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About Me … 

• Professor of Scientific Computing at DTU 
• Interests: inverse problems, tomography, regularization algorithms, matrix compu-

tations, image deblurring, signal processing, Matlab software, … 
• Head of the project High-Definition Tomography, 

funded by an ERC Advanced Research Grant. 
• Author of several Matlab software packages. 
• Author of four books. 
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Tomographic Reconstructions are Amazing! 

Tomographic reconstructions are routinely computed each day. 
Our reconstruction algorithms are so reliable that we sometimes forget we 
are actually dealing with inverse problems with inherent stability problems. 

This talk is intended for scientists who need a “brush up” on the underlying 
mathematics of some common tomographic reconstruction algorithms. 

These algorithms are successful because they automatically incorporate regu- 
larization techniques that, in most cases, handle very well the stability issues. 
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Outline of Talk 

We take a basic look at the inverse problem of “plain vanilla” absorption CT 
reconstruction and the associated stability problems: 

• solutions are very sensitive to data errors, 
• solutions may fail to be unique. 

 

We demonstrate how regularization is used to avoid these problems: 
• We make the reconstruction process stable by 
• incorporate regularization in reconstruction algorithm. 
 

Webster 
Reg·u·lar·ize – to make regular by conformance to law, rules, or custom. 
Reg·u·lar – constituted, conducted, scheduled, or done in conformity with 
established or prescribed usages, rules, or discipline. 
 

In tomography: we make the problem, or the solution, more regular in order 
to prevent it from being dominated by noise and other artefacts. 
 

We look at the principles of different regularization techniques and show that 
they have different impact in the computed reconstructions. 
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The Origin of Tomography 

Johan Radon, Über die Bestimmung von Funktionen 
durch ihre Integralwerte Längs gewisser Mannings-
faltigkeiten, Berichte Sächsische Akadamie der Wis- 
senschaften, Leipzig, Math.-Phys. Kl., 69, pp. 262-
277, 1917. 

Main result: An object can be perfectly re- 
constructed from a full set of projections. 

NOBELFÖRSAMLINGEN KAROLINSKA INSTITUTET 

THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE 

11 October 1979 

The Nobel Assembly of Karolinska Institutet has decided today to 
award the Nobel Prize in Physiology or Medicine for 1979 jointly to 
 

Allan M Cormack and Godfrey Newbold Hounsfield 
 

for the "development of computer assisted tomography". 
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The Radon Transform 

The principle in parallel- 
beam tomography: send 
parallel rays through the 
object at different angles, 
measure the damping. 

f(x) = 2D object / image, x =

·
x1

x2

¸

f̂(Á; s) = sinogram / Radon transform

Line integral along line de¯ned by Á and s:

f̂(Á; s) =

Z 1

¡1
f

µ
s

·
cos Á
sin Á

¸
+ ¿

·
¡ sin Á
cos Á

¸¶
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The Inverse Radon Transform 

Let R denote the Radon transform, such that

f̂ = R f , f = R¡1f̂

How to conveniently write the inverse Radon transform:

R¡1 = c (¡¢)1=2R¤; c = constant

R¤ = backprojection (dual transform)

¢ = @2=@x2
1 + @2=@x2

2 = Laplacian

(¡¢)1=2 = high-pass ¯lter F
³
(¡¢)1=2»

´
(!) = j!jF(»)(!)

The operators (¡¢)1=2 and R¤ commute { this leads to the
¯ltered back projection (FBP) algorithm:

R¡1 = c R¤(¡¢)1=2 ! f = R¡1f̂ = c R¤(¡¢)1=2f̂ :

Not precisely 
how we com- 

pute it. 
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Matlab Check … 
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“Naïve” FBP is Very Sensitive to Noise 

The high-pass filter |ω| in ”naive” FBP amplifies high-frequency noise in data. 

The solution is to insert an additional filter than dampens higher frequencies: 
             |ω|  →   ψ(ω) · |ω| 

1. Only |ω| 

2. sinc filter (”Shepp-Logan”) 

3. cos filter 

4. Hamming filter 

This is regularization! 
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FBP + Low-Pass Filter Suppresses Noise 

180 projections 

1000 projections More data is better! 
But we loose some details due to 
the filter (low-pass = smoothing). 
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FBP with Few Projections 

Projection angles 
10:10:100 

Less data creates trouble! 

Now the problem is under- 
determined and artifacts appear. 

Projection angles 
15:15:180 
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Setting Up an Algebraic Model 

Damping of i-th X-ray through domain: 
bi =

R
rayi

Â(s) d`; Â(s) = attenuation coef.

This leads to a large linear system: 

A x = b

“Geometry” 

Image 

Projections 

Noise 

b = A ¹x

b = b + e

Assume χ(s)  is a constant xj  in pixel j, leading to: 

bi =
P

j aij xj ; aij = length of ray i in pixel j:

Â(s) xj

¹x = exact image

To understand these issues better, let us switch to an algebraic formulation! 
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More About the Coefficient Matrix, 3D Case 

bi =
P

j aij xj ; aij = length of ray i in voxel j:

To compute the matrix element aij we simply
need to know the intersection of ray i with
voxel j. Let ray i be given by the line

0

@
x
y
z

1

A =

0

@
x0

y0

z0

1

A+ t

0

@
®
¯
°

1

A ; t 2 R.

The intersection with the plane x = p is given by
µ

yj
zj

¶
=

µ
y0

z0

¶
+ p¡x0

®

µ
¯
°

¶
; p = 0; 1; 2; : : :

with similar equations for the planes y = yj and z = zj.

From these intersetions it is easy to compute the ray length in voxel j.

Siddon (1985) presented a fast method for these computations.
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The Coefficient Matrix is Very Sparse 

Each ray intersects only a few cells, hence A is very sparse. 

Many rows are structurally orthogonal, i.e., the zero/nonzero structure is 
such that their inner product is zero (they are orthogonal). 

This sparsity plays a role in the convergence and the success of some of the 
iterative methods. 
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The Simplest Case: A Single Pixel 

3 1 ¢ x¤ = 3

3.1 

Now with noise in the measurements – least squares solution: 

3.2 
2.9 

No noise: 

0

@
1
1
1

1

Ax =

0

@
3:1
2:9
3:2

1

A xLSQ = Ayb = 3:067

We know from statistics that cov(xLSQ) is proportional to m-1, where m is 
the number of data. So more data is better. 

Let us immediately continue with a 2 × 2 image … 
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Analogy: the “Sudoku” Problem – 数独 

3 

7 

4 6 

0 3 

4 3 

1 2 

3 4 

2 1 

2 5 

3 0 

1 6 

This matrix in rank deficient and there are 
infinitely many solutions (c = constant): 

= 
1 2 

3 4 
+  c × 

-1 1 

1 -1 

Prior: solution is integer and non-negative 

0
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More Rays is Better 

3 

7 

4 6 

0

BBBB@

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1

1

CCCCA

0

BB@

x1

x2

x3

x4

1

CCA =

0

BBBB@

3
7
4
6
5

1

CCCCA

With enough rays, the problem has a unique solution. 

Here, one more ray is enough to ensure a full-rank matrix:  

5 

The solution is now 
unique but it is still 
sensitive to the 
noise in the data. 

The “difficulties” associated with the discretized tomography problem are 
closely linked with properties of the matrix A: 

• The sensitivity of the solution x to data errors is characterized by cond(A), 
the condition number of A, defined as cond(A) = || A || · || A-1 || . 

• Uniqueness of the solution x is characterized by rank(A), the rank of the 
matrix A (the number of linearly independent rows or columns). 
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Characterization of Noise Sensitivity 

Assume that A has full rank, and consider the two problems: 

A ¹x = ¹b (no noise) A x ¼ b = ¹b + e

Perturbation theory gives an upper bound for the solution errors: 

k¹x¡ xLSQk2
k¹xk2

· cond(A) ¢ kek2
k¹bk2

If cond(A) is too large for our liking, then we must modify the way we 
compute our solution – such that the modified solution is less sensitive. 

The is at the heart of regularization! 
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SVD Analysis – How to Reduce Sensitivity 

Recall the two relations:

xLSQ = Ayb = (ATA)¡1AT b; f = R¡1f̂ :

We introduce the singular value decomposition (SVD):

A = U § V T =
X

i

ui ¾i vTi ; U; V orthogonal; § = diag(¾1; ¾2; : : :):

Algebraic reconstruction

xLSQ = AT (U §¡2UT ) b

= (V §¡2V T ) AT b

Inverse Radon transform

f = R¤(¡¢)1=2f̂

= (¡¢)1=2R¤f̂

FBP: add a filter here in 
the frequency domain §¡2 ! ©2 §¡2

© = §2 (§2 + ¸2I)¡1
j!j ! ª(!) ¢ j!j

In both methods, we loose the details associated with high frequencies. 

cond(A) = ¾1=¾n ! ¾1=¸

Tikhonov: filter the singular values 
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Matlab Check … 

N = 3*24; 

theta = 3:3:180; 

  

[A,b,x] = paralleltomo(N,theta,[],N); 

[U,S,V] = svd(full(A)); 

  

lt = length(theta); 

Si = reshape(b,length(b)/lt,lt); 

  

bf =  U*pinv(S)'*pinv(S)*U'*b; 

SF = reshape(bf,length(b)/lt,lt); 

  

Xbp = reshape(A'*b,N,N); 

Xrec = reshape(A'*bf,N,N); 
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Dealing with a Nonunique Solution 

The system A x ≈ b fails to have a unique solution when rank(A) < n, where 
n is the number of unknowns (the number of columns in A). 

• This can happen when the distribution of rays is badly chosen 
(we saw an example of this in the 2 x 2 example). 

• The more common situation is when we less data than unknowns 
(i.e., too few rays penetrating the object); this happens, e.g., 

• if we need to reduce the X-ray dose, 

• or if we have limited time to perform the measurements. 

x = x0 + x?; x? 2 N (A)

f = f0 + f?; f? 2 N (Rla)
Minimum-norm solution: 

xMN = Ayb = AT (A AT )¡1b

xMN 2 R(AT ) ) xMN ? N (A)
f = R¤la(¡¢)1=2f̂

f 2 R(R¤la) ) f? = 0

Radon – the limited-angle case: 

Infinitely many solutions of the general forms: 
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Appreciation of Minimum-Norm Solutions 
The minimum-norm solution deals – in a way – in a very logical way with 
N(A), the null space of A: don’t try to reconstructruct this component. 

The same is true for the filtered solutions: the filter effectively dampens the 
highly-sensitive components corresponding to small singular values σi. 

So: if the subspace R(AT) captures the main features of the object to be 
reconstructed, then this is a good approach. 

Tikhonov Another filtered 
solution: Cimmino 

A smooth test image 

Example: underdetermined, limited-angle problem, angles 5,10,15,…,120. 
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Critique of Minimum-Norm Solutions 
The minimum-norm solution – while mathematically “nice” – is not guaranteed 
to provide a good reconstruction; it “misses” information in the N(A) or N(Rla

*). 

Examples: underdetermined, 
limited-angle problems. 

Notice that for the limited-angle problem, FBP misses certain geometric 
structures in the image, associated with the missing projection angles. 

These structures are precisely those in the null space of Rla, see, e.g.: 
• Jürgen Frikel, Sparse regularization in limited angle tomography, Appl. Comput. 

Harmon. Anal., 34 (2013), 117–141. 

We can find other ways to deal with effectively underdetermined problems! 

Tikhonov FBP FBP 

True 
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Approach 1: ART 
The Algebraic Reconstruction Method (ART) – also known as 
Kaczmarz’s method – was originally developed to solve full-
rank square problems A x = b. 

ART has fast initial convergence, and for certain tomo 
problems is has been the method of choice. 

for k = 1; 2; 3; : : :

i = k mod (# rows)

xk+1 = xk + !
bi ¡ aTi xk

kaik22
ai aTi = ith row of A

end
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Regularizing Properties of ART 

After some iterations the method 
slows down – and at this time we 
are often “close enough” to the 
desired solution. 

During the ¯rst iterations, the iterates xk capture \important" information

in b, associated with the exact data ¹b = A ¹x.

² In this phase, the iterates xk approach the exact solution ¹x.

At later stages, the iterates starts to capture undesired noise components.

² Now the iterates xk diverge from the exact solution and they
approach the undesiredleast squares solution xLSQ.

”… even if [the iterative method] provides a satisfactory solution after a certain 
number of iterations, it deteriorates of the iteration goes on.” 

This behavior is called semi-convergence, a term coined by Natterer (1986):
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Illustration of Semi-Convergence 

Ayb

¹x = exact sol.
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Appreciation of ART 

Experience shows that ART can give great solutions, with surprisingly many 
details.  It does not produced filtered solutions. 

Example with a binary test image: 

Tikhonov ART 

In this example we have utilized that ART can incorporate inequality or 
box constraints – here we required pixel values between 0 and 1. 

Many users of ART don’t notice the semi-convergence – basically because 
the method dramatically “slows down” at this stage. 
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Appreciation of ART – Contd. 
Why can ART give so good solutions with high-frequency components? 

• It does not correspond to spectral filtering. 

• It includes components in the null space, which may be desirable. 

• A full theoretical understanding of its superiority is still missing … 

Towards some insight. 

A certain variant, Symmetric ART, can actually be expressed in a certain ortho- 
normal basis – and this basis includes the needed high-frequency components! 

SVD 
basis 

Basis for 
sym. ART 
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Critique of ART 

The reconstruction and regularization properties of ART are solely associated 
with the semi-convergence, and not suited for all types of problems. 

Example with a smooth test image: 

Tikhonov ART 

There is also a need for more general regularization methods … next slide. 
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Approach 2: Variational Regularization 
In these methods, the regularization is explicit in the formulation of the 
problem to be solved: 

min
x
fmis¯t(A; b; x) + ¸¢penalty(L; x)g subject to x 2 C

Di®erent noise:
Gaussian: kb¡A xk22
Laplace: kb¡A xk1
Poisson: kdiag(log(Ax)b¡A xk1
Etc.

Norm/energy: kxk22
Flatness : kL1 xk22
Roughness : kL2 xk22
Piecewise smooth : kL1 xk1
Etc.

Nonnegativity: x ¸ 0
Box constr.: ` · x · u
Etc.

Let’s look at this 
case, known as Total 

Variation (TV) 

Give smooth solutions 
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Total Variation Allows Steep Gradients 

1-D continuous formulation: 

Example (2-norm penalizes steep gradients, TV doesn’t): 

TV (g) =
°°g0
°°

1
=

Z



jg0(t)j dt

2-D and 3-D continuous TV formulations: 

TV (g) =
°° krgk2

°°
1

=

Z



krg(t)k2 dt
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Underlying assumption or prior knowledge: the 
image consists (approx.) of regions with constant 
intensity. 

Hence the gradient magnitude (2-norm of 
gradient in each pixel) is sparse. 

TV Produces a Sparse Gradient Magnitude 

3 % non-zeros 
im

ag
e 

gr
ad

ie
nt

 m
ag

ni
tu

de
 

Experience shows that the TV prior is often so 
“strong” that it can compensate for a reduced 
amount – or quality – of data. 

TV = 1-norm of the gradient magnitude, 

     = sum of 2-norm of gradients. 
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We demonstrated that tomographic reconstruction problems (inverse 
problems) have stability problems: 

• The solution is always sensitive to noise. 

• The solution may not be unique. 

We looked at different common reconstruction algorithms and explained how 
the incorporate regularization: 

• Filtered back projection – via a low-pass filter 

• Tikhonov – via filtering of SVD components 

• ART (Kaczmarc) – by stopping the iterations (semi-convergence) 

• Variational methods – the regularization is explicit. 

We saw that all these algorithms have their advantages and disadvantages, 
and introduce different artifacts in the solutions. 

Conclusions – What to Take Home 
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