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Three Fundamental Challenges of Image Deblurring

←→

1. Incomplete and noisy data (blurred noisy images).

2. Limited accuracy of the solutions, due to ill-posedness.

3. Memory requirements and computing times.

For example, 3-D tomography reconstructions – if solved by naive
methods – will require thousands of Gbytes of memory.

Only new mathematical techniques can provide more accurate
solutions while, at the same time, achieving the necessary
substantial reduction in memory demand and computing time.
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We Know How To Do It Right!

Reasonable computing times and memory requirements were
previously achieved via “tricks” – often based on the FFT.

Blurred image FFT deblurring DCT deblurring

(artifacts) (no artifacts)

But we can reformulate the problem – e.g., by including natural
boundary conditions, and use other algorithms – to obtain a better
reconstruction. Pure FFT algorithms belong to the past.
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Iterative Methods + Semi-Convergence

Large-scale imaging problems can often be solved by iterative
methods, such as (preconditioned) regularizing iterations.

During the first iterations, the iterates x[k] tend to be better and
better approximations to the exact solution xexact.

A some stage they start to diverge and converge towards A−1b.
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Goals (and Non-Goals) of This Talk

Our focus is on regularizing iterations associated with the Krylov
subspace methods CGLS, MINRES and GMRES.

I The success of these methods is governed by the initial behavior
of the iterations. We are not concerned with asymptotic analysis.

I We are interested in the visual quality of the reconstructions.
Error norms and residual norms do not provide enough information.

I We are mainly concerned with suppression of noise (from data)
in the reconstructions. We are not concerned with noise → 0.

In particular we want to study how image noise propagates
through the deblurring algorithm to the reconstruction.

Matlab codes: www.imm.dtu.dk/~pch/NoisePropagation.html.
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And Now . . . The DCT

We want to do better than just staring at the reconstructions!

Our tool is the DCT = discrete cosine transformation, which
allows us to study the spatial frequency contents in the images.

(DFT could also be used – but we prefer a real transformation.)

Matrix formulation of DCT (x = signal, x̂ = spectrum):

x̂ = dct(x) = C x,

where C is an n× n orthogonal matrix with elements

Cij =





√
1/n i = 1√
2/n cos

(
π(i− 1)(2j − 1)/(2n)

)
, i > 1.

The rows of C are sampled cosines.
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DCT for Spectral Analysis of Time Series

0 0.01 0.02

Time signal

0 1000 2000 3000 4000

DCT spectrum

Jazz guitar

0 0.01 0.02 0 1000 2000 3000 4000

Speech signal

0 0.01 0.02
Time [sec]

0 1000 2000 3000 4000

Metallica

Frequency [Hz]

In white noise all spectral components have the same expectation.
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Two-Dimensional DCT Analysis

The two-dimensional DCT of a square image X is:

X̂ = dct2(X) = CX CT .

X = Io (moon of Jupiter) | dct2(X) |
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Images are dominated by spatially low-frequent information.
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Filtered White Noise → “Freckles”

Top: Ψ = randn(n)¯ (filter matrix of 0s and 1s)

Bottom: Xfilt = idct2(Ψ)
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The Point Spread Function

The point spread function is the image of a single bright pixel.

The blurred image is the sum of all the blurred pixels.
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The Discrete Problem of Image Deblurring

Notation: X = sharp image, B = blurred image.

Image deblurring is a discrete inverse problem of the form

Ax = b

where x and b are “stacked” versions of X and B,

vec notation: x = vec (X) , b = vec (B).

The (huge) PSF matrix A comes from the point
spread function and represents the blurring.

Usually A has structure, e.g., block-Toeplitz with
Toeplitz blocks, and the structure depends on the
PSF and the boundary conditions.
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Our Test Problems

Sharp and blurred images due to symmetric/nonsymmetric A:

Zoom of the corresponding point spread functions:
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Regularizing Iterations (Regularization by Projection)

We consider several Krylov subspace methods of the form

min
x
‖Ax− b‖2 s.t. x ∈ Sk, Sk = Krylov subspace.

CGLS:

Sk = span
{
AT b, (AT A)AT b, . . . , (AT A)k−1AT b

}
.

GMRES and MINRES:

Sk = span
{
b, Ab,A2b, . . . , Ak−1b

}
.

RRGMRES and MR-II:

Sk = span
{
Ab,A2b, . . . , Ak−1b, Akb

}
.

Implementations of these methods produce (explicitly or implicitly)
an orthonormal basis for Sk.
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Symmetric A, Iterations k = 5, 10, and 20
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Nonsymmetric A, Iterations k = 5, 10, and 20
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A Closer Look at the Krylov Basis – CGLS

The “power vectors” (AT A)i−1AT b of the CGLS Krylov subspace
Sk are just more and more blurred versions of B. Not interesting!

# We need an orthonormal basis for Sk.

Recall that CGLS is equivalent to LSQR bidiagonalization:

AVk = Uk+1 Bk, Uk+1 and Vk have orthonormal columns.

The CGLS/LSQR solution is

x[k] = Vk ξk with ξk = argminξ‖Bk ξ − β e1‖2.
Introducing the SVD, Bk = PkΣkQT

k , we can also write

x[k] = (Vk Qk)Σ−1
k (β PT

k e1)

There is useful information in the columns of Vk and Vk Qk.
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CGLS Krylov Basis (Symm. A) – Columns of Vk

1 3 15 40

More spectral frequencies are included as k increases.

No high frequencies are present.
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CGLS Krylov Basis (Symm. A) – Columns of Vk Qk

1 3 15 40

These vectors first resemble spectral bases, but later some
“freckles” = band-pass filtered structures begin to appear.

Image Deblurring TIR08 – Manchester, July ’08



19

A Closer Look at the Krylov Basis – GMRES

Again the “power vectors” Ai−1b of the GMRES Krylov subspace
are just more and more blurred versions of B.

Recall that GMRES produces a “Hessenbergization:”

AWk = Wk+1 Hk, Wk+1 has orthonormal columns.

The GMRES solution is

x[k] = Wk ξk with ξk = argminξ‖Hk ξ − β e1‖2.
Introducing the SVD Hk = PkΣkQT

k we can also write

x[k] = (Wk Qk)Σ−1
k (β PT

k e1)

There is useful information in the columns of Wk and Wk Qk.
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The GMRES Krylov Basis – Columns of Wk

1 3 15 40

More spectral frequencies are included as k increases.

White noise is always present, due to the vector b in the basis!
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GMRES Krylov Basis – Columns of Wk Qk

1 3 15 40

These vectors do not resemble spectral bases.

The “freckles” = band-pass filtered structures are still present.
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The RRGMRES Krylov Basis – Columns of Wk

1 3 15 40

Similar to GMRES – but the white noise is gone (thanks to Ab)!

The behavior of RRGMRES resembles that of CGLS.
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How the Noise Enters the Picture

A very common assumption is that the noise in the data is additive:

B = Bexact + E ⇔ b = bexact + e.

This assumption lets us separate the filtered “signal” and “noise”
components in the reconstructions.

LSQR:

x(k) = VkB†
kUT

k+1b = VkB†
kUT

k+1b
exact

︸ ︷︷ ︸
“signal”

+ VkB†
kUT

k+1e︸ ︷︷ ︸
“noise”

GMRES:

x̂(k) = WkH†
kWT

k+1b = WkH†
kWT

k+1b
exact

︸ ︷︷ ︸
“signal”

+ WkH†
kWT

k+1e︸ ︷︷ ︸
“noise”

Note: the matrices Vk, Bk, Uk+1, Wk+1, and Hk are obtained by
running CGLS and GMRES on the noisy b.
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Signal and Noise Parts in CGLS Iterates (k = 10)

Symm. A

Nonsym. A
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Signal and Noise Parts in GMRES Iterates (k = 10)

Symm. A

Nonsym. A
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Signal and Noise Parts in RRGMRES Iterates (k = 10)

Symm. A

Nonsym. A
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Observations on the Noise Propagation

• CGLS:

– Signal: getting sharper than the blurred data B.

– Noise: medium-frequency “freckles” and “ringing” that
follow the contours in the image.

• GMRES:

– Both signal and noise have a significant white-noise
component due to the noise vector in the Krylov subspace.

• RRGMRES:

– Quite similar to CGLS.

Conclusion: it is highly advisable to use RRGMRES (and MR-II)
instead of GMRES (and MINRES).

There is no clear winner among CGLS and RRGMRES here.
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Conclusions

1. Singular vectors and Krylov subspace vectors ∼ spectral bases.

2. Regularization is achieved via projection on Krylov subspace.

3. CGLS and RRGMRES provide useful Krylov subspaces.

4. Don’t use GMRES/MINRES (noise component in basis).

5. Propagated noise is correlated with structures in the image
(this “masks” some of the noise).

6. Very low noise levels (see paper): the “masking” makes
GMRES/RRGRMES solutions appear sharper than they are.

7. Freckles arise in both CGLS and RRGMRES, no clear winner.

8. Stopping criterion – an open problem.

9. Next: edge-preserving methods and nonnegativity constraints.
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