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Plan for Today

1 Enter the noise → semi-convergence.

2 SVD analysis → iteration error and noise error.

3 Analysis of Landweber and Kaczmarz with projections.

4 The need for stopping rules.

5 Fit to noise level; min. of prediction error; extract all information.

6 Estimation of trace term and noise level.

Points to take home today:

For noisy data we rely on semi-convergence of the iterative methods.

We have a good theoretical understanding of this phenomenon.

We need to terminate iterations at smallest reconstruction error.

Several stopping rules are available.

We can estimate the crucial parameters in these rules.
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Real Problems Have Noisy Data

So far we have discussed how to solve Ax = b by iterative methods. But
when noise is present in the data, we don't quite want to do that!

We assume that the data, in the form of the right-hand side b, is a sum of
�clean� noise-free data A x̄ from the ground-truth image plus a noise
component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

The plain-vanilla or naïve solution xnaïve = A
−1
b is undesired, because it

has a large component coming from the noise in the data:

x
naïve = A

−1
b = A

−1(A x̄ + e) = x̄ + A
−1
e.

The component A−1
e typically dominates over x̄ , because A is an ill

conditioned matrix.

But something interesting happens during the iterations . . .
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Convergence for Noisy Data

For all six methods the error ∥x̄ − x (k)∥2 decreases until it reaches a
minimum, shown by the circles, after which it starts to increase again.
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Semi-Convergence For Kaczmarz's Method
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Semi-Convergence

This behavior is often referred to as semi-convergence:

During the initial iterations, the iteration vector x (k) approaches the
desired � but un-obtainable � solution x̄ to the noise-free problem.

During later iterations, x (k) converges to the undesired naïve solution
associated with the particular AIR method (i.e., A−1

b if the system
matrix is invertible).

We want to stop the iterations just when the convergence behavior changes
from the former to the latter.

Then we achieve a regularized solution � an approximation to the noise-free
solution which is not too perturbed by the noise in the data.

Today we explain

1 why we have semi-convergence for noisy data, and

2 how to stop the iterations at the right time.
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Analysis of Landweber's Method I

With an arbitrary starting vector x (0), the kth Landweber iterate is:

x
(k) = x

(k−1) + ωAT
(
b − Ax

(k−1))
= (I − ωAT

A) x (k−1) + ωAT
b

= (I − ωAT
A)
[
(I − ωAT

A) x (k−2) + ωAT
b

]
+ ωAT

b

= (I − ωAT
A)2 x (k−2) +

(
(I − ωAT

A) + I
)
ωAT

b

= (I − ωAT
A)3 x (k−3) +

(
(I − ωAT

A)2 + (I − ωAT
A) + I

)
ωAT

b

= · · ·
= (I − ωAT

A)kx (0) +[
(I − ωAT

A)k−1 + (I − ωAT
A)k−2 + · · ·+ I

]
ωAT

b

= (I − ωAT
A)kx (0) +

k−1∑
j=0

(I − ωAT
A) j ωAT

b.
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Analysis of Landweber's Method II

For simplicity we now assume that x (0) = 0. We insert the SVD of the
system matrix A = U ΣV

T and use I = V V
T :

x
(k) = V

k−1∑
j=0

(I − ωΣ2)j ωΣU
T
b = V Φ(k)Σ−1

U
T
b,

where we introduced the n × n diagonal matrix

Φ(k) =
k−1∑
j=0

(I − ωΣ2)j ωΣ2 = ωΣ2

k−1∑
j=0

(I − ωΣ2)j =

ϕ
(k)
1

ϕ
(k)
2

. . .


with diagonal elements

ϕ
(k)
i = ω σ2i

k−1∑
j=0

(1− ω σ2i )
j , i = 1, 2, . . . , n.
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Analysis of Landweber's Method III

The sum
∑k−1

j=0 (1− ω σ2i )
j is a geometric series:

k−1∑
j=0

z j = (1− zk)/(1− z),

and thus for i = 1, 2, . . . , n we have:

ϕ
(k)
i = ω σ2i

k−1∑
j=0

(1− ω σ2i )
j = ω σ2i

1− (1− ω σ2i )
k

1− (1− ω σ2i )
= 1− (1− ω σ2i )

k

leading to a simple expression for the diagonal Landweber �lter matrix

Φ(k) =

1− (1− ω σ2
1
)k

1− (1− ω σ2
2
)k

. . .

 .
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SVD Expression of Landweber Iteration Vectors

After k iterations we have obtained a regularized solution

x
(k) = V Φ(k)Σ−1

U
T
b =

n∑
i=1

ϕ
(k)
i

uT
i b

σi
v i

ϕ
(k)
i = 1− (1− ω σ2i )

k ≈

{
1 for σi ≫ ω,

k ω σ2i for σi ≪ ω,

SVD components for large σi are es-
sentially un�ltered; those for small σi
are damped by a factor ∝ σ2i .

The breakpoint is approximately for
σi ≈ 1/

√
k ω, see black dots • →

More SVD components are included as
we perform more iterations (∼ TSVD).
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About The Relaxation Parameter

This analysis also provides an asymptotic convergence analysis for
Landweber's method as k → ∞.

For the geometric series to converge we must require that the relaxation
parameter ω satis�es

|1− ω σ2i | < 1, i = 1, 2, . . . ,m,

which implies that we must have

ω < 2/σ21 = 2/∥A∥22 = 2/∥AT
A∥2.

When this is satis�ed then ϕ
(k)
i → 1 for all i and thus Φ(k) → I for k → ∞.

Hence x (k) converges to the naïve noisy solution V Σ−1
U

T
b = A

−1
b.
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Iteration Error and Noise Error

Get ready for semi-convergence analysis!

We can always split the reconstruction error for x (k) into two components:

x̄ − x
(k) =

(
x̄ − x̄

(k)
)
+
(
x̄
(k) − x

(k)
)
.

The �clean� iteration vector x̄ (k) is de�ned as the iteration vector obtained
when we apply k steps of Landweber's method to the noise-free data A x̄ .

The �rst component x̄ − x̄ (k) is the iteration error which is an
approximation error caused by the �nite number of iterations, and
which is independent of the noise in the data.

The second component x̄ (k) − x (k) is the noise error which is due to
the presence of the data errors and causing the actual iteration vector
x (k) to di�er from the �clean� iteration vector x̄ (k).
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SVD Analysis of Iteration Error and Noise Error

x̄ =
n∑

i=1

v
T
i x̄ v i ,

u
T
i b = u

T
i (A x̄ + e) = u

T
i (A x̄) + u

T
i e,

u
T
i (A x̄) = u

T
i

n∑
j=1

u jσjv
T
j x̄ = σiv

T
i x̄ .

It follows that

x̄ − x̄
(k) =

n∑
i=1

v
T
i x̄ v i −

n∑
i=1

ϕ
(k)
i

uT
i (A x̄)

σi
v i =

n∑
i=1

(1− ϕ
(k)
i )vT

i x̄ v i ,

x
(k) − x̄

(k) =
n∑

i=1

ϕ
(k)
i

uT
i b

σi
v i −

n∑
i=1

ϕ
(k)
i

uT
i (A x̄)

σi
v i =

n∑
i=1

ϕ
(k)
i

uT
i e

σi
v i .

As k increases, and more ϕ
(k)
i approach 1, the iteration error tends to zero

while the noise error increases because more noise components are included.
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Progression of the Iteration Error

�Clean� iteration vectors x̄ (k) for Landweber applied to noise-free data A x̄ .

As we take more iterations we include more SVD components with higher
frequencies and we obtain sharper edges in the images.
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Progression of All Error Types

The iteration error ∥x̄ − x̄ (k)∥2
is independent of the noise.

The noise error ∥x̄ (k) − x (k)∥2
increases when the noise in-
creases.

The combined reconstruction
error ∥x̄ − x (k)∥2 has a mini-
mum 7→ semi-convergence.
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Landweber's Method with Projections

When projections are incorporated in the iterative algorithm, we can no
longer perform an SVD analysis. But it can be shown that:

∥x̄ − x̄
(k)∥2 ≤

(
1− ω σ2n

)k∥x̄∥2,
∥x̄ (k) − x

(k)∥2 ≤ 1− (1− ωσ2n)
k

σ2n
∥A∥2 ∥e∥2.

Here σn is the smallest singular value of A; hence ω σ2n is quite small, but
the iteration error usually decreases faster.

From (1− ϵ)k = 1− kϵ+ 1/2k(k + 1)ϵ2 + · · · it follows that

1− (1− ωσ2n)
k

σ2n
=

1− (1− k ωσ2n + O(σ4n))

σ2n
= k ω + O(σ2n)

and we obtain the approximate bound for the noise error:

∥x̄ (k) − x (k)∥2 <∼ k ω ∥A∥2 ∥e∥2.
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Projected Cimmino, Example I
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Projected Cimmino, Example II
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Analysis of Kaczmarz's Method

To study the noise error in Kaczmarz's method we take this approach.

De�ne the �splitting�
AA

T = L+D + L
T ,

D = diagonal matrix with diagonal elements of AAT

L = strictly lower triangular matrix (zeros on the diagonal).

Also de�ne the lower triangular matrix

L̂ = (D + ω L)−1.

Then one iteration of Kaczmarz's method can be written as

x
(k) = PC

(
x
(k−1) + ωAT

L̂ (b − Ax
(k−1))

)
This is for purely theoretical use; it should not be used for computations!
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Upper Bound for Iteration Error

Following the same approach as for Landweber, we obtain:

x
(k) − x̄

(k) =
k−1∑
j=0

(I − ωAT
L̂ A)jAT

L̂ b,

and it can be shown that for both the un-constrained and the constrained
problem, the noise error is bounded as

∥x̄ (k) − x
(k)∥2 ≤

1− (1− ω ς2)k

ς2
∥AT

L̂ e∥2 + O(ς2),

where ς is the smallest nonzero singular value of the matrix D1/2
L̂ A.

Following the previous arguments, we again obtain an approximate upper
bound of the form

∥x̄ (k) − x (k)∥2 <∼ k ω ∥AT
L̂ e∥2.
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Can We Do Something About ∥AT
L̂ e∥2?

Can we replace α = ∥AT
L̂ e∥2 with the upper bound β = ∥A∥2 ∥L̂∥2 ∥e∥2?

Example: N = 64, no. detector pixels = 90, length of detector = L and√
2L where L is the object's side length.

short detector long detector
projection angles ∥e∥2 α β α β

θ = 1◦, 2◦, 3◦, . . . , 180◦ 49 7.6 1251 28.2 6.4 · 107
θ = 3◦, 6◦, 9◦, . . . , 180◦ 70 7.4 403 22.6 2.1 · 107
θ = 6◦, 12◦, 18◦, . . . , 180◦ 128 6.1 181 7.1 2232

Conclusion: β ≫ α; not a good idea to use β.
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Kaczmarz Semi-Convergence, Example I
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Kaczmarz Semi-Convergence, Example II
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Stopping Rules

To successfully use the iterative methods for noisy data, we obviously need
an automatic method � a stopping rule � for terminating the iterations at,
or near, the point of semi-convergence where the reconstruction error
x̄ − x (k) is as small as possible.

We must be able to do so without knowing the ground truth x̄ .

The decision must be made from available information, such as the kth
iterate x (k) and/or its corresponding residual ϱ(k) = b − Ax (k).

Such stopping rules are studied frequently by mathematicians, but they do
not achieve the same attention in the tomographic reconstruction
communities . . .

Our discussion of stopping rules is based on:
P. C. Hansen, J. S. Jørgensen, and P. W. Rasmussen, Stopping rules for

algebraic iterative reconstruction methods in computed tomography; in 21st
International Conference on Computational Science and Its Applications
(ICCSA), IEEE (2021), pp. 60�70, doi 10.1109/ICCSA54496.2021.00019.
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On the Need for Stopping Rules

The noise error x̄ (k) − x (k) often grows slowly with the number of
iterations k . Hence the error history exhibits a �at minimum, and it is
not crucial to stop at a very speci�c number of iterations.

There are many applications for which the users have build a very
good intuition of approximately how many iterations are needed to
obtain a satisfactory reconstruction.

When very many iterations are needed and the minimum is very �at,
the iterations are often terminated with one's patience runs out � and
hence one may not observe the semi-convergence e�ect.

Developing a robust stopping rule that works on many types of problems
and for many kinds of data is di�cult/impossible.

Here we give an overview of successful stopping rules, and then the user
can try these methods on a given problem.
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A Bit of Statistical Notation

To make precise statements in this section, we need a small amount of
statistical framework and notation.

The exact noise-free data b̄ that correspond to the ground truth image:

b̄ = A x̄ .

The elements of the noise vector e ∈ Rm are random variables, i.e., their
values depend on a set of well-de�ned random events. The vector of
expected values E(e) and the covariance matrix V(e) are de�ned as

E(e) =

E(e1)
E(e2)
...

 , V(e) = E
((
e − E(e)

) (
e − E(e)

)T)
.

We restrict our analysis to white Gaussian noise with zero mean:

E(e) = 0, V(e) = η2I , E(∥e∥22) = m η2,

where η is the standard deviation of the noise.
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The Discrepancy Principle (DP)

DP: a model's output should �t the data �to the noise level.�

This translates into a stopping rule where we choose the number of
iterations k such that the residual ϱ(k) = b − Ax (k) is �of the same size�
as the noise vector e:

∥ϱ(k)∥22 ≈ m η2.

We return to methods for estimating the standard deviation η from data.

Most authors include a constant τ ≥ 1 such that the above condition takes
the form

∥ϱ(k)∥22 ≈ τ m η2.

The constant τ can be useful when we have only a rough estimate of η and
there is a risk that we take too many or too few iterations.

As we shall see, this stopping rule is quite dubious.
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How We Really Should Fit to the Noise Level I

To learn more about this principle, consider the TSVD solution

xk =
k∑

i=1

uT
i b

σi
v i with A =

n∑
i=1

u i σi v
T
i .

The corresponding residual takes the form

ϱk ≡ b − Axk =
m∑

i=k+1

(uT
i b)u i = Pk b = Pk b̄ + Pk e.

where the projection matrix Pk =
∑m

i=k+1 u iu
T
i projects onto the subspace

spanned by uk+1, . . . ,um.

The two components of ϱk take the form

Pk b̄ =
m∑

i=k+1

(uT
i b̄)u i and Pk e =

m∑
i=k+1

(uT
i e)u i
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How We Really Should Fit to the Noise Level II

The noise-free right-hand side's SVD components uT
i b̄ have a decaying

magnitude as k increases. Hence ∥Pk b̄∥2, which always decreases with k ,
will decrease quite fast because it's largest SVD components are extracted
�rst (for the small values of k).

The noise component's norm is given by

∥Pk e∥22 =
m∑

i=k+1

(uT
i e)

2.

Since e is zero-mean white Gaussian noise, the quantities uT
i e also follow

a Gaussian distribution with standard deviation η; hence:

E
(
∥Pk e∥22

)
= E

(
m∑

i=k+1

(uT
i e)

2

)
=

m∑
i=k+1

E
(
(uT

i e)
2
)
= (m − k) η2.

The factor m− k re�ects the fact that the vector Pk e lies in a subspace of
that dimension and thus has m − k degrees of freedom. The norm ∥Pk e∥2
also decays with k , and compared to ∥Pk b̄∥2 it decays rather slowly.
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How We Really Should Fit to the Noise Level III

k too small: we have not captured enough SVD components; Axk is
not a good approximation the exact data b̄, ϱk is dominated by Pk b̄,
and ∥Pk b̄∥2 is larger than ∥Pk e∥2.
k �just about right�: Axk approximates b̄ as well as possible; the norm

∥Pk b̄∥2 has now become smaller and is of the same size as ∥Pk e∥2.
k too large: the residual ϱk is still dominated by the noise component
Pk e, and hence ∥Pk e∥2 dominates the residual norm.

Strategy: choose k such that ∥Pk b̄∥2 ≈ ∥Pk e∥2. But both are unknown,
so in practise we should choose k such that ∥ϱk∥22 ≈ (m − k) η2.
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Formalization of The Heuristic

This heuristic reasoning was formalized by several authors; we summarize
the main results our iterative methods. From the previous analysis it follows
that we can write the kth Landweber iterate as

x
(k) = A

#
k b with A

#
k = V Φ(k)Σ−1

U
T .

The data predicted by the x (k) is given by bk = Ax (k) = AA
#
k b. The

matrix AA#
k that transform the given, noisy data into this prediction is

called the in�uence matrix.

With white Gaussian noise, it can be shown that at the optimal k we have

E(∥ϱ(k)∥22) = η2 (m − tk), tk = trace(AA#
k ) =

n∑
i=1

ϕ
(k)
i ,

where ϕ
(k)
i are the �lter factors. The real number m− tk is the e�ective (or

equivalent) degrees of freedom in the residual.

For TSVD the �lter factors are 0's and 1's, we simply have tk = k .
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Stop Rule: Fit to Noise Level

Stop Rule: Fit to Noise Level

Stop at the smallest k for which ∥ϱ(k)∥2
2
≤ η2 (m − tk).

For our iterative methods, this is particularly convenient because the
residual norm ∥ϱ(k)∥2 decreases monotonically with k . To see this, we
write the residual vector in terms of the SVD:

ϱ(k) = b − Ax
(k) = U (I −Φ(k))UT

b = U


(
1− ϕ

(k)
1

)
uT
1
b(

1− ϕ
(k)
2

)
uT
2
b

...

 .

Hence, for Landweber's method,

∥ϱ(k)∥22 =
m∑
i=1

(
1− ϕ

(k)
i

)2
(uT

i b)
2 =

m∑
i=1

(1− ω σ2i )
2k(uT

i b)
2.

Since ω is always chosen such that |1− ω σ2i | < 1 the factors (1− ω σ2i )
2k

� and hence the squared residual norm � decrease monotonically with k .
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Illustration of Fit-to-Noise-Level Rule for Landweber

Parallel-beam example: image size = 64× 64; no. detector pixels = 91;
projection angles = 3◦, 6◦, 9◦, . . . , 180◦ and 8◦, 16◦, 24◦, . . . , 180◦.

Figures show reconstruction error ∥x̄ − x (k)∥2 and residual norm ∥ϱ(k)∥2
versus k , together with threshold η

√
m and the function η

√
m − tk .

We stop near the optimal number of iterations. DP stops much too early.
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Minimization of the Prediction Error

Instead of �tting to the noise level (as described above) we can �nd the
number of iterations that minimizes the prediction error, i.e., the di�erence
between the noise-free data b̄ = A x̄ and the predicted data Ax (k):

min
k

∥Ax
(k) − b̄∥2.

Statisticians refer to various measures of this di�erence as the predictive
risk, and the resulting method for choosing k is often called the unbiased

predictive risk estimation (UPRE) method.

Again we present the results speci�cally in the framework of iterative
reconstruction methods.

Per Christian Hansen Algebraic Methods & Noisy Data 34 / 48



Derivation of the UPRE Rule

The expected squared norm of the prediction error (the risk) is

E
(
∥b̄ − Ax

(k)∥22
)
= ∥(I − AA

#
k ) b̄∥

2
2 + η2 trace

(
(AA#

k )
2
)

while the expected squared norm of the residual can be written as

E
(
∥b − Ax

(k)∥22
)
= ∥(I − AA

#
k ) b̄∥

2
2 +

η2 trace
(
(AA#

k )
2
)
− 2η2 trace(AA#

k ) + η2m.

Combining these two equations we can eliminate one of the trace terms
and arrive at the following expression for the risk:

E
(
∥b̄ − Ax

(k)∥22
)
= E

(
∥b − Ax

(k)∥22
)
+ 2η2 trace(AA#

k )− η2m.

Substituting the actual squared residual norm ∥ϱ(k)∥2
2
= ∥b − Ax (k)∥2

2
for

its expected value, we de�ne the UPRE risk as a function of k :

Uk = ∥ϱ(k)∥22 + 2 η2 tk − η2m.

Minimizer of Uk → approximation to a minimizer of the prediction error.
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Stop Rule: UPRE

Note that Uk may not have a unique minimizer, and we therefore choose
the smallest k at which Uk has a local minimum.

Stop Rule: UPRE

Find the smallest k that minimizes Uk = ∥ϱ(k)∥2
2
+ 2 η2 tk − η2m.

This rule also depends on an estimate of the standard deviation η of the
noise � which may or may not be a problem in practise.

We shall therefore describe an alternative method for minimization of the
prediction error that does not depend on knowledge of η.
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Cross Validation

Assume that we remove the ith element bi from the right-hand side (the

noisy data), compute a reconstruction x
(k)
[i ] , and then use this vector to

compute a prediction b̂i = rTi x
(k)
[i ] of the missing data bi .

The goal is then to choose the k that minimizes the following measure of
all the prediction errors:

Ĝk =
1

m

m∑
i=1

(
bi − b̂i

)2
=

1

m

m∑
i=1

(
bi − r

T
i x

(k)
[i ]

)2
.

We can avoid the vectors x
(k)
[i ] and write Ĝk directly in terms of x (k):

Ĝk =
1

m

m∑
i=1

(
bi − rTi x

(k)

1− α
(k)
i

)2

,

where α
(k)
i = ith diagonal element of the in�uence matrix AA#

k for x (k).
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Generalized Cross Validation (GCV)

The minimizer of Ĝk depends on the particular ordering of the data. /

Generalized cross validation (GCV) circumvents this problem by replacing

all α
(k)
i with their average

µ(k) =
1

m

m∑
i=1

α
(k)
i =

1

m
trace(AA#

k ) =
tk
m
,

leading to the modi�ed measure

G̃k =
1

m

1

(1− µ(k))2

m∑
i=1

(
bi − r

T
i x

(k)
)2

=
∥b − Ax (k)∥2

2

m(1− tk/m)2
= m

∥ϱ(k)∥2
2

(m − tk)2
.

The minimizer of G̃k is, of course, independent of the factor m and hence
we choose to de�ne the GCV risk as a function of k as

Gk = ∥ϱ(k)∥22 / (m − tk)
2.
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Stop Rue: GCV

We arrived at an η-free stopping rule:

Stop Rule: GCV

Find the k that minimizes Gk = ∥ϱ(k)∥2
2
/ (m − tk)

2.

The value of k which minimizes Gk is also an estimate of the value that
minimizes the prediction error. Speci�cally, if kGCV minimizes the GCV risk
Gk and kPE minimizes the prediction error ∥b̄ − Ax (k)∥2

2
, then

E
(
∥b̄ − Ax

(kGCV)∥22
)
→ E

(
∥b̄ − Ax

(kPE)∥22
)

for m → ∞.

A practical note. UPRE and GCV need a few iterations too many detect
a minimum of Uk and Gk . But the minimum of ∥x̄ − x (k)∥2 is usually very
�at, and it hardly makes any di�erence if terminate the algorithm a few
iterations after the minimum of Uk or Gk .
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Illustration of UPRE and GCV Rules for Landweber
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Estimation of the Trace Term I

We must estimate the trace term tk e�ciently � without the SVD of A or
the in�uence matrix AA

#
k . The most common way to compute this

estimate is via a Monte Carlo approach.

If w ∈ Rm is a random vector with w i ∼ N (0, 1), and S ∈ Rm×m is a
symmetric matrix, then wTS w is an unbiased estimate of trace(S).

Hence t estk = wTAA
#
k w is an unbiased estimator of tk = trace(AA#

k ).

We need to compute the matrix-vector product A#
k w e�ciently.

Apply the algebraic iterative method to the system A ξ = w which, after k

iterations, produces the vector ξ
(k)

= A
#
k w . The resulting estimate

t̄ estk = w
T
A ξ

(k)
,

is the standard Monte Carlo trace estimate.
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Code for Trace Term Estimator I

Basic Landweber algorithm with MC trace estimator

w = random m-vector for trace estimation

x (0) = initial vector

ξ
(0)

= 0 initial zero vector for trace estimation

z = A
T
w

for k = 0, 1, 2, . . .

x (k+1) = x (k) + ωAT (b − Ax (k))

ξ
(k+1)

= ξ
(k)

+ ωAT (w − A ξ
(k)

)

t̄ estk+1 = zTξ
(k+1)

trace estimate

stopping rule goes here
end
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Estimation of the Trace Term II

We can avoid the expensive multiplication with A for each k with an
approach that applies to unprojected iterative methods of the general form

x
(k+1) = x

(k) + ωAT
B (b − Ax

(k)),

where B is a general m ×m matrix (it is not required to be symmetric).
This includes Landweber's, Cimmino's and Kaczmarz's methods.

When we apply such a method with arbitrary nonzero starting vector ξ(0)

to the system A ξ = 0 then the iterates are ξ(k) = (I − ωAT
B A)k ξ(0).

Speci�cally, if we use a random starting vector ξ(0) = w ∈ Rn with
elements wi ∼ N (0, 1), and if ξ(k) denote the corresponding iterates for
A ξ = 0, then it can be shown that wTξ(k) is an unbiased estimator of
n − trace(AA#

k ).

This leads to the alternative Monte Carlo trace estimate

t estk = n −w
Tξ(k).
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Code for Trace Term Estimator II

Basic Landweber algorithm with alternative MC trace estimator

w = random n-vector

x (0) = initial vector

ξ(0) = w initial vector for for trace estimation
for k = 0, 1, 2, . . .

x (k+1) = x (k) + ωAT (b − Ax (k))

ξ(k+1) = ξ(k) + ωAT (0− A ξ(k))

t estk+1 = n −wTξ(k+1) trace estimate

stopping rule goes here
end
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Comparison of the Two Trace Estimates for Landweber

Thick red line: exact trace tk .
Thin black lines: trace estimates for 10 di�erent random vectors w and w .
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Applying t est

k to the Fit-to-Noise-Level Stopping Rule

We used 10 di�erent random vectors w . The corresponding 10 intersec-
tions between ∥ϱ(k)∥2

2
(thick red line) and η2 (m − t estk ) (thin blue lines)

are shown by the red circles.

The black dot • shows the intersection with the exact η2 (m − tk).
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Estimation of the Noise Level, In Our Framework

When we use the trace estimate t estk in the GCV stopping rule, then we
seek a minimum for the approximate GCV risk given by

G est

k = ∥ϱ(k)∥22 / (m − t estk )2.

Now de�ne the function

V est

k = ∥ϱ(k)∥22 / (m − t estk ) = G est

k (m − t estk ).

According to the �t-to-noise-level stopping rule it follows that when we
stop the iterations, the ratio ∥ϱ(k)∥2

2
/ (m − tk) is approximately equal to

the noise variance η2.

Hence, if we terminate at iteration k = k̂ for which G est

k is minimum, then
the corresponding value V est

k̂
is an inexpensive estimate of η2.
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Illustration of G est

k and V est

k̂

The approximate GCV risk G est

k has a minimum at k̂ = 2410.

Circles represent G est

k̂
and V est

k̂
, the latter being a good estimate of η2.
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