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Why consider such a
simple method?

e Suited for very-large-
scale problems.
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Tomography = Our Main Application Area

i

: Medical scanning
Image reconstruction |
from projections
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Setting Up the Algebraic Model

Damping of i-th X-ray through domain:

b; = frayi x(s)dl, x(s) = attenuation coef.

f Discretization leads to a large,
X, =X, | X=X, X, =X[|x.=X =X - A
R I / L sparse, ill-conditioned system:
){2=X21 x?=x?2 )%XEB x‘l?=x24 X22=)55 _
X3= X5, x8=ny13=X33 X1 = X3y X3 = X5 4 ‘ T
X=Xy [Xof Xy X1y = Kyg [X19 = Kyy |Xoq = Xy -
/ 2 . Noise
/ Projections
XS = X7 x1El = X52 X15 = XSS XEEI = X54 XQS = XSS
Image ! B
/ b=AzZ
Geometry
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Some Large-Scale Reconstruction Algorlthms§

Bayesian Methods
My knowledge here is very limited ...

Transform-Based Methods

The forward problem is formulated as a certain transform
— find a stable way to compute the inverse transform.

Examples: the inverse Radon transform for tomography
— filtered back-projection, FDK.

Algebraic Iterative Methods

N

The forward problem is formulated as a discretized

e m
— solve A x = b iteratively using pnor‘“&gic‘ﬂ
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Examples: Cimmino, Kaczmarz, CGLS.



Classical Algebraic Iterative Methods

SIRT — Simultaneous lterative Reconstruction Techniques
Landweber, Cimmino, CAV, DROP, SART, ...

These methods use all the rows of A simultaneously in one
Iiteration (i.e., they are based on matrix multiplications):

2+ Plz+wA"M((b— Az))

P = projection on a convex set (e.g., z > 0)

ART — Algebraic Reconstruction Techniques
Kaczmarz’'s method + variants.

Sequential row-action methods that update the solution using
one row of A at a time:

b: — arl
x%P(m—l—w ZH ﬁ;xai> al = ith row of A
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Semi-Convergence
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Notation: b= AZ + e, T = exact solution, e = noise.

Initial iterations: the error |z — xx||2 decreases.

Later: the error increases as xp — (weighted) least squares
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solution.
Error histories for Cimmino’s method with fixed A
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A few references:

F. Natterer, The Mathematics of
Computerized Tomography (1986)
A. van der Sluis & H. van der Vorst,
SIRT- and CG-type methods for the
iterative solution of sparse linear
least-squares problems (1990)

M. Bertero & P. Boccacci, Inverse
Problems in Imaging (1998)

M. Kilmer & G. W. Stewart, lterative
Regularization And Minres (1999)
H. W. Engl, M. Hanke & A. Neubauer,

Regularization of Inverse Problems
(2000)
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lllustration of Semi-Convergence
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2(120) .
T = exact solution
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Semi-Convergence of SIRT and ART
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e

e SIRT’s semi-conver-
gence is "easy” to
show using SVD.

e ART also has semi-
convergence; not
rigorously proved.

e ART converges much
faster than SIRT.

Example
parallel-beam with

200x200 phantom
and 60 projections
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Analysis of Semi-Convergence for ART

Let  be the solution to the noise-free problem, and let Tk
denote the iterates when applying ART to b. Then

lzk = Zll2 U [l — Zellz + |76 — 72 -

Noise error Iteration error

The convergence theory for ART is well established and en-
sures that the iteration error xp — & goes to zero.

Our concern here is the noise error el,j — x — T. We wish to
establish that it increases, and how fast.
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A Word on the lteration Error =

Strohmer & Vershynin (2009): Known estimates of convergence rates
are based on quantities of A that are hard to compute and difficult to
compare with convergence estimates of other iterative methods.

What numerical analysts would like to have is estimates of the conver-
gence rate with respect to standard quantities such as |]A]] and ||A]].

The difficulty: the rate of convergence for ART depends on the ordering
of the equations, while ||A]] and ||A1]|| are independent of the ordering.

With random selection of the rows, the expected behavior is:

2k
1— To — Z||5 O
( cond(A)z) 1% =z

e - R
£(12* - 1) 0 (1~ mgrye ) 10 - 213

cond (

Note: AAT = diagonal matrix = convergence in one sweep!
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Sidetrack: Noise Error for SIRT =

The unprojected case: OFﬂter lfactors (p[’ﬂ - 1 - (1 _.C.M?).k
xy is a filtered SVD solution: i
k TMl/Qb
Lk — Z:L:l SOE ] JT V; 10"
k o ko

With projection an SVD analysis is not possible; we obtain:
o1 (1 —wo2)k
—kH2 a 1 ( n)

n On

Hmk _ HM1/25bH2

and for wo? < 1 we have:

k_ k||, ~ 1/2
- ~wkoy||M°0b||s.
Hw H2 ¢ 01“ H2 Elfving, H

Nikazad, 2012
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Noise Error for ART — No Projection

Recall: ART is equivalent to applying SOR to A ATy =b, z = Al'y.
We introduce the splitting:

AAT =L+ D+ LT, M = (D +wL)™t,

where L is strictly lower triangular and D = diag(||a;||3). Then:

Tpr1 = Tp + WATM (b— Axy) .

We also introduce

e = b — b = noise in data, Q=1—-wATMA .

Then simple manipulations show that the noise error is given by
k—1

en =xp — T =Q ey, —I—wATMe:wZQjATMe.
j=1
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Noise Error Analysis - 1
Let P = projection matrix on range(A?) and u = AT Me; then:
Qv = Q"Pu=(I—-wB)(I—-wB)---(I —wB)Pu
= (I —wB)P(I—wB)P---(I —wB)Pu = (QP)*u

Hence

k—1 k—1
N :wZQJATMe—wZ(QP)jATMe
j=0 J

=0

and, with ¢ = [|QP]|» and 6 = || AT M |5,

Dw52q —w5

el 0 wd|| 520 (P
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Noise Error Analysis - 11

i

Lemma
¢ =1-wo?, ©=w(2—w), o, =smallest nonzero s.v. of DY/2MA.
Taylor
¢ = 1-wo2=1-3w0}+0(o;)
1 —g* B 1—(1— 1002 4+ O(ah)*
l-q¢ 1502 + 0(od))
1—(1—kiwc?+0(c}))
= — k + O(c?).
1507 + 0(o%) (or)
These results lead to the bound

15/20

k
wﬂbmwa — 1 Wk +O(02).
I —gq
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Noise Error Analysis — A Tighter Bound

i

Further analysis (see the paper) shows that the noise error in
ART is bounded above as:

0 1— (1 —wo?)*
1] 0 L0+ 0@2), @y = L wo)
Or Or j
As long as wo? < 1 we have . Uy forw=1
- — 0y =01
U, O vovk 5l on - 00
and thus 40| —Or =0025
\/_5 —— O =0.01
W
el |2 O ~ VE + 0(c2). -,
r 20+

This also holds for projected ART "
provided that A and P satisfy 10

y € R(AT) = P(y) € R(AT). 1

d

0 1000 2000 L 3000 4000 5000
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Numerical Results (‘paralleltomo’ from AIR Tools)
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e

The point of semi-convergence arises when noise error ~ iteration error.

Test problem:

e 200200 phantom,
e 60 projections at

- 3°,6°,9°,...,180°,

= m = 15,232,

= n = 40,000.

We estimate

Vwd /o, ~ 10,

Hence our bound is a
wild over-estimate but
it correctly tracks the
Nnoise error.
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More Insight: SVD Analysis

We consider two specific SIRT and ART algorithms.

Cimmino is an unprojected SIRT method:
T x+ANATMc(b— Ax), Mc = diag(||a;||5?) .

Symmetric ART is an unprojected ART method

b; —alx
r < T+ w 5
laill3

i

with the specific row ordering?: =1,2,3,...,n,n—1,n—2,...,1,2,3, ...

which can be expressen in “SIRT form” with
Mg = (2—w)(D+wLl?)"'D(D+wL)™ .

We can perform an SVD analysis of M/2 A for both methods.

18/20 P. C. Hansen — Semi-Convergence Properties of Kaczmarz’s method May 2014



SVD Analysis — How To

We need this SVD:
MP?PA=USVT.

Then

n

T
E : (k) U; U
L = ¢z U;
o)

i=1 e

with the filter factors

6% =1 (1-—wod)F, i=1,2,...

1

The iterates correspond to “spectral filtering.”
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Singular Values

The singular values of A and those of Mé/ A and JWS1 /2 A associated
with Cimmino and Symmetric ART (A = 1):

Singular values

10? . . ‘ - .
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10" LT - - -Cimmino i
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. — singular values
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— singular values
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Singular Vectors

e

Some singular vectors of A, M, é/ ? A and MS1 / 2A, shown as 2D images:

i=9 i=18 i=27
. _v.w e
Tikhonov, ' ,_.i . 0 \\"
Sy . "
TSVD, etc. . ' » . .
- 4 8w
i=18 i=27
-
Cimmino
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i;36 -

-
» .. ’ .. 4
ST
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.ar

.
R
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Cimmino gives “smooth” solutions, similar to Tikhonov and Truncated SVD.
Symmetric ART can give solutions with fine-grained structure.
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Conclusions

O Semi-convergence is well established for SIRT and CGLS.
O We provide a first step toward ditto for ART:

O Analysis of the convergence of the noise error — we give
an upper bound for the noise error (lower bound = ???).

O Insight into structure of the singular values and vectors.
O More details + block methods: see our paper.

O Next steps: more insight, choice of relaxation parameter m.
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