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About Me …

Interests: numerical methods for inverse problems and tomography, fast and 
reliable numerical regularization algorithms, matrix computations, image deblurring 
algorithms, signal processing, Matlab software, …

Forward problem
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Why are We Interested in ART?

There are many ways to compute reconstructions in tomography:
explicit inversion formulas, Bayesian methods,
algebraic iterative methods, variational formulations, . . .

I will focus on a particular algebraic iterative method, ART:

• surprisingly simple to formulate,

• has a simple geometric interpretation,

• works well for a number of applications,

• has fast initial convergence,

• easily allows simple constraints (e.g., nonnegativity).
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What is ART?
A simple iterative procedure for solving Ax = b where each iteration
updates x via sweeps over the rows aTi of the matrix A.

Kaczmarz (1937): orthogonally project x on the hyperplane defined by
aTi and the corresponding element bi of the right-hand side:

x← Pi x = x+
bi − aTi x
kaik22

ai , i = 1, 2, . . . ,m .

Gordon, Bender, Herman (1970): coined the term “ART” and intro-
duced a nonnegativity projection:

x← max

½
0 , x+

bi − aTi x
kaik22

ai

¾
, i = 1, 2, . . . ,m .

“ART” is now used synonymously with Kaczmarz’s formulation with
a relaxation parameter ωk and a projection PC on a convex set:

x← PC
µ
x+ ωk

bi − aTi x
kaik22

ai

¶
, i = 1, 2, . . . ,m .
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Software for ART

I am afraid that this list is far from complete.

• SNARK09: C++ package from NYU, 2D reconstructions.

• ASTRA: C++ & CUDA with Matlab wrapper,
from Antwerp + CWI.

• Image reconstruction toolbox: Matlab package from Prof. Jeff
Fessler, Univ. of Michigan

• AIR Tools: Matlab package from DTU.

• What did I miss?
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Some Interesting ART Topics
ART is a rich source for research problems!

This list is quite biased towards my own work with the AIR Tools.

• Semi-convergence theory.
• Implementation of block ART.
• Choice of relaxation paremter.
• Stopping Rules.
• Extensions and variations of ART.

This presentation
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Semi-Convergence

Notation: b = A x̄+ e, x̄ = exact solution, e = noise.

Initial iterations: the error kx̄− xkk2 decreases.
Later: the error increases as xk→ (weighted) least squares solution.

A few references:
 F. Natterer, The Mathematics of 

Computerized Tomography (1986)
 A. van der Sluis & H. van der Vorst, 

SIRT- and CG-type methods for the 
iterative solution of sparse linear
least-squares problems (1990)

 M. Bertero & P. Boccacci, Inverse 
Problems in Imaging (1998)

 M. Kilmer & G. W. Stewart, Iterative 
Regularization And Minres (1999)

 H. W. Engl, M. Hanke & A. Neubauer, 
Regularization of Inverse Problems
(2000)

kx̄
−
x
k
k 2
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Illustration of Semi-Convergence
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Analysis of Semi-Convergence for ART

Let x̄ be the solution to the noise-free problem, and let x̄k

denote the iterates when applying ART to b̄. Then

kxk − x̄k2 ≤ kxk − x̄kk2 + kx̄k − x̄k2 .
Noise error Iteration error

The convergence theory for ART is well established and en-
sures that the iteration error x̄k − x̄ goes to zero.

Our concern here is the noise error eNk = xk − x̄k. We wish to
establish that it increases, and how fast.

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method,
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007.
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Sidetrack: Noise Error for Landweber

The unprojected case:
xk is a filtered SVD solution:

With projection an SVD analysis is not possible; we obtain:

kxk − x̄kk2 ≤
σ1
σn

(1− ωσ2n)
k

σn
kbk2

and for ω σ2n ¿ 1 we have:

kxk − x̄kk2 ≈ ω k kAk2 kbk2.

xk =
Pn

i=1 ϕ
[k]
i

uTi b
σi
vi

ϕ
[k]
i = 1−

¡
1− ω σ2i

¢k
.

Filter factors ϕ
[k]
i = 1−

¡
1− ω σ2i

¢k

Elfving, H, Nikazad, 2012

Steepest descent for LSQ problem: xk+1 = PC
¡
xk + ωAT (b−Axk)

¢
.



Oberwolfach, August 201411/27 P. C. Hansen – ART Exhibit

Noise Error for ART – No Projection

We introduce: e = b− b̄ = noise in data, Q = I − ωATM A.

ART is equivalent to applying SOR to AAT y = b, x = AT y. Splitting:

AAT = L+D + LT , M = (D + ωL)−1,

where L is strictly lower triangular and D = diag(kaik22). Then:
xk+1 = xk + ωATM (b−Axk) .

Then simple manipulations show that the noise error is given by

eNk = xk − x̄k = Q eNk−1 + ωATM e = ω
k−1X
j=1

QjATM e .

After some work (see the paper) we obtain the bound

keNk k2 ≤ ωδ
1− qk
1− q = ω k kATM ek2 +O(σ2r).



Oberwolfach, August 201412/27 P. C. Hansen – ART Exhibit

Ψk for ω = 1

σr
σr
σr
σr

k

Noise Error Analysis – A Tighter Bound
Further analysis (see the paper) shows that the noise error in
ART is bounded above as:

keNk k2 ≤
kATM ek2

σr
Ψk +O(σ2r), Ψk =

1− (1− ωσ2r)
k

σr
.

As long as ωσ2r < 1 we have

Ψk ≤
√
ω
√
k

and thus

keNk k2 ≤
√
ωkATMek2

σr

√
k +O(σ2r).

This also holds for projected ART
provided that A and P satisfy

y ∈ R(AT ) ⇒ P(y) ∈ R(AT ).
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Numerical Results (‘paralleltomo’ from AIR Tools)

Test problem:

• 200200 phantom,
• 60 projections at
• 3,6,9,…,180,
 m = 15,232,
 n = 40,000.

We estimate
√
ωkATMek2

σr
≈ 107.

Hence our bound is a
wild over-estimate but
it correctly tracks the
noise error.

The point of semi-convergence arises when noise error  iteration error.

1% noise

5% noise

1% noise

5% noise
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Implementation Issues

Slow convergence.

ART can converge a 
lot faster than SIRT.

kx
k
−
x̄
k 2
/k
x̄
k 2

SIRT (Cimmino): x← P
¡
x+ ωATD−2(b−Ax)

¢
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Iterations k

Re
la

tiv
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er
ro

r

Test Problem:
• Parallel-beam tomography.
• 13 projections.
• 3D Shepp-Logan phantom, Schabel (2006).

kxk − x̄k2/kx̄k2

ART

Intel Xeon E5620
2.40 GHz (1 core)

Performance
1 core
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Performance
1 core

Intel Xeon E5620
2.40 GHz (1 core)

Same number of flops!
The difference is due to 
the cache: ART uses 
row ai twice once it is 
loaded.

ART SIRT
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Intel Xeon E5620
2.40 GHz (4 cores)

Performance
4 cores

ART
SIRT

Four cores are better 
suited for block matrix-
vector operations.

ART
SIRT
1 core 4 cores
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Our Dilemma

ART has faster convergence than SIRT – i.e., more reduction of 
the error per iteration.

SIRT can better take advantage of multi-core architecture than ART.

How to achieve the ”best of both worlds?”  Block methods!

H. H. B. Sørensen and P. C. Hansen, Multi-core performance of block 
algebraic iterative reconstruction methods, SIAM J. Sci. Comp., 36 
(2014), pp. C524–C546.
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Block Methods

In each iteration we can:
• Treat the blocks sequentially or simultaneously (i.e., in parallel).
• Treat each block by an iterative or by a direct computation.

We obtain several methods:
• Sequential processing + ART on each block  classical ART
• Sequential processing + SIRT on each block
• Sequential processing + pseudoinverse of Aℓ
• Parallel processing + ART on each block
• Parallel processing + SIRT on each block  classical SIRT
• Parallel processing + pseudoinverse of Aℓ
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The convergence depends on the number of blocks p:
 If p = 1, we recover SIRT
 If p = m, we recover ART

Block-Sequential Methods

SART: Andersen, Kak (1984)
Block-Iteration: Censor (1988)

Parallelism given by the tradeoff: 

Algorithm: Block-Sequential

Initialization: choose an arbitrary x0 ∈ Rn
Iteration: for k = 0, 1, 2, . . .

xk,0 = xk−1

xk,` = P
¡
xk,`−1 + ωAT` M` (b` − A` xk,`−1)

¢
, ` = 1, 2, . . . , p

xk = xk−1,p

M` = (A`A
T
` )
† ⇒ AT` M` = A

†
`

Variant by Elfving (1980):
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The convergence depends on p:
 If p = 1, we recover ART

 If p = m, we recover SIRT

Block-Parallel Methods

Algorithm: Block-Parallel

Initialization: choose an arbitrary x0 ∈ Rn
Iteration: for k = 0, 1, 2, . . .

for ` = 1, . . . , p execute in parallel

xk,` = ART-sweep(ω, A`, b`, x
k−1)

xk = 1/p
Pp

`=1 x
k,`.

Variants:
 Elfving (1980) – inner step: 

 CARP algorithm, Gordon & Gordon (2005): 
xk,` = P

¡
xk−1,` + ωA†`(b` −A` xk−1,`)

¢
xk =

Pp
`=1D` x

k,`, D` depends on sparsity structure

String-Averaging:
Censor, Elfving, Herman (2001)

Parallelism is given by: 
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Blocks of Structurally Orthogonal Rows

When a block has structurally orthogonal rows then ART, SIRT and 
”pinv” are equivalent. It is worthwhile to utilize this!

 PART algorithm, Gordon (2006)

In 3D tomography, it is easy to find sets of rows that are orthogonal 
due to the structure of zeros/nonzeros.

Thus, a re-ordering of the rows can produce blocks with mutually 
orthogonal rows (= the traces of rays are non-overlapping).
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Block Sequential

4 blocks

The ”building blocks” are 
SIRT iterations, suited 
for multicore.
The blocks are treated 
sequentailly!
Hence the error reduc-
tion per iteration is close 
to that of ART.

ART SIRT Block-Seq.

Intel Xeon 
E5620

2.40 GHz
(4 cores)
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Block Parallel

ART SIRT
Block
Seq.

Block
Par.

Intel Xeon 
E5620

2.40 GHz
(4 cores)

4 blocks
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Multi-Core Results – 4 Cores

Intel Core i7-3820 
3.60 GHz (4 cores) The advantage of PART over standard 

ART is due to the improved use of 
multicore architecture.

Block-Seq: block-sequential-SIRT
Block-Par: block-parallel-ART (Censor, Elfving, Herman)
CARP: block-parallel-ART (Gordon, Gordon)
PART – utilizes struct. orthog.
ART (1 thread)

1283 voxels
115 projections of

128×128 pixels
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Multi-Core Results – 32 Cores

4 socket AMD Opteron 6282 SE
2.60 GHz (32 cores) With many cores, 

PART is a clear winner.

Block-Seq: block-sequential-SIRT
Block-Par: block-parallel-ART (Censor, Elfving, Herman)
CARP: block-parallel-ART (Gordon, Gordon)
PART – utilizes struct. orthog.
ART (1 thread)

2563 voxels
133 projections of

256×256 pixels
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Conclusions

 Block algebraic iterative reconstruction techniques are able to 
achieve initial convergence rate similar to that of ART,

 and with the smaller computing time of SIRT, because we can 
utilize the multicore architecture.

 With a suitable row ordering and choice of blocks, we can 
produce blocks of structurally orthogonal rows.

 PART has identical convergence to ART and very good scaling 
properties in practice.

 Next step: target GPUs (joint work with ASTRA group).


