Variational Methods in CT Reconstruction Chapter 12.4 and 12.5

Yiqiu Dong

DTU Compute Technical University of Denmark

18 Jan. 2023

MAP estimate

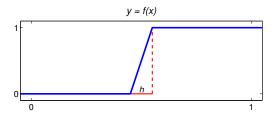
The MAP estimation problem is

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2^2 + \alpha J(\boldsymbol{x}).$$

• The term $\frac{1}{2} \| \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x} \|_2^2$ is called the *data-fidelity* term.

- The term $J(\mathbf{x})$ is called the *regularization* term.
- $\alpha > 0$ is the regularization parameter.
- Tikhonov regularization: $J(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$.
- Tikhonov regularization in general form: $J(\mathbf{x}) = \frac{1}{2} \|\mathbf{D}\mathbf{x}\|_2^2$.

An example using a continuous function



Consider the piecewise linear function

$$f(t) = \left\{egin{array}{ll} 0, & 0 \leq t < rac{1}{2}(1-h) \ rac{t}{h} - rac{1-h}{2h}, & rac{1}{2}(1-h) \leq t \leq rac{1}{2}(1+h) \ 1, & rac{1}{2}(1+h) < t \leq 1 \end{array}
ight.$$

which increases linearly from 0 to 1 in $\left[\frac{1}{2}(1-h), \frac{1}{2}(1+h)\right]$.

Norms of the First Derivative

It is easy to show that the 1- and 2-norms of f'(t) satisfy

$$\|f'\|_{1} = \int_{0}^{1} |f'(t)| dt = \int_{0}^{h} \frac{1}{h} dt = 1,$$

$$\|f'\|_{2}^{2} = \int_{0}^{1} f'(t)^{2} dt = \int_{0}^{h} \frac{1}{h^{2}} dt = \frac{1}{h}.$$

Note that $||f'||_1$ is independent of the slope of the middle part of f(t), while $||f'||_2$ penalizes steep gradients (when *h* is small).

- The 2-norm of f'(t) will not allow any steep gradients and therefore it produces a smooth solution .
- The 1-norm, on the other hand, allows some steep gradients but not too many – and it is therefore able to produce a less smooth solution, and even a discontinuous solution.

• # • • = • • = • = •

Total Variation (TV) Regularization

• In 1D:

$$\mathsf{TV}(\mathbf{x}) = \|\mathbf{D}_n \mathbf{x}\|_1$$
,

where $\|\mathbf{x}\|_1$ denotes 1-norm of vector \mathbf{x} defined as $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$. • In 2D:

$$\begin{aligned} \mathsf{TV}_{\mathsf{a}}(\boldsymbol{x}) &= \| (\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x} \|_1 + \| (\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x} \|_1 \\ &= \sum_{i=1}^n \left(\left| [(\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x}]_i \right| + \left| [(\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x}]_i \right| \right) \;, \\ \mathsf{TV}_{\mathsf{i}}(\boldsymbol{x}) &= \sum_{i=1}^n \sqrt{[(\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x}]_i^2 + [(\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x}]_i^2} \;, \end{aligned}$$

where $[\mathbf{z}]_i$ denotes the *i*th element of the vector \mathbf{z} .

Total Variation (TV) Regularization (2D)

$$\begin{aligned} \mathsf{TV}_{\mathsf{a}}(\boldsymbol{x}) &= \| (\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x} \|_1 + \| (\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x} \|_1 \\ &= \sum_{i=1}^n \left(\left| [(\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x}]_i \right| + \left| [(\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x}]_i \right| \right) , \\ \mathsf{TV}_{\mathsf{i}}(\boldsymbol{x}) &= \sum_{i=1}^n \sqrt{[(\boldsymbol{I}_N \otimes \boldsymbol{D}_M) \boldsymbol{x}]_i^2 + [(\boldsymbol{D}_N \otimes \boldsymbol{I}_M) \boldsymbol{x}]_i^2} . \end{aligned}$$

The vector

$$\begin{pmatrix} [(\boldsymbol{I}_N \otimes \boldsymbol{D}_M)\boldsymbol{x}]_i \\ [(\boldsymbol{D}_N \otimes \boldsymbol{I}_M)\boldsymbol{x}]_i \end{pmatrix}$$

represents the gradient at the *i*th pixel in \boldsymbol{x} .

- In TV_a , we use the 1-norm of the gradient for each pixel.
- In TV_i, we use the 2-norm of the gradient for each pixel.

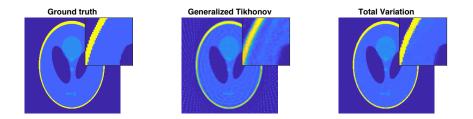
Yiqiu Dong (DTU Compute)

Variational Methods in CT Reconstruction

TV regularized CT reconstruction problem

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \alpha \operatorname{TV}_{\Box}(\boldsymbol{x}) ,$$

where \Box stands for either "a" or "i".



- By allowing occasional larger jumps in the reconstruction, it leads to piecewise constant results with sharp edges.
- The price is that the problem is non-differentiable.

Total Variation in Continuous Setting (1D) The total variation of $f : [a, b] \rightarrow \mathbb{R}$ is defined as

$$TV(f) = \sup_{p\in\mathcal{P}}\sum_{i=1}^{n_p} |f(t_i) - f(t_{i-1})|,$$

where $\mathcal{P} = \{p = \{t_0, \dots, t_{n_p}\} | p \text{ is a partition of } [a, b]\}$. The supremum is taken over all partitions of the interval [a, b].

- If f is differentiable, then $TV(f) = \int_a^b |f'(t)| dt$
- Example: If $f(t) = \begin{cases} -1, & \text{if } -1 \leq t \leq 0, \\ 1, & \text{if } 0 < t \leq 1 \end{cases}$, then TV(f) = 2.
- Bounded variation (BV) space is defined as

$$f \in BV([a, b]) \Longleftrightarrow TV(f) < +\infty.$$

• $W^{1,1}([a,b]) \subset BV([a,b]) \subset L^1([a,b]).$

• In discrete case, if f is differentiable, then $TV(f) = \sum_{i=1}^{n} |f'(t_i)|$.

Sparse regularization

Idea: Look for a "sparse" solution with many zero elements.

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_{2}^{2} + \alpha \|\boldsymbol{x}\|_{0}$$

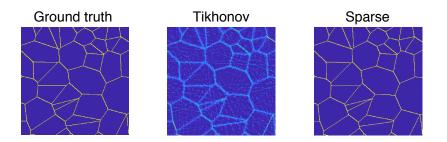
• $\|\mathbf{x}\|_0 = \#\{i = 1, \cdots, n : x_i \neq 0\}.$

- It is computational very challenging.
- The 0-norm is often approximated by
 - ▶ the q-norm, $\|\mathbf{x}\|_q = (|x_1|^q + \cdots + |x_n|^q)^{1/q}$, with 0 < q < 1 (from bridge regression);
 - the 1-norm (most commonly used).

Sparse regularization

Idea: Look for a "sparse" solution with many zero elements.

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_{2}^{2} + \alpha \|\boldsymbol{x}\|_{1}$$
 (Lasso)



- The minimization problem is non-differentiable.
- The corresponding prior probability density is the Laplace distribution.

• • • • • • • • • • • •

Sparse Regularization

In practice, sparsity regularization is often applied with respect to a certain orthonormal basis.

We consider an orthonormal basis $\{\psi_{\rm s}\},$ e.g. wavelet basis, then formally we have

$$\langle \boldsymbol{x}, \psi_{\boldsymbol{s}} \rangle = \langle \boldsymbol{A}^{\dagger} \boldsymbol{b}, \psi_{\boldsymbol{s}} \rangle = \langle \bar{\boldsymbol{x}}, \psi_{\boldsymbol{s}} \rangle + \langle \boldsymbol{A}^{\dagger} \boldsymbol{e}, \psi_{\boldsymbol{s}} \rangle.$$

If the basis $\{\psi_s\}$ is efficient to represent \bar{x} , i.e., the most of the coefficients $\langle \bar{x}, \psi_s \rangle$ are close to zero. But noise leads to a large set of non-zero coefficients, so we can use the sparse regularization in order to obtain sparse coefficients.

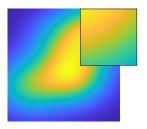
$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \alpha \sum_{\boldsymbol{s}} \|\langle \boldsymbol{x}, \psi_{\boldsymbol{s}} \rangle\|_{1}.$$

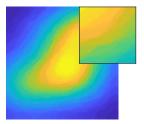
Stair-casing artifacts from TV

$$\min_{\boldsymbol{x}} \ \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2^2 + \alpha \operatorname{TV}_{\Box}(\boldsymbol{x})$$

Due to the relation between the sparsity and the 1-norm, TV regularization can be interpreted as sparsity regularization on the gradient, which leads to a piecewise constant solution.

- Pro: It can reconstruct sharp edges.
- **Con:** Smoothly varying parts in \bar{x} are often approximated by piecewise constant structures. This phenomena is called stair-casing artifacts.





Yiqiu Dong (DTU Compute) Variational Methods in CT Reconstruction

12.7 Total Variation for a 2D Function

12.8 Numerical Computation of TV