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Why are We Interested in ART?

There are many ways to compute reconstructions in tomography:
explicit inversion formulas, Bayesian methods,
algebraic iterative methods, variational formulations, ...

I will focus on a particular algebraic iterative method, ART:
e surprisingly simple to formulate,
e has a simple geometric interpretation,
e works well for a number of applications,
e has fast initial convergence,

e casily allows simple constraints (e.g., nonnegativity).
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What is ART? =

o

A simple iterative procedure for solving A x = b where each iteration
updates x via sweeps over the rows a! of the matrix A.

Kaczmarz (1937): orthogonally project x on the hyperplane defined by
al and the corresponding element b; of the right-hand side:

T

lasl3
Gordon, Bender, Herman (1970): coined the term “ART” and intro-

duced a nonnegativity projection:

T
b —a; x

las 13

x < Pix=x+ a; , 1 =1,2,...,m .

xemaX{O,er ai}, 1=1,2,....m .
“ART” is now used synonymously with Kaczmarz’s formulation with
a relaxation parameter w; and a projection Po on a convex set:

T
b —a; x

;|3

xePC<az—|—wk ai> : 1 =1,2,....m .
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Software for ART

I am afraid that this list is far from complete.

5/27

P.
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SNARKO09: C++ package from NYU, 2D reconstructions.

ASTRA: C++ & CUDA with Matlab wrapper,
from Antwerp + CWIL.

Image reconstruction toolbox: Matlab package from Prof. Jeft

Fessler, Univ. of Michigan
AIR TooLs: Matlab package from DTU.
What did I miss?

Hansen — ART Exhibit
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Some Interesting ART Topics

ART is a rich source for research problems!

This list is quite biased towards my own work with the AIR ToOOLS.
e Semi-convergence theory.
e Implementation of block ART.

e Choice of relaxation paremter.

This presentation

e Stopping Rules.

e Extensions and variations of ART.
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Semi-Convergence

i

Notation: b= AT+ e, T = exact solution, e = noise.

Initial iterations: the error ||T — xy||o decreases.

Later: the error increases as x; — (weighted) least squares solution.

3.6,
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Error history for ART A few references:

F. Natterer, The Mathematics of
Computerized Tomography (1986)
A. van der Sluis & H. van der Vorst,
SIRT- and CG-type methods for the
iterative solution of sparse linear
least-squares problems (1990)

M. Bertero & P. Boccacci, Inverse
Problems in Imaging (1998)

M. Kilmer & G. W. Stewart, Iterative
Regularization And Minres (1999)

H. W. Engl, M. Hanke & A. Neubauer,

Regularization of Inverse Problems
(2000)
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lllustration of Semi-Convergence
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Analysis of Semi-Convergence for ART

i

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method,
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007.

Let T be the solution to the noise-free problem, and let "
denote the iterates when applying ART to . Then

lzk = Zll2 < llzk — Zellz + 12k — 22 -

Noise error Iteration error

The convergence theory for ART is well established and en-
sures that the iteration error ; —  goes to zero.

Our concern here is the noise error el,j — 2 — T1. We wish to
establish that it increases, and how fast.
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Sidetrack: Noise Error for Landweber

i

Steepest descent for LSQ problem: xx,1 = Pg (xk +wAT(b- A xk))

Filter factors go[k] =1- (1 — waiz)k

7

The unprojected case:

x 1s a filtered SVD solution: h
T
= S e o, 10"
107
102

With projection an SVD analysis is not possible; we obtain:

o1 (1 —wo?)k

lzk — Zrl2 < 1]l
n n
and for w2 < 1 we have:
||CCk — kaQ ~wk HAHQ HbH2 Elfving, H, Nikazad, 2012
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Noise Error for ART — No Projection

ART is equivalent to applying SOR to A ATy = b, z = A'y. Splitting:
AAY=L+D+LY, M=(D+wL)
where L is strictly lower triangular and D = diag(||a;||3). Then:

Tpe1 = + wWATM (b— Axy,) .

We introduce: e =0b—b=noise in data, Q=1I—wATM A.

Then simple manipulations show that the noise error is given by
k—1
ey =, —Tp=Q er_| +wA'Me :wZQjATMe :
j=1
After some work (see the paper) we obtain the bound
1—gF
l—gq
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Noise Error Analysis — A Tighter Bound =
Further analysis (see the paper) shows that the noise error in
ART is bounded above as:
AT Me 1— (1 —wo?)*
Nle < N g, o), v = el
o o ]
As long as wo? < 1 we have . Uy, forw=1
— 0, =01
U < VoV 35| — ¢, =005
and thus 40| — O =0025
—ATM] || Oy =001
® ella ~ _
el < VAL 4 002y,
r 20

This also holds for projected ART "
provided that A and P satisfy 10

y € R(AT) = P(y) € R(AT).

0 1000 2000 3000 4000 5000

k

12/27  P. C. Hansen — ART Exhibit Oberwolfach, August 2014



WE

Numerical Results (‘paralleltomo’ from AIR Tools)

The point of semi-convergence arises when noise error ~ iteration error.

Noise error Iteration error
- I ‘ . I I I —SI m. Kaal:zmarz
Test problem: 19 noise 1% noise | e
® 200)(200 phantom, 10t '.'\_ - - -Kaczmarz box
. . __-—"'4' o g
60 projections at T —1 |k
e 3° §°.Q° 180° 101"’.\",\
= m= 15,232, sk \
——Sym. Kaczmarz 1;:5_: S
" n = 40,000. e,
- - -Kaczmarz box |
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We eSt ]_mate i Noise error 5 Iteration error
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\/@HATM€H2 . 5% noise I 5% noise [ Keame
~ 1 O . / - - -Kaczmarz box
O-T - ____7___——_—*—_____fff__-7-—_—_*_—T'T'_
. 1|27 S )'\
Hence our bound is a " /
wild over-estimate but S 1”\
it correctly tracks the | .~ — SR o e
. e — sart(k)_ ]
nOlse error * 10 0 'IIO 26 SID 4I0 5IU éﬂ ?IO 80 0 1IU EID 3I0 4IU 5I0 BIO 7I0 80
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Implementation Issues

i

SIRT (Cimmino): z + P(z + w A" D™*(b— Ax))

ART vs. SIRT (Cimmino)

o
o0
I
[ ‘ ‘
I
W =N
g g
5 =3
> T
= 2 |
[ | o=
r—\QQ
e
=)

\ Slow convergence.

|z = Z[|2/]|Z)2

o
>
[
I
|
:
I
:

- - - - _ _ _ _ ART can converge a
lot faster than SIRT.

0 10 20 30 10 50
[teration k
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Performance t  ART
1 core 5
E k
(]
2
o _ IS
|z® —Z|[2/||Z]]2 @
» lterations k
ART
m X n t/iter
131282 x 64° | 0.08 s Intel Xeon E5620
].3 . 2562 X 1283 093 S 2.40 GHz (1 Core)
13-5122 x 2563 | 10.8 s

Test Problem:

« Parallel-beam tomography.

e 13 projections.

3D Shepp-Logan phantom, Schabel (2006).
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Performance
1 core

ART

_

HE
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ART SIRT

m X n t/iter | t/iter

131282 x 643 | 0.08 s | 0.08 s

13-256° x 1282 | 0.93s | 1.02 s

13-5122 x 2563 | 10.8 s | 14.7 s
SIRT

Intel Xeon E5620
2.40 GHz (1 core)

Same number of flops!

The difference is due to
the cache: ART uses
row a; twice once it is
loaded.

Oberwolfach, August 2014
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Performance ART =
4 cores
SIRT SIRT
ART 1 core 4 cores
m X n t/iter | t/iter | t/iter
13-1282 x64% | 0.08s | 0.08s | 0.04 s R E——
13-256% x 128% | 0.93s | 1.02s | 0.41 s 240 GHz (4 cores)
13-5122 x 2562 | 10.8 s | 14.7s | 4.12 s f
SIRT
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Four cores are better
suited for block matrix-
vector operations.
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Our Dilemma

i

ART has faster convergence than SIRT — i.e., more reduction of
the error per iteration.

SIRT can better take advantage of multi-core architecture than ART.

How to achieve the ”best of both worlds?” — Block methods!

H. H. B. Sgrensen and P. C. Hansen, Multi-core performance of block
algebraic iterative reconstruction methods, SIAM J. Sci. Comp., 36
(2014), pp. C524—C546.
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Block Methods

i

( ﬁ;\ ta

A: , b: . , AEERTH@XH’ 621,...,]),

VY

In each iteration we can:

Treat the blocks sequentially or simultaneously (i.e., in parallel).
Treat each block by an iterative or by a direct computation.

We obtain several methods:

19/27

Sequential processing + ART on each block — classical ART
Sequential processing + SIRT on each block

Sequential processing + pseudoinverse of A,

Parallel processing + ART on each block

Parallel processing + SIRT on each block — classical SIRT
Parallel processing + pseudoinverse of A,
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Block-Sequential Methods

Algorithm: Block-Sequential SART: Andersen, Kak (1984)
Initialization: choose an arbitrary z¥ € R™ Block-Iteration: Censor (1988)

Iteration: for £ =0,1,2,...
k0 — k-1

rht = P(Cljk’e_l —|—wAZMg (be —Agwk’e_l)), (=1,2,...,p

kE _ xk:—l,p

X

The convergence depends on the number of blocks p:

» If p =1, we recover SIRT
> If p = m, we recover ART

Parallelism given by the tradeoff: m/p rows

Variant by Elfving (1980): M, = (A, A" = AT M, = A}
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Block-Parallel Methods =
Algorithm: Block-Parallel String-Averaging:
Initialization: choose an arbitrary z° € R" Censor, Elfving, Herman (2001)
Iteration: for £ =0,1,2,...

for £ =1,...,p execute in parallel

rFt = ART-sweep(w, Ag, by, 1)
k Pk
xh = 1/p >y g atr.

The convergence depends on p:

Parallelism is given by: p blocks
» If p =1, we recover ART

» If p = m, we recover SIRT

Variants:
> Elfving (1980) — inner step: x** = P(xk_l’e +w Az (by — Ay xk—l,ﬁ))

» CARP algorithm, Gordon & Gordon (2005):

k= 22:1 Dkt D, depends on sparsity structure
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Blocks of Structurally Orthogonal Rows

In 3D tomography, it is easy to find sets of rows that are orthogonal
due to the structure of zeros/nonzeros.

Thus, a re-ordering of the rows can produce blocks with mutually
orthogonal rows (= the traces of rays are non-overlapping).

When a block has structurally orthogonal rows then ART, SIRT and
"pinv” are equivalent. It is worthwhile to utilize this!

> PART algorithm, Gordon (2006)
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Block Sequential

Intel Xeon
E5620

2.40 GHz
(4 cores)

Block-5>eq.

ART

>

HE

4 blocks
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ART SIRT
m X n t/iter | t/iter | t/iter
13-128%2 x64% | 0.08s | 0.04s | 0.05s
13-2562% x 1283 | 0.93s | 0.41 s | 0.48 s
13-5122 x 2563 | 10.8 s | 4.12s | 4.36 s
SIRT The ”building blocks” are

SIRT Iiterations, suited
for multicore.

The blocks are treated
sequentailly!

Hence the error reduc-
tion per iteration is close
to that of ART.
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Block Parallel ART =
Intel Xeon
E5620
2.40 GHz >
(4 cores)
Block
Block-Seq. ART SIRT Par. Block-Par.
m X n t/iter | t/iter | t/iter | t/iter
13- 1282 x 643 0.08s | 0.04s | 0.05s | 0.10 s
13-256% x 1283 | 0.93s | 0.41s | 048 s | 0.37 s
13-512%2 x 2563 | 10.8s | 4.12s | 4.36s | 5.41 s
SIRT
4 blocks >
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Multi-Core Results — 4 Cores

i

Multi-core: 4 cores

Method Block-Seq Block-Par CARP PART ART
Blocks 64 4 4 460 8
[terations 2 3 3 2 2

Time (s) 2.54 1.89 2.19 1.90 3.92

Intel Core i7-3820
3.60 GHz (4 cores)

Block-Seq: block-sequential-SIRT

Block-Par: block-parallel-ART (Censor, Elfving, Herman)

CARP: block-parallel-ART (Gordon, Gordon)
PART — utilizes struct. orthog.
ART (1 thread)

25/27 P. C. Hansen — ART Exhibit

The advantage of PART over standard
ART is due to the improved use of
multicore architecture.

1283 voxels
115 projections of
128 x 128 pixels
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Multi-Core Results — 32 Cores

Multi-core: 32 cores

Method Block-Seq Block-Par CARP PART
Blocks 64 2 4 460
[terations 2 2 3 2
Time (s) 4.77 5.98 7.60 2.50 11.29

4 socket AMD Opteron 6282 SE

2.60 GHz (32 cores) With many cores,

PART is a clear winner.

Block-Seq: block-sequential-SIRT
Block-Par: block-parallel-ART (Censor, Elfving, Herman) 2563 voxels

CARP: block-parallel-ART (Gordon, Gordon) 133 projections of
PART — utilizes struct. orthog. 256 x 256 pixels
ART (1 thread)
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Conclusions =

a Block algebraic iterative reconstruction techniques are able to
achieve initial convergence rate similar to that of ART,

0 and with the smaller computing time of SIRT, because we can
utilize the multicore architecture.

QO With a suitable row ordering and choice of blocks, we can
produce blocks of structurally orthogonal rows.

O PART has identical convergence to ART and very good scaling
properties in practice.

O Next step: target GPUs (joint work with ASTRA group).
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