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What do we mean by ”Rich” Tomography?

I Conventional tomography reconstructs one scalar image from
measurements of one scalar for each ray.

I In rich tomography make multiple measurements for each ray,
and we aim to reconstruct a higher dimensional object, such
as a vector, tensor or function, or exploit the redundancy in
the data to reconstruct a scalar with fewer rays.

I Examples include
I Spectral transmission tomography
I Scattering tomography with energy sensitive detectors
I Diffraction tomography
I Polarized light tomography
I Polarized neutron tomography
I Doppler ultrasound tomography



Infrared spectral tomography
I Chemical species can be identified by their infra-red

absorption spectra
I The spectra depend on temperature and pressure.
I By making measurements with multiple laser beams at

multiple wavelengths one can attempt to image distribution of
a chemical species or temperature

I This is used in industrial monitoring, and similar techniques
used in atmospheric monitoring.

I While it is fairly easy to measure multiple wavelengths the
number of rays measured is typically small.

I Typically this is treated as an absorption process and
scattering is ignored. The opposite of Diffuse Optical
Tomography.

I The misnomer ‘hyperspectral’ tomography/imaging is used,
but this is for historical reasons as people had already used
the word spectral imaging for just a few frequency. We will
drop the ‘hype’.



An et al

The experimental setup in [1]



Spectral tomography in general

I f (x) be the property we desire to image,x ∈ R2 the
coordinate in the imaging plane.

I For each line xp,θ(s) = pθ⊥ + sθ in the plane we assume we
can measure the integral

Rf (p, θ, λ) =

∫
α(f (xp,θ(s)), λ) ds

for λ0 < λ < λ1.

I Here α is assumed monotonic as a function of x for λ in that
range.

I Varying λ results in more data so can f be reconstructed with
fewer projections than would be the case for conventional
tomography?

I There are claims (Eg An et al) in the IRTT literature that two
projections might be sufficient.



Simple discrete case

Consider the discrete case where fij is the pixel value on an N × N
square xij .
We take only two projections in the coordinate directions at
λ = λk , k = 1...K so that the data are

R1mk =
N∑
j=1

α(fmj , λk), R2mk =
N∑
j=1

α(fjm, λk).

What we can deduce from just R1mk where m = 1...N and
k = 1...K = N?
This is a system of N equations for N variables (fmj)

N
j=1.

Fixing a row of the image m the Jacobian matrix
(∂R1mk/∂fmj)

N
j ,k=1 is invertible then the inverse function theorem

guarantees that where a solution exists in is unique within a
neighbourhood of that solution.



Note that

∂R1mk/∂fij =
∂α

∂f
(fmj , λk)

so under fairly general conditions if the values of fmj are different
the columns of the Jacobian are independent vectors.
However R1mk is invariant under permutation of the values in the
vector (fm,j)

N
j=1.

Even if we can find the values of the pixels along that row, we
have no hope of finding the order in which they occur from one
projection. In general for given data R1mk the solution (fmj)

N
j=1 will

be unique up to a permutation j → σ(j) giving N! solutions for
that row.
For this one projection we can apply any permutation on any row
of the image giving N · N! solutions.



The situation with two orthogonal projections is more complicated.
Assuming we have been able to identify the values {fmj}Nj=1 for
each m but not the ordering from one projection, and similarly
{fjm}Nj=1 from the other projection, in the special case in which no
value appears in two different rows the solution is unique. Of
course in a practical problem we would have to interpret this as
sufficiently different that we could tell them apart at the accuracy
with which we measure.



By contrast an interesting case in which the solution for two
projections is highly non-unique is the case where fij takes only N
distinct values and these occur in each row and column. In this
case Rpmk , p = 1...2 depends only on k. Any N × N Latin square
where the values of the fij are the labels for the squares gives a
solution. There are L(N) N × N Latin squares where

N∏
k=1

(k!)N/k ≥ L(N) ≥ (N!)2N

NN2

with for example L(10) approximately 9.98× 1036.



More generally consider a subset M rows and M columns with
2 ≤ M ≤ N such there is a solution fij which has the Latin square
property on the subset, that is there are M distinct values all
appearing in each row and column. This subset can then be
replaced by any of the L(M) Latin squares. The simplest case is of
course M = 2 and L(2) = 2 corresponding to swapping the values
on the two diagonals. A fairly typical case in imaging might be
that two values are quite common, for example a back ground level
and a saturated or maximum level. Suppose that there are at least
two regions that are saturated not in exactly the same rows and
columns, then typically there will be a number Q of 2× 2 subsets
and 2Q different solutions.



An et al’s results



Scattering tomography

I For a certain range of energies of x-rays typical in security
scanning and medical imaging inelastic Compton scattering is
the most common scattering process.

I The wavelength of the photon changes from λ to λ′ and it is
scattered through an angle θ where

λ′ − λ = K (1− cos θ)

for a physical constant K

I Suppose we can supply x-rays at a known λ and measure the
wavelength of the scattered x-rays.

I For a fixed source and receiver in the plane of a planar object
the measurement is proportional to the electron density along
the locus of points such that the rays to the source and
detector meet at angle θ.



This is a circle by the Inscribed Angle Theorem



Cormack’s inversion

Typically generalized (Funk)-Radon transform inversion of a
function on the plane needs a two parameter family of curves.
For example fix the source, move the detector along a line and
measure ant multiple scattered wavelengths.
This gives integrals over circles through a point (the source).
Cormack [2] in a series of papers gave explicit inversion formulae
for families of plane curves with polar (r , θ) form
cosσ(θ − φ) = (p/r)σ. For σ = 1 this is fixed source, moving
detector along a line and detecting all wavelengths (scattering
angles).



Rigaud et al’s description of Compton Scattering Tomography [5]

r cos(θ − φ) = 2ρ



There many generalizations see eg [3],[4].
Of course we can also vary over two space and one wavelength to
give overdetermined data and solve numerically.
Perhaps we can use this to reduce errors from non-Compton
scattering?



Back to Beer

Working at one energy in x-ray tomography we often forget that it
is logarithm of the intensity that gives us a linear x-ray transform

ln(I/I0) =

∞∫
t=−∞

−f (x + sθ) ds

for a unit vector θ
This comes generally from a transport type equation (Beer
Lambert Law)

θ · ∇u(x ,θ) = −f (x)u(x ,θ)

which is really a first order hyperbolic PDE, which we integrate
along characteristics,



I/I0 = u(∞)/u(−∞) = exp

(
∞∫

s=−∞
−f (x + sθ) ds

)
Typically measurements are integrated over various energies with
different linear attenuation, so this is no longer linear.
What happens when u is some kind of vector or matrix?



Non abelian tomography!

Suppose u is a vector or matrix and f a matrix then as an ODE
along rays one ray we have

d

ds
u(s) = −f (s)u(s)

but for f non-scalar we do not generally have a solution
u(s) = exp(−fs)u(0)

While we can form the matrix exponential
∞∑
k=0

(−fs)k/k! it does

not satisfy d exp(−fs)/ds = −f exp(−fs) unless f commutes with
its derivative.



Polarized light tomography

In polarized light tomography u is the electric field along a ray and
let f be (proportional to) the strain tensor then Rytov’s law gives

d

ds
u(s) = Pθ(f (s))u(s)

where Pθ projects the matrix on to the subspace orthogonal to ray
direction θ.
Novikov [6] shows that the inverse problem: ‘find f from data from
parallel beams and rotations about six axes’ has a unique solution.
Essentially his method uses Newton-Kantarovich method
repeatedly updating using the solution of the linearized problem
(line integrals of Pθ(f (s)), the transverse ray transform).



A general non-abelian tomography

Eskin [7] considered a general non-abelian Radon transform in the
plane of the form

θ · ∇u(x ,θ) = (A1(x)θ1 + A2(x)θ2 + A0(x)) u(x ,θ)

where u is a matrix function along each ray, and proved uniqueness
of solution (up to a gauge condition) for the inverse problem of
finding Aj from data along all rays. Proof uses complex analysis
methods.
Note result is only in the plane (although the matrices are n × n)
and does not include Polarized light tomography (which is
quadratic in θ)



Neutron spin tomography

In Neutron spin tomography we fire neutrons with a known spin
direction through a material that has a spatially varying magnetic
field and measure the spin state when it emerges.
For simplicity take the initial spin states to be each unit basis
vector then assemble the resulting spin states along a ray as a
3× 3 matrix u. The transport law is

θ · ∇u(x ,θ) = M(B(x))u

where B(x) is the magnetic field and M(B) is proportional to skew
symmetric matrix of the linear map v 7→ v ×B, the vector product.
Eskin’s theorem then gives us M(B(x)) as his A0, at least for B
smooth and from this we can deduce B.
Note that neutron spin tomography can be done a plane at a time
so the planar result is enough.
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