Regularization Techniques for Tomography Problems Chapter 12.1 and 12.2

Yiqiu Dong

DTU Compute Technical University of Denmark

16 Jan. 2023

Yiqiu Dong (DTU Compute) Regularization Techniques for Tomography Pr

CT reconstruction

• Forward Problem: Send X-rays through the object at different angles, and measure the damping of X-rays.

CT reconstruction

- Our Problem: Reconstruct \bar{x} from b with given A.
- It is a highly **ill-posed** inverse problem.

→ ∃ →

Inverse problems

Regularization Techniques for Tomography Pr

16 Jan. 2023 3/23

Questions need be considered

- Why are inverse problems difficult?
 - Forward models are not explicitly invertible
 - Errors in the measurements (and also in the forward model) can lead to errors in the solution

Questions need be considered

• Why are inverse problems difficult?

- Forward models are not explicitly invertible
 - * Existence: Does any state fit the measurement?
 - * Uniqueness: Is there a unique state vector fits the measurement?
- Errors in the measurements (and also in the forward model) can lead to errors in the solution
 - * Stability: Can small changes in the measurement produce large changes in the solution?

Hadamard condition

A problem is called well-posed if

- there exists a solution to the problem (existence),
- Ithere is at most one solution to the problem (uniqueness),
- the solution depends continuously on the measurement (stability).
 Otherwise the problem is called **ill-posed**.

Example: Ill-posedness

- If too many measurements and no consistence, the solution of Ax = b does not exist.
- If no enough measurements, the solution of Ax = b is not unique.

Example: III-posedness

- If too many measurements and no consistence, the solution of Ax = b does not exist.
- If no enough measurements, the solution of Ax = b is not unique.
- Even we have a unique least-squares solution, it can be not good enough due to lack of the stability.

Least squares

More questions need be considered

• How can we solve an ill-posed inverse problem?

More questions need be considered

• Why are inverse problems difficult?

 \Leftarrow It's often ILL-POSED!

- How can we solve an ill-posed inverse problem?
 - Does the measurements actually contain the information we want?
 - Which solution do we want?
 - The measurement may not be enough by itself to completely determine the unknown. What other prior information of the "unknown" do we have?

More questions need be considered

• Why are inverse problems difficult?

 \Leftarrow It's often ILL-POSED!

- How can we solve an ill-posed inverse problem?
 - Does the measurements actually contain the information we want?
 - Which solution do we want?
 - The measurement may not be enough by itself to completely determine the unknown. What other prior information of the "unknown" do we have?

 $\longleftarrow \mathsf{We} \mathsf{ can use REGULARIZATION techniques!}$

Regularization techniques

Consider to solve an ill-posed inverse problem:

$$m{b} = \mathcal{N}(m{A}ar{m{x}})$$

Regularization: Approximate the inverse operator, A^{-1} , by a family of stable operators \mathcal{R}_{α} , where α is the regularization parameter.

We need: With the noise-free measurement we can find appropriate parameters α such that $\mathbf{x}_{\alpha} = \mathcal{R}_{\alpha}(\mathbf{b})$ is a good approximation of the true solution $\mathbf{\bar{x}}$.

Illustration of the need for regularization

< (日) × < 三 × <

9/23

Truncated SVD

Considering the linear inverse problem

$$Ax = b$$
 with $b = A\bar{x} + e$.

Based on the SVD of **A**, the "naive" solution is given by

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \sum_{i=1}^{l} \frac{\mathbf{u}_{i}^{\top}\mathbf{b}}{\sigma_{i}}\mathbf{v}_{i} = \bar{\mathbf{x}} + \sum_{i=1}^{l} \frac{\mathbf{u}_{i}^{\top}\mathbf{e}}{\sigma_{i}}\mathbf{v}_{i}$$

Yiqiu Dong (DTU Compute) Regularization Techniques for Tomography Pr

Truncated SVD

The solution of Truncated SVD is

$$\boldsymbol{x}_{\mathsf{TSVD}} = V \Sigma_{\boldsymbol{k}}^{\dagger} U^{\mathsf{T}} \boldsymbol{b} = \sum_{i=1}^{\boldsymbol{k}} \frac{\boldsymbol{u}_{i}^{\mathsf{T}} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}$$

with $\Sigma_{\boldsymbol{k}}^{\dagger} = \operatorname{diag}(\sigma_1^{-1}, \cdots, \sigma_{\boldsymbol{k}}^{-1}, 0, \cdots, 0).$

< □ > < □ > < □ > < □ > < □ > < □ >

Truncated SVD

The solution of Truncated SVD is

$$\boldsymbol{x}_{\mathsf{TSVD}} = V \Sigma_{\boldsymbol{k}}^{\dagger} U^{\mathsf{T}} \boldsymbol{b} = \sum_{i=1}^{\boldsymbol{k}} \frac{\boldsymbol{u}_{i}^{\mathsf{T}} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}$$

with
$$\Sigma_{\mathbf{k}}^{\dagger} = \operatorname{diag}(\sigma_1^{-1}, \cdots, \sigma_{\mathbf{k}}^{-1}, 0, \cdots, 0).$$

- Regularization parameter:
 - k, i.e, the number of SVD components.

Advantages:

- Intuitive
- Easy to compute, if we have the SVD
- Drawback:
 - For large-scale problem, it is infeasible to compute the SVD

Tikhonov regularization

Idea: If we control the norm of the solution, then we should be able to suppress most of the large noise components.

Tikhonov regularization

Idea: If we control the norm of the solution, then we should be able to suppress most of the large noise components.

The Tikhonov solution x_{Tik} is defined as the solution to

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \frac{1}{2} \|\mathbf{x}\|_{2}^{2}$$

Tikhonov regularization

Idea: If we control the norm of the solution, then we should be able to suppress most of the large noise components.

The Tikhonov solution x_{Tik} is defined as the solution to

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \frac{1}{2} \|\mathbf{x}\|_{2}^{2}$$

- Regularization parameter: α
- α large: strong regularity, over smoothing.
- α small: good fitting

Exercises

12.2 Tikhonov Solution

In this exercise, we study the property of the optimization problem:

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \frac{1}{2} \|\mathbf{x}\|_{2}^{2}$$

by calculating the gradient and the Hessian of the objective function.

Reformulate as a linear least squares problem

$$\min_{\mathbf{x}} \frac{1}{2} \left\| \left(\begin{array}{c} \mathbf{A} \\ \sqrt{\alpha} \mathbf{I} \end{array} \right) \mathbf{x} - \left(\begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right) \right\|_{2}^{2}$$

Reformulate as a linear least squares problem

$$\min_{\mathbf{x}} \frac{1}{2} \left\| \begin{pmatrix} \mathbf{A} \\ \sqrt{\alpha} \mathbf{I} \end{pmatrix} \mathbf{x} - \begin{pmatrix} \mathbf{b} \\ \mathbf{0} \end{pmatrix} \right\|_{2}^{2}$$

The normal equation is

$$(\boldsymbol{A}^{T}\boldsymbol{A} + \alpha \boldsymbol{I}) \boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{b},$$

Reformulate as a linear least squares problem

$$\min_{\mathbf{x}} \frac{1}{2} \left\| \left(\begin{array}{c} \mathbf{A} \\ \sqrt{\alpha} \mathbf{I} \end{array} \right) \mathbf{x} - \left(\begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right) \right\|_{2}^{2}$$

The normal equation is

$$(\boldsymbol{A}^{T}\boldsymbol{A} + \alpha \boldsymbol{I}) \boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{b},$$

The solution is

$$\boldsymbol{x}_{\mathsf{Tik}} = (\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} + \alpha \boldsymbol{I})^{-1}\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

Yiqiu Dong (DTU Compute) Regularization Techniques for Tomography Pr

Reformulate as a linear least squares problem

$$\min_{\mathbf{x}} \frac{1}{2} \left\| \left(\begin{array}{c} \mathbf{A} \\ \sqrt{\alpha} \mathbf{I} \end{array} \right) \mathbf{x} - \left(\begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right) \right\|_{2}^{2}$$

The normal equation is

$$(\boldsymbol{A}^{T}\boldsymbol{A} + \alpha \boldsymbol{I}) \boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{b},$$

The solution is

$$\mathbf{x}_{\mathsf{Tik}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \alpha \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$

= $V(\Sigma^{2} + \alpha \mathbf{I})^{-1}\Sigma^{\mathsf{T}}U^{\mathsf{T}}\mathbf{b}$
= $\sum_{i=1}^{n} \frac{\sigma_{i}(\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b})}{\sigma_{i}^{2} + \alpha}\mathbf{v}_{i}$

Yiqiu Dong (DTU Compute) Regularization Techniques for Tomography Pr

Compare with TSVD

• The solution of TSVD is

$$\boldsymbol{x}_{\mathsf{TSVD}} = \sum_{i=1}^{k} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}$$

• The solution of Tikhonov regularization is

$$\boldsymbol{x}_{\mathsf{Tik}} = \sum_{i=1}^{n} \frac{\sigma_i(\boldsymbol{u}_i^{\top} \boldsymbol{b})}{\sigma_i^2 + \alpha} \boldsymbol{v}_i$$

Compare with TSVD

• The solution of TSVD is

$$\boldsymbol{x}_{\mathsf{TSVD}} = \sum_{i=1}^{k} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i} = \sum_{i=1}^{n} \varphi_{i}^{\mathsf{TSVD}} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}$$

with
$$\varphi_i^{\mathsf{TSVD}} = \begin{cases} 1, & 1 \leq i \leq k, \\ 0, & k < i \leq n. \end{cases}$$

• The solution of Tikhonov regularization is

$$\mathbf{x}_{\mathsf{Tik}} = \sum_{i=1}^{n} \frac{\sigma_{i}(\mathbf{u}_{i}^{\top}\mathbf{b})}{\sigma_{i}^{2} + \alpha} \mathbf{v}_{i} = \sum_{i=1}^{n} \varphi_{i}^{\mathsf{Tik}} \frac{\mathbf{u}_{i}^{\top}\mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}$$

with $\varphi_{i}^{\mathsf{Tik}} = \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \alpha} \approx \begin{cases} 1, & \sigma_{i} \gg \sqrt{\alpha} \\ \frac{\sigma_{i}^{2}}{\alpha}, & \sigma_{i} \ll \sqrt{\alpha} \end{cases}$

→ < Ξ →</p>

Non-negativity and box constraints

• Non-negativity constrained Tikhonov problem:

$$\min_{\boldsymbol{x} \ge 0} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \alpha \frac{1}{2} \|\boldsymbol{x}\|_2^2$$

• Box constrained Tikhonov problem:

$$\min_{\boldsymbol{x} \in [\boldsymbol{a}, \boldsymbol{b}]^n} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \alpha \frac{1}{2} \|\boldsymbol{x}\|_2^2$$

Non-negativity and box constraints

• Non-negativity constrained Tikhonov problem:

$$\min_{\boldsymbol{x} \ge 0} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \alpha \frac{1}{2} \|\boldsymbol{x}\|_2^2$$

• Box constrained Tikhonov problem:

$$\min_{\boldsymbol{x}\in[\boldsymbol{a},\boldsymbol{b}]^n} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|_2^2 + \alpha \frac{1}{2} \|\boldsymbol{x}\|_2^2$$

Exercises

12.3 Influence of Regularization Parameters on Tikhonov Solutions

We use a very small problem to study the influence of the regularization parameter.

Gaussian noise

$\boldsymbol{b} = \boldsymbol{A}\bar{\boldsymbol{x}} + \boldsymbol{e}$

where \boldsymbol{e} denotes additive white Gaussian noise with zero mean and the covariance $\eta^2 \boldsymbol{I}_m$.

- All elements in *e* are independent.
- e is independent on \bar{x} .
- Each element *e_i* can be seen as a Gaussian random variable with mean 0 and variance η².

Maximum likelihood estimate

$$\boldsymbol{b} = \boldsymbol{A} \bar{\boldsymbol{x}} + \boldsymbol{e}$$

where \boldsymbol{e} denotes additive white Gaussian noise with zero mean and the covariance $\eta^2 \boldsymbol{I}_m$.

• The probability density for observing \boldsymbol{b} given \boldsymbol{x} is

$$\pi(\boldsymbol{b} \mid \boldsymbol{x}) = \pi(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}) = \frac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-\frac{\|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2^2}{2\eta^2}\right), \quad (1)$$

which is called the *likelihood* of x.

Maximum likelihood (ML) estimate can be obtained by solving:

$$\max_{\mathbf{x}} \pi(\mathbf{b} \,|\, \mathbf{x}) \quad \Longleftrightarrow \quad \min_{\mathbf{x}} - \log \left(\pi(\mathbf{b} \,|\, \mathbf{x}) \right).$$

• With the likelihood of **x** given in (1), we obtain the ML estimation problem

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 .$$

Maximum likelihood estimate

 $\boldsymbol{b} = \boldsymbol{A} \bar{\boldsymbol{x}} + \boldsymbol{e}$

where \boldsymbol{e} denotes additive white Gaussian noise with zero mean and the covariance $\eta^2 \boldsymbol{I}_m$.

• The probability density for observing **b** given **x** is

$$\pi(\boldsymbol{b} \mid \boldsymbol{x}) = \pi(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}) = \frac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-\frac{\|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2^2}{2\eta^2}\right), \quad (1)$$

which is called the *likelihood* of x.

Maximum likelihood (ML) estimate can be obtained by solving:

$$\max_{\boldsymbol{x}} \pi(\boldsymbol{b} \,|\, \boldsymbol{x}) \quad \Longleftrightarrow \quad \min_{\boldsymbol{x}} -\log\left(\pi(\boldsymbol{b} \,|\, \boldsymbol{x})\right).$$

• With the likelihood of x given in (1), we obtain the ML estimation problem

$$\min_{\mathbf{x}} \frac{1}{2} \| \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x} \|_2^2 .$$

Maximum likelihood estimate

 $\boldsymbol{b} = \boldsymbol{A} \bar{\boldsymbol{x}} + \boldsymbol{e}$

where \boldsymbol{e} denotes additive white Gaussian noise with zero mean and the covariance $\eta^2 \boldsymbol{I}_m$.

• The probability density for observing **b** given **x** is

$$\pi(\boldsymbol{b} \mid \boldsymbol{x}) = \pi(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}) = \frac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-\frac{\|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2^2}{2\eta^2}\right), \quad (1)$$

which is called the *likelihood* of x.

Maximum likelihood (ML) estimate can be obtained by solving:

$$\max_{\mathbf{x}} \pi(\mathbf{b} \,|\, \mathbf{x}) \quad \Longleftrightarrow \quad \min_{\mathbf{x}} - \log \left(\pi(\mathbf{b} \,|\, \mathbf{x}) \right).$$

• With the likelihood of **x** given in (1), we obtain the ML estimation problem

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 .$$

MAP esitmate

To obtain a stable solution, we can incorporate prior information on \bar{x} by applying Bayes formula:

$$\pi(\boldsymbol{x} \mid \boldsymbol{b}) = \frac{\pi(\boldsymbol{b} \mid \boldsymbol{x}) \pi_{\text{prior}}(\boldsymbol{x})}{\pi(\boldsymbol{b})}$$

- $\pi(\mathbf{x} \mid \mathbf{b})$ is the posterior.
- $\pi(\boldsymbol{b} \mid \boldsymbol{x})$ is the likelihood.
- $\pi_{\text{prior}}(\mathbf{x})$ is the prior probability density of \mathbf{x} .
- $\pi(\mathbf{b})$ is the prior probability density of \mathbf{b} .

MAP esitmate

To obtain a stable solution, we can incorporate prior information on \bar{x} by applying Bayes formula:

$$\pi(\mathbf{x} \mid \mathbf{b}) = rac{\pi(\mathbf{b} \mid \mathbf{x}) \pi_{\text{prior}}(\mathbf{x})}{\pi(\mathbf{b})}$$

- $\pi(\mathbf{x} \mid \mathbf{b})$ is the posterior.
- $\pi(\boldsymbol{b} \mid \boldsymbol{x})$ is the likelihood.
- $\pi_{\text{prior}}(\mathbf{x})$ is the prior probability density of \mathbf{x} .
- $\pi(\mathbf{b})$ is the prior probability density of \mathbf{b} .

Maximum a posteriori (MAP) estimate can be obtained by solving:

$$\max_{\mathbf{x}} \pi(\mathbf{x} \mid \mathbf{b}) \iff \max_{\mathbf{x}} \frac{\pi(\mathbf{b} \mid \mathbf{x}) \pi_{\text{prior}}(\mathbf{x})}{\pi(\mathbf{b})},$$
$$\iff \min_{\mathbf{x}} -\log(\pi(\mathbf{b} \mid \mathbf{x})) - \log(\pi_{\text{prior}}(\mathbf{x})),$$

Example

If we have

• the likelihood:
$$\pi(\boldsymbol{b} \mid \boldsymbol{x}) = rac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-rac{\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|_2^2}{2\eta^2}
ight)$$
 and

• the prior: $\pi_{\text{prior}}(\boldsymbol{x}) = \frac{1}{(\sqrt{2\pi\beta})^n} \exp(-\frac{1}{2\beta^2} \|\boldsymbol{x}\|_2^2)$ (Gaussian distribution),

then the MAP estimate can be obtained by solving

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \alpha \frac{1}{2} \|\boldsymbol{x}\|_{2}^{2}$$

with $\alpha=\eta^2/\beta^2$.

Example

If we have

• the likelihood:
$$\pi(m{b} \mid m{x}) = rac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-rac{\|m{A}\,m{x}-m{b}\|_2^2}{2\eta^2}
ight)$$
 and

• the prior:
$$\pi_{ ext{prior}}(m{x}) = \exp(-rac{1}{eta} J(m{x}))$$
 (Gibbs prior) with $eta > 0$,

then the MAP estimate can be obtained by solving

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_{2}^{2} + \alpha J(\boldsymbol{x})$$

with $\alpha = \eta^2 / \beta$.

Example

If we have

• the likelihood:
$$\pi(m{b} \mid m{x}) = rac{1}{(\sqrt{2\pi}\eta)^m} \exp\left(-rac{\|m{A}\,m{x}-m{b}\|_2^2}{2\eta^2}
ight)$$
 and

• the prior:
$$\pi_{ ext{prior}}(m{x}) = \exp(-rac{1}{eta} J(m{x}))$$
 (Gibbs prior) with $eta > 0$,

then the MAP estimate can be obtained by solving

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_{2}^{2} + \alpha J(\boldsymbol{x})$$

with $\alpha = \eta^2 / \beta$.

- The term $\frac{1}{2} \| \boldsymbol{b} \boldsymbol{A} \boldsymbol{x} \|_2^2$ is called the *data-fidelity* term.
- The term $J(\mathbf{x})$ is called the *regularization* term.
- $\alpha > 0$ is the regularization parameter.

Poisson Measurements in X-ray

The measured transmission I_i in a single detector element follows a Poisson distribution $\mathcal{P}(I_0 \exp(-\mathbf{r}_i^T \mathbf{x}))$:

$$\pi(I_i \mid \boldsymbol{x}) = \frac{\left(I_0 \exp(-\boldsymbol{r}_i^T \boldsymbol{x})\right)^{I_i}}{I_i!} \exp\left(-I_0 \exp(-\boldsymbol{r}_i^T \boldsymbol{x})\right),$$

where \mathbf{r}_i^T with $i = 1, \dots, m$ denotes the row of the system matrix \mathbf{A} .

22 / 23

Poisson Measurements in X-ray

The measured transmission I_i in a single detector element follows a Poisson distribution $\mathcal{P}(I_0 \exp(-\mathbf{r}_i^T \mathbf{x}))$:

$$\pi(I_i \mid \boldsymbol{x}) = \frac{\left(I_0 \exp(-\boldsymbol{r}_i^T \boldsymbol{x})\right)^{I_i}}{I_i!} \exp\left(-I_0 \exp(-\boldsymbol{r}_i^T \boldsymbol{x})\right),$$

where \mathbf{r}_i^T with $i = 1, \dots, m$ denotes the row of the system matrix \mathbf{A} .

- The likelihood: $\pi(\boldsymbol{l} \mid \boldsymbol{x}) = \prod_{i=1}^{m} \pi(l_i \mid \boldsymbol{x}).$
- The ML estimate $(\boldsymbol{b} = -\log(\boldsymbol{I}/l_0))$:

 $\arg\min_{\mathbf{x}} - \log(\pi(\mathbf{b} | \mathbf{x})) \iff \arg\min_{\mathbf{x}} \exp(-\mathbf{b})^T \mathbf{A} \mathbf{x} + 1^T \exp(-\mathbf{A} \mathbf{x}).$

• The MAP estimate: $\arg \min_{\mathbf{x}} \exp(-\mathbf{b})^T \mathbf{A} \mathbf{x} + 1^T \exp(-\mathbf{A} \mathbf{x}) + \alpha J(\mathbf{x})$.

医静脉 医原体 医原体 医原

Exercise

• 12.1 Quadratic Approximation for Poisson Noise. Use the second-order Taylor expansion of

$$D_i(\tau) = \exp(-b_i) \tau + \exp(-\tau), \qquad i = 1, \dots, m$$

to verify that the ML estimation problem can be approximated by the weighted quadratic problem

$$\min_{\boldsymbol{x}} \frac{1}{2} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})^T W (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

with $W = diag(exp(-\boldsymbol{b}))$.