0)$$

and the posterior covariance (the model parameter uncertainty)

$$\boldsymbol{C}_{post} = (\boldsymbol{G}^T \boldsymbol{C}_n^{-1} \boldsymbol{G} + \boldsymbol{C}_m^{-1})^{-1}$$

Conclusions

 Although consistency is a serious matter in mathematical physics, it is often ignored in inverse theory

We have looked at 3 cases of inconsistency:

- Pitfalls in sparse parameterizations
- Inconsistencies when using subjective probabilities
- Lack of invariance of conditional probability densities

