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Abstract
Image deblurring, i.e., reconstruction of a sharper image from a blurred

and noisy one, involves the solution of a large and very ill-conditioned sys-
tem of linear equations, and regularization is needed in order to compute
a stable solution. Krylov subspace methods are often ideally suited for
this task: their iterative nature is a natural way to handle such large-
scale problems, and the underlying Krylov subspace provides a conve-
nient mechanism to regularized the problem by projecting it onto a low-
dimensional ”signal subspace” adapted to the particular problem. In this
talk we consider the three Krylov subspace methods CGLS, MINRES, and
GMRES. We describe their regularizing properties, and we discuss some
computational aspects such as preconditioning and stopping criteria.
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Image deblurring is a discrete ill-posed problem Ax = b where A represents the
blurring, xexact represents the exact image, and b = Axexact+ e represents the blurred
and noisy image image. For details about this problem see, e.g., [2] and [9].

Fig. 1.

A characteristic of Krylov subspace methods applied to ill-posed problems is that
they exhibit semi-convergence, i.e., the iterates x(k) tend to be better and better
approximations to the exact solution xexact, but at some stage they start to diverge
again end instead converge towards the undesired solution A−1b. If we can stop the
iterations at k = kopt then, in principle, we have a large-scale regularization method—
see [3], [7, Ch. 5] and [13] for details.
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grant 274-07-0065 from the Danish Research Council for Technology and Production Sciences.
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Projection Methods

To motivate the Krylov subspace methods, we first briefly discuss projection methods.
Often, the best way to solve an ill-posed problem is to compute an approximation to
xexact that effectively lies in a (low-dimensional) signal subspace of Rn. For Truncated
SVD, this subspace is spanned by the first k right singular vectors v1, . . . , vk.

For large-scale problems it is infeasible, or impossible, to compute the SVD of A.
But we might be able to provide, a priori, a set of basis vectors w1, . . . , wk that have
the same overall features as the singular vectors, namely, being dominated by low-
frequency components. For example, we could choose the orthonormal basis vectors
of the discrete cosine transform (DCT) as our basis vectors (all computations that
involve these vectors are performed by means of the FFT algorithm).

Given the matrix Wk = (w1, . . . , wk) ∈ Rn×k, computation of the least squares
solution expressed in this basis amounts to the constrained least squares problem

min
x

∥Ax− b∥2 s.t. x ∈ Wk = span{w1, . . . , wk}. (1)

We can reformulate the constraint in (1) as the requirement that x = Wk y, which leads
to a regularized solution expressed in the more computation-friendly formulation

x(k) = Wk y
(k), y(k) = argminy ∥(AWk) y − b∥2. (2)

If k is not too large, then we can explicitly compute the matrix AWk ∈ Rn×k and
then solve the projected least squares problem for y.

Fig. 2.

Figure 2 illustrates the use of the DCT projection method applied to the shaw test
problem from Regularization Tools [8]. We show the solutions computed by projecting
the original problem onto the basis vectors w1, . . . , wk for k = 1, 2, . . . , 10; the projec-
tion onto a low-dimensional subspace indeed has a regularizing effect on the solution,
and kopt = 9 seems to be the optimal dimension of the projection subspace.

Regularizing Krylov-Subspace Iterations

The advantage of the projection approach is that the operations involving the basis
vectors can often be performed fast and without the need to explicitly compute and
store the basis. At the same time, the fixed basis is also the main disadvantage of this
approach; the basis vectors are not adapted to the particular problem. To our rescue
comes the Krylov subspace associated with A and b, defined as:

Kk ≡ span{AT b, (ATA)AT b, (ATA)2AT b, . . . , (ATA)k−1AT b}. (3)

The dimension of this subspace is at most k. The vectors (ATA)jAT b become increas-
ingly richer in the direction of the principal eigenvector of ATA, making them unsuited
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for numerical computations; but the subspace Kk itself carries important information
about the problem, and it is well suited to play the role of the subspace Wk in the
projection method (1). We just need a better representation of its basis.

In principle we could apply the MGS algorithm to the vectors (ATA)jAT b, but the
well-known Lanczos bidiagonalization process, applied to the matrix A with starting
vector b, produces precisely these vectors! Specifically, after k iterations the bidiag-
onalization algorithm has produced the matrices Wk ∈ Rn×k and Uk+1 ∈ Rm×(k+1)

and a lower bidiagonal matrix Bk ∈ R(k+1)×k such that

UT
k+1AWk = Bk for k = 1, 2, . . . . (4)

Strictly speaking, this is only true if the computations are done in infinite precision; but
we refrain from discussing the finite-precision aspects here. The largest singular values
of Bk converge to the larger singular values of A, and therefore the Lanczos algorithm
is typically used for SVD computations for large sparse or structured matrices. Here
we use it to produce the orthonormal basis vectors for the Krylov subspace Kk.

The Lanczos process is closely related to the classical method of conjugate gradients
(CG) for solving a system of linear equations with a symmetric positive definite coeffi-
cient matrix. In our case, this system is the so-called normal equations ATAx = AT b
associated with the un-regularized least squares problem minx ∥Ax− b∥2, and one can
show that the solution x(k) obtained after applying k steps of the CG algorithm to
the normal equations ATAx = AT b, with the zero starting vector, is precisely the
solution to the projected problem (1) with Wk = Kk (in infinite precision). The key
to the efficiency is that the CG algorithm computes this solution without the need to
orthonormalize and store all the basis vectors w1, w2, . . . explicitly; only a few auxil-
iary vectors are needed. In the face of rounding errors, the convergence slows down
but without deteriorating the accuracy of the solutions.

The most stable way to implement the CG algorithm for the normal equations
is known as the CGLS algorithm. This algorithm requires one multiplication with A
and one multiplication with AT per iteration. Except for a normalization and perhaps
a sign, the “search vectors” of the CGLS algorithm are equal to the orthonormal
basis vectors for the Krylov subspace. The solution norm ∥x(k)∥2 and residual norm
∥Ax(k) − b∥2 are monotonic functions of k,

∥x(k)∥2 ≥ ∥x(k−1)∥2, ∥Ax(k) − b∥2 ≤ ∥Ax(k−1) − b∥2, k = 1, 2, . . .

allowing us to use the L-curve method as a stopping criterion for this method.
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Fig. 3.

To illustrate the regularizing effects of the CGLS algorithm, we applied this algo-
rithm to the same test problem as above. Figure 3 shows the CGLS iterates x(k) for
k = 1, 2, . . . , 12. We see that the Krylov subspace Kk provides a good basis for this
problem, and the best approximation to xexact is achieved after kopt = 9 iterations.

CGLS Focuses on the Significant Components

The Truncated SVD method, by definition, includes all the first k SVD components
in the regularized solution xk; all these SVD components are included whether they
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are needed or not. On the other hand, in the projection method we are free to only
includes those basis vectors that are needed.

This important feature carries over to the CGLS method, due to the fact that its
basis vectors are those of the Krylov subspace, and not the singular vectors. Recall
that the Krylov subspace Kk (3) is defined in terms of both the matrix A and the
right-hand side b (while the SVD depends on A only). The Krylov subspace Kk will
adapt itself in an optimal way to the specific right-hand side – while the SVD basis is
optimal if no information about b is given.

Fig. 4.

To illustrate this feature of the Krylov subspace we applied the CGLS algorithm
to the phillips test problem from Regularization Tools. Due to the symmetries in
both the matrix and the exact solution, many of the SVD coefficients of the exact
solution are zero. The Picard plot in the left part of Fig. 4 reveals that about every
second SVD component is zero. For this reason, the TSVD method with truncation
parameter k includes about twice the amount of components in xk that are necessary,
because half of them are so small. This is reflected in the error histories for the TSVD
solutions: about every second increment of k leaves the error unchanged, when a small
SVD component is included.

The Krylov subspace, on the other hand, is constructed from the starting vector
AT b which has the SVD expansion

AT b = ATAxexact +AT e =

n∑
i=1

σ2
i (v

T
i x

exact) vi +

n∑
i=1

σi (u
T
i e) vi.

Hence, about half of the SVD coefficients of this vector are solely due to the noise
components, and therefore these components are small (they are zero for the ideal
noise-free problem). Consequently, the Krylov space Kk is dominated by precisely
those singular vectors that contribute most the the solution – and only the needed
SVD directions are well represented in the Krylov subspace. Hence, the error decreases
much more rapidly for the CGLS solution than the TSVD solution, see the right part
of Fig. 4. We also have better suppression of the noise, because the unnecessary
pure-noise TSVD components are avoided in the CGLS solution.

Other Krylov Methods – MR-II and RRGMRES

It is natural to seek iterative regularization methods based on other Krylov subspaces.
For example, the matrix A may be symmetric in which case there is obviously no
need for its transpose—or A may represent the discretization of a linear operator
for which it is difficult or inconvenient to write a black-box function for multiplication
with AT . Hence there is an interest in the algorithms MINRES and GMRES, designed
for symmetric and nonsymmetric square matrices respectively; both are based on the
Krylov subspace span{b, A b,A2 b, . . . , Ak−1 b}. Unfortunately this subspace has a big
disadvantage: it includes the noisy right-hand side b = Axexact + e and thus the noise
component e. This means that the solution, obtained as a linear combination of the
vectors b,A b,A2 b, . . ., is likely to include a large noise component.
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Fig. 5.

The solution to this problem is to work with the “shifted” Krylov subspace that
starts with the vector Ab, i.e.,

K⃗k = span{Ab,A2 b, . . . , Ak b}. (5)

The advantage of this subspace is that the noise component is now multiplied with
A which has a smoothing effect and thus dampens the high-frequency components of
the noise. The associated iterative algorithms based on K⃗k are called MR-II [4] and
RRGMRES [1]; see Fig. 5 for an illustrate of the advantage of MR-II over MINRES.

The performance and the regularizing properties of MR-II and RRGMRES are
carefully studied in [12], where details can be found. To summarize:

• The absence of the vector b in the Krylov subspace K⃗k (5) is essential for the
use of MR-II and RRGMRES for discrete inverse problems.

• MR-II is a spectral filtering method. Negative eigenvalues of A do not inhibit
the regularizing effect, but they can deteriorate the convergence rate.

• RRGMRES mixes the SVD components in each iteration and thus it does not
provide a filtered SVD solution. The method works well if the mixing is weak
(e.g, if A is nearly symmetric), or if the Krylov basis vectors are well suited for
the problem. RRGMRES fails to produce regularized solutions when the mixing
is strong, or when A has an unfavorable null space.

In conclusion, MR-II is a competitive alternative to CGLS for symmetric indefinite
matrices, while for nonsymmetric matrices there is no transpose-free iterative regular-
ization algorithm that can be used as a black-box method, in the same way as CGLS.

Noise Propagation in the Krylov Subspace Methods

To study how the noise in the data propagates to the solutions, we consider how CGLS,
GMRES and RRGMRES treat the wanted signal contents from the exact component
bexact = Axexact as well as the contents from the noise component e. These results are
from [11]. The CGLS solution can be written in terms of the bidiagonalization of A
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Fig. 6.

as x(k) = Wk B
†
k U

T
k+1b, and hence it can be split into the signal and noise components

x(k) = x
(k)

bexact
+ x

(k)
e with

x
(k)

bexact
= Wk B

†
k U

T
k+1b

exact, x(k)
e = Wk B

†
k U

T
k+1e.

Similarly for the GMRES and RRGMRES methods we have the splitting

x̂(k) = x̂
(k)

bexact
+ x̂(k)

e and x̃(k) = x̃
(k)

bexact
+ x̃(k)

e .

Note that the Krylov subspace Kk is generated by b (and not bexact), and therefore

the component x
(k)

bexact
differs from the CGLS solution produced with bexact as starting

vector. The same is true for GMRES and RRGMRES. This situation, where the signal
component depends on the noise in the data, is unique for regularizing iterations (due
to the dependence of the Krylov subspace on b = bexact + e).

Figure 6 illustrates the splitting for CGLS, GMRES and RRGMRES after 10
iterations, for two test problems with a symmetric and a non-symmetric matrix A for
an isotropic and a non-isotropic point-spread function, respectively. We see how the
noise propagates very differently in the three methods, due to the differences in the
associated Krylov subspaces.

The CGLS algorithm produces low-frequent ringing effects in the signal component
x
(k)

bexact
for both the symmetric and the nonsymmetric coefficient matrix. The noise

component x
(k)
e consists of bandpass-filtered noise in the form of freckles, and the shape

of the freckles depends on the shape of the point-spread function. It is interesting to see
how both the ringing in the signal component and the freckles in the noise component
are correlated with the contours of the image, caused by the specific Krylov subspace.

GMRES propagate a white-noise component in the signal component x̂
(k)

bexact
, caused

by the explicit presence of the noise in the basis vectors for the Krylov subspace. The
white-noise component is particularly pronounced in the GMRES signal component.

The RRGMRES signal component behaves much like the CGLS signal component,
except that it tends to carry more details after the same number of iterations. The
noise components resemble those of the CGLS method. For the symmetric matrix,
the freckles are smaller in diameter than for CGLS, and they are more visible in the
signal component. For the nonsymmetric matrix, both components are quite similar
to the CGLS components.
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Subspace Preconditioning

Subspace preconditioning is a technique to improve the reconstructions by working in
a modified subspace. To motivate this, it is well known that it is often advantageous
to use Tikhonov regularization in the general form

min
x

{
∥Ax− b∥22 + λ2 ∥Lx∥22

}
, (6)

where L is a carefully chosen matrix (see [7] for more details). This problem can be
turned into an equivalent problem in standard form

min
x̄

∥A x̄− b∥22 + λ2∥x̄∥22 with A = AL# and x = L#x̄+ xN (7)

where L# is the oblique pseudoinverse of L and xN is the component of the solution
in N (L). If we apply CGLS to the standard-form problem (7) then the iterates, when
transformed back to the original setting, lie in the affine space

span{MAT b, (MATA)MAT b, (MATA)2MAT b, . . . , (MATA)k−1MAT b}+ xN ,

where M = L#(L#)T . Hence we can think of L as a preconditioner for CGLS, with
the purpose of providing a better suited subspace. The Krylov subspace methods
are implemented in such as way that A is never formed explicitly; see [5] and [7] for
implementation details.

R(AL#L)

R(AL#L)⊥

����������
N (L)⊥A

N (L)

-
AxM

6AxN

�
�
�

�
�
�
�>

Ax

Rm

�������1
xM

6xN

�
�
�
�

�
��

x
Rn

Following [6], we can use a simple geometric argument to explain why we need to
use the oblique pseudoinverse L# in (7). The idea is to split the solution into two
components x = xM + xN . The second component lies in the null space of L, i.e.,
xN ∈ N (L), while the first component xM is ATA–orthogonal to xN , i.e., it lies in a
subspace N (L)⊥A . This corresponds to an oblique splitting of the subspace Rn.

Given this splitting, it follows immediately that the vector Ax = AxM + AxN

splits into two orthogonal components, and thus the Tikhonov problem reduces to two
independent problems for xM and xN , respectively:

min
xM

∥AxM − b∥22 + λ2∥xM∥22 and min
xN

∥AxN − b∥22.

The corresponding two subspaces in Rm areR(AL#L) and its orthogonal complement.
Moreover, xM = L#Lx such that AxM = (AL#) (Lx) leading to the standard-form
problem (7); we refer to [6] for details.

It can be shown that the matrix L#L is the oblique projector on N (L)⊥A along
N (L), and that A = AL# is the corresponding oblique pseudoinverse. How to effi-
ciently implement the computations with L# is described in, e.g., [5] and [7].

An alternative formulation of the standard-form transformation suited for the al-
gorithms MR-II and RRGMRES is described in [10].
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