

LMATIETEEN LAITOS 1eteorologiska institutet Innish meteorological institute

How to study trends if you must modelling trends in time series using the dynamic linear model approach

Marko Laine

Finnish Meteorological InstituteDTU seminar 2018-12-18

2014-04-2

In this presentation

- •Inverse problems related to different levels of satellite data.
- •Time series analysis for environmental time series.
- **Dynamic linear model** (DLM) time series analysis by Kalman smoother and MCMC.
- **Data fusion** of satellite and in-situ data by DLM.
- [Dimension reduction techniques for data fusion]

On right: RGB True Color image of Finland 12. April 2018 by EOS-Terra satellite, MODIS instrument, <u>http://fmiarc.fmi.fi/latestSat.php</u>.

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Academy of Finland Centre of Excellence in Inverse Methods and Imaging 2018-2025

- Continues the CoE of Inverse Problems research.
- Jointly with 6 Finnish Universities and FMI.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Inverse problems in atmospheric remote sensing

Scattered solar light observation

Level 2 data: O₃, NO₂, HCHO, SO₂, CO, CH4, CO_2 , aerosols, ...

Level 3 data, Level 4 data

Credit: Johanna Tamminen

Satellite data processing levels

- •Level 1: Reconstructed, unprocessed instrument data (e.g. radiances) at full resolution, and annotated with ancillary information. Input for the retrieval algorithm.
- •Level 2: Retrieved (by inversion algorithm) geophysical variables at the same resolution and location as Level 1. (e.g. vertical constituent profiles).
- completeness and consistency.
- •Level 4: Model output or results from analyses of lower-level data (e.g. time series, data fusion, assimilation).

•Level 3: Variables mapped on uniform space-time grid scales, usually with some

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Approaches to atmospheric inverse problems

Optimal estimation	hierarchical statistical model	conditional probabilities
forward model F CO2 (x)→radiance (y) inverse problem	data model Y = F(X θ) + ε	р(Y X, Ө)
prior x _α , S _α smoothness etc	process model	p(X θ)
fixed tuning parameters	parameter model	p(θ)
optimal? L2 loss \rightarrow conditional mean 0-1 loss \rightarrow MAP		$p(Y,X,\theta) = p(Y X,\theta) p(X \theta) p(\theta)$ $p(X Y,\theta) \propto p(Y X,\theta)p(X \theta)$

Components of the atmospheric inverse problem

What is X?

- •4D field (lat,lon,alt,time)
- might be interested in g(X), total column, surface flux, ... • retrieved individual values $P(\hat{X}_i | Y_i, \theta)$ are not independent
- •independent sounding by sounding retrieval not ok?

What is $p(X | \theta)$?

- spatio-temporal process model
- prior $X_i \sim N(X_{\alpha i}, S_{\alpha i})$
- •GCM, CTM, statistical models GP, GRMF
- spatial statistics tools needed

What is Y?

- radiances (Level 1)
- or retrieved individual CO2 columns \tilde{Y}_i (Level 2)
- $P(\tilde{Y}_i | X, \theta)$ conditionally independent • $P(X | \tilde{Y}, \theta) \propto P(\tilde{Y} | X, \theta) p(X | \theta)$ (Level 3-4)
 - still need the process model $p(X|\theta)$

Time series analysis — example 1

•Answer: recovery started from year 1997.

•Has stratospheric ozone recovered from human caused depletion by CFC compounds?

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Time series analysis — example 2

•Can the increase in the temperatures in Finland be attributed to natural variability?

•Answer: no.

Time series analysis — example 3

Is there growth in seasonal amplitude of atmospheric CO₂ and OCS?

Sesonal amplitude, yearly change 0.62% (0.18%)

Challenges in climatic time series

Detergetitizen, el trenegro instruevents, volcanic events

Components of ozone time series ...

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

What is trend?

- Trend is a change in the background mean level of the process.
 For example: we are interested in smooth long term (decadal) change
- For example: we are interested in smootl attributed to ozone recovery.
- Need to model seasonality, external forcing driven by known phenomena, long range correlations, ...

•Goal: a statistical model consistent with the observed variability.

Dynamic linear model (DLM)

- General framework for studying dynamical changes in time series data by local regression analysis.
- Uses a state space process description of the model components (trends, seasonality, proxies).
- Suitable for univariate and multivariate time series analysis.

 Includes hierarchical statistical model for uncertainties in data, process, and parameters. • Verifiable statistical assumptions.

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Dynamic linear model (DLM) as a hierarchical statistical model

• *y*_t: observations,

- •*x*_t: model states,
- •*H_t*: observation operator,
- •*M_t*: model operator,
- •ε_t :observation uncertainty,
- *E*_t :model uncertainty.

Statistical estimation and analysis by Kalman filter, Kalman Smoother and Markov chain Monte Carlo (MCMC).

• θ : structural and variance parameters in H_t , M_t , R_t , and Q_t .

• Bayes formula:

$$p(x_{1:n}, \theta | y_{1:n}) \propto \prod_{t=1}^{n} p(y_t | x_t, \theta) p(x_t | x_{t-1}, \theta) p(\theta)$$

Simple example: spline smoothing

$$y_t = \mu_t + \varepsilon_{obs},$$

$$\mu_t = \mu_{t-1} + \alpha_{t-1} + \varepsilon_{level},$$

$$\alpha_t = \alpha_{t-1} + \varepsilon_{trend},$$

$$\varepsilon_{obs}$$

$$\varepsilon_{leve}$$

$$\varepsilon_{leve}$$

$$M_{t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad H_{t} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad x_{t} = \begin{bmatrix} \mu_{t} & \alpha_{t} \end{bmatrix}^{T}, \theta = \begin{bmatrix} \sigma_{\text{obs}}^{2} & \sigma_{\text{level}}^{2} & \sigma_{\text{trend}}^{2} \end{bmatrix}^{T}$$

When $\sigma_{\text{level}} = 0$, this is cubic spline smoothing with smoothness parameter $\lambda = \sigma^2_{\text{trend}} / \sigma^2_{\text{obs}}$.

 $y_t = H_t x_t + \varepsilon_t$ $\mathbf{x}_t = \mathbf{M}_t \mathbf{x}_{t-1} + \mathbf{E}_t$

~ $N(0, \sigma^{2}_{obs})$, observations $_{el} \sim N(0, \sigma^2_{level}), local level$ $N_{nd} \sim N(0, \sigma^2_{trend}), local trend$

DLM vs. linear regression

Linear regression is a special case of DLM, with $\sigma^{2}_{trend} = \sigma^{2}_{level} = 0$.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Estimating smoothness

- Flexibility comes with a price to pay.
- The extra variance parameters control the smoothness of the fit.
- We look for results consistent with the observations and prior p(θ),
 θ = [σ²_{trend}, σ²_{seas}]^T
- Bayesian hierarchical modelling allows estimation by optimization or by MCMC.

Bayesian data analysis

- Bayesian model forces you to think how the observations are generated. • This involves both prior and the likelihood, jointly.
- Observations simulated from the (prior or posterior) model should look plausible.
- Hierarchy: data model, process model, parameter model.
- DLM is a model for the systematic part and the prior, not just for the noise.
- The state space descriptions is closely related to data assimilation in, e.g., numerical weather forecasting.

• Observation model: $p(y_t | x_t, \theta)$ • Process model: $p(x_t | x_{t-1}, \theta)$

• Parameter model: $p(\theta)$

 $y_t = H_t x_t + \varepsilon_t \qquad \varepsilon_t \sim N(0, R_t)$ $x_t = M_t x_{t-1} + E_t \qquad E_t \sim N(0, Q_t)$

General model for trend, seasonality, AR error, proxies

$y_t = \mu_t + \gamma_t + \beta_t X_t + \eta_t + \varepsilon_{obs,t}$

μ_t: background level, the trend,

- γ_t: seasonal effect,
- β_t: coefficient for proxy covariates X_t,
- η_t : autoregressive error term,

ε_{obs,t}: observation uncertainty.

All model components are defined by suitable model operator M_t and can depend on time index t.

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

The system matrices involved

$$\boldsymbol{x}_{t} = \begin{bmatrix} \mu_{t} & \alpha_{t} & \psi_{t,1} & \psi_{t,1}^{*} & \psi_{t,2} & \psi_{t,2}^{*} & \beta \end{bmatrix}$$

$$M_{t} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos\left(\frac{\pi}{6}\right) & \sin\left(\frac{\pi}{6}\right) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\sin\left(\frac{\pi}{6}\right) & \cos\left(\frac{\pi}{3}\right) & \sin\left(\frac{\pi}{3}\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos\left(\frac{\pi}{3}\right) & \sin\left(\frac{\pi}{3}\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\sin\left(\frac{\pi}{3}\right) & \cos\left(\frac{\pi}{3}\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$H_{t} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & \text{solar}(t) & \text{qbol}(t) & \text{qbo2}(t) \end{bmatrix}$$
$$\theta = \begin{bmatrix} \sigma_{\alpha} & \sigma_{\psi} \end{bmatrix}^{T}$$

$$\left[1 \quad \beta_2 \quad \beta_3\right]^T$$

Model for stratospheric ozone with local level, two harmonic seasonal components, and solar and QBO proxies.

The model "state" x_t has 9 elements and we have 2 variance parameters in θ .

How to do it in practice?

- The R statistical program has a **dlm** package.
- For python there is **pydlm** and some DLM models in package **statsmodels**.
- Matlab **dlm** toolbox is used for the examples in this presentation.
- Some programming skills are needed, as in most data analysis tasks.
- Key aspects in any statistical modelling: visualization, model building, parameter estimation, residual analysis, uncertainty quantification.

[1] G. Petris, S. Petrone, P. Campagnoli: *Dynamic Linear Models with R*. Springer, 2009. [2] T.J. Durbin, S.J. Koopman: Time Series Analysis by State Space Methods. Oxford University Press, second edition, 2012. [3] A.C. Harvey: Forecasting, structural time series and the Kalman filter. Cambridge University Press, 1990.

Dynamic linear model Matlab toolbox

DLM toolbox at <u>http://helios.fmi.fi/~lainema/dlm</u>, <u>https://github.com/mjlaine/dlm</u>

out = dlmfit(y,s,w); dlmplotfit(out,t); title('Smoothed Nile data') dlmplotdiag(out,t);

LMATIETEEN LAITOS

Stratospheric ozone from satellite observations

Merged monthly SAGE II -GOMOS observations for one latitude band and altitude region.

_4 ⊡ _3

-2

-1

0 Theoretical Quantiles

2

Parameter estimation by MCMC. Posterior distributions and residual analysis.

M. Laine et al.: Analysing time-varying trends in stratospheric ozone time series using the state space approach, ACP 14, 2014

0.2

0.4

Time series components and their uncertainties by DLM analysis.

Finnish station temperatures 1847 - 2013

- Local trend
- Seasonality
- AR(1) error

The data are monthly means, here we show

yearly averages, only.

Mikkonen, Laine, et al., 2015

Temperature raise 2,3°C (±0,4) 1850-2010.

Data fusion as multivariate time series analysis by DLM

- • x_t is 2-3D regular grid of the modelled variable.
- • M_t can be a trivial random walk model.
- Q_t is the assumed background spatial covariance structure.
- *H_t* maps model grid to observation locations.
- Data fusion of MERIS/ENVISAT satellite data and in-situ observations of Chlorophyll-a in Gulf of Finland.

$\varepsilon_t \sim N(0,R_t)$ $y_t = H_t x_t + \varepsilon_t$ $\mathbf{x}_t = \mathbf{M}_t \mathbf{x}_{t-1} + \mathbf{E}_t$ $E_t \sim N(0,Q_t)$

*Computational tools

For dynamic **linear** models we have efficient computational tools for all the relevant statistical distributions in the hierarchical model.

Distribution	method
$p(x_t y_{1:t}, \theta)$	Kalman filter
$p(x_t y_{1:n}, \theta)$	Kalman smoother
$p(x_{1:n} y_{1:n},\theta)$	Simulation smoothe
<i>p</i> (<i>y</i> _{1:n} θ)	Kalman filter likeliho
$p(x_{1:n}, \theta y_{1:n})$	MCMC
$p(x_{1:n} y_{1:n})$	MCMC
$p(trend(x_{1:n}) y_{1:n})$	MCMC

bod

However, for large state x_t some approximative methods or dimension reduction is needed.

*DLM with MCMC, full sampling for trend statistics

- •Kalman formulas give marginal distributions $p(x_t | y_{1:n}, \theta)$.
- •We can simulate model states from $p(x_{1:n} | y_{1:n}, \theta)$.
- Need MCMC to simulate from

$$p(x_{1:n}|y_{1:n}) = \int p(x_{1:n}|y_{1:n},\theta) d\theta.$$

 We get uncertainty distribution for trend related statistics.

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Kilpisjärvi (69°2′54″N, 20°47′42″E) temperatures

- Monthly mean temperatures in August at Kilpisjärvi.
- Fitted DLM model.
- Sample from the background level.
- Estimated decadal averages.

*Data fusion with dimension reduction

- Combine data from different sources to a common regular spatio-temporal grid. Reduced dimension smoother and a multivariate DLM time series model. •Needs sparse model error precision matrix Q^{-1} .

- •Needs basis P to form reduced state $x_t = \mu_t + P\alpha_t$ and covariance $C_t = PC^{\alpha}P^{T}$. • Hierarchical models for hyper parameters in Q and P possible.
- Non-linear models by EKF and EnKF.

Data fusion of Chla in Baltic Sea

- Chlorophyll-a from satellite (Meris/ENVISAT, later Sentinel-2) with in-situ observation from stations and commercial vessels.
- •EO data in 3774x674 (0.003° lat-lon) resolution, state dimension ~2.5 10⁶. Using 30 principle components (empirical orthogonal functions) to describe the state.
- •*P* is 2 543 676 x 30, *C*^α is 30 x 30.

Thank You!

- S. Tukiainen, J. Railo, M. Laine, et al.: Retrieval of atmospheric CH₄ profiles from TCCON FTS data using dimension reduction and MCMC, Journal of Geophysical Research, 2016.
- A. Solonen, T. Cui, J. Hakkarainen, Y. Marzouk. On dimension reduction in gaussian filters. *Inverse Problems*, 32, 2016.
- J. M. Bardsley, A. Solonen, H. Haario, M. Laine: Randomize-then-optimize: a method for sampling from posterior distributions in nonlinear inverse problems, SIAM Journal on Scientific Computing, 36, 2014.
- J. Hakkarainen, et al. On closure parameter estimation in chaotic systems. Nonlin. Proc. in Geoph., 19, 2012.
- T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, A. Spantini: Likelihood-informed dimension reduction for nonlinear inverse problems, Inverse Problems, 30, 2014.
- A. Bibov, H. Haario, and A. Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems and Imaging, 9, 2015.
- S. Mikkonen, M. Laine, et al.: Trends in the average temperature in Finland, 1847-2013, Stoch. Environ. Res. Risk Assess., 29, 2015.
- M. Laine, N. Latva-Pukkila, E. Kyrölä: Analysing time-varying trends in stratospheric ozone time series using the state space approach, Atmos. Chem. Phys., 14, 2014.
- Matlab toolbox for MCMC UQ calculations for nonlinear models at <u>http://helios.fmi.fi/~lainema/mcmc</u>.
- Matlab toolbox for DLM calculations for time series at http://helios.fmi.fi/~lainema/dlm.

