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SC for CT, Week 1, Mon+Tues: Overview

Monday

09.00 Lecture – Lambert-Beer’s Law and the Radon Transform

10.15 Exercises

11.15 Lecture – Reconstruction by Filtered Back-Projection (FBP)

12.00 - - - Lunch break - - -

13.00 Scan at DTU 3D Imaging Center / FBP exercises

15.00 FBP exercises / Scan at DTU 3D Imaging Center

Tuesday

09:00 Real data reconstruction 2D (MATLAB)

11:00 Real data reconstruction 2D/3D - Core Imaging Library

12.00 - - - Lunch break - - -

13.00 Real data continued - reconstruct your own data?

14:30 Micro project - intro and group formation
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Outline

1 1 Data Model: Lambert-Beer’s Law and the Radon Transform

2 2 Reconstruction: the Filtered Back-Projection (FBP) Algorithm

3 3 Practical Aspects for Reconstruction from Real Data

4 4 Micro Project – Exterior Tomography
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Tomography

What is tomography?

From Greek: Tomos a section or slice, Graphos to describe.

Imaging of slices of an object – without actually slicing it!

These days not just slices but 3D images can be obtained.

To see the inside, need information obtained from the outside.

Some applications of tomography . . .
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Look inside Kinder Surprise Egg without opening it

Tomographic reconstruction: Projections → 3D interior model
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Medical Imaging
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Non-Destructive Inspection and Testing

Production, security, metrology, etc.

Example: airport luggage scanner for threat detection.
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Materials Science

Development of advanced materials requires understanding their properties
at the micro and nano scale.
Example: maximize strength of glass fibre for wind turbine blades.
Laboratory micro-CT scanners and large-scale synchrotron facilities.
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X-Ray Tomography: Imaging From Projections

Projections are measured around an object using X-rays.

Goal is to reconstruct the object from the projections.

Simplest is 2D parallel beam geometry, which we focus on.

Used in early scanners and in large-scale synchrotron facilities.

θ

θ

1

2
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Cone-Beam Geometry

Cone-beam (medical CT scanners, lab-based micro-CT, etc.)

Cone-beam restricted to central slice → fan-beam

Move source far away approx parallel-beam (synchrotron)
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Contrast Mechanism: X-Ray Attenuation

“Heavier” matter attenuate X-rays more: air – tissue – bone – metal.
Quantified by so-called linear attenuation coefficient µ.

Wilhelm Conrad Röntgen and the first X-ray image ever taken showing his
wife’s hand (1895).
J. S. Jørgensen (02946 SC for CT) X-ray Computed Tomography 11 / 70



Lambert-Beer Law of Attenuation

Homogeneous material:

I = I0 exp
{
− µ0D

}
Non-homogeneous (more interesting) material:

I = I0 exp

{
−
∫
L
µ(x)dx

}
Rearrange to line integral form:

− log
I

I0
=

∫
L
µ(x)dx

I0 is the incident flux and µ(x) is the absorption coefficient..
I is called the intensity, I/I0 is called the transmission, while the
corresponding − log(I/I0) is called the absorption.

I0 Iµ0

-

D

I0 Iµ(x)

X-ray L

�
�

-
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Intensity vs Transmission vs Absorption

I0 = 10000 I I/I0 − log(I/I0)
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The Origin of Tomographic Reconstruction

Original reference:

Über die Bestimmung von Funktionen durch ihre
Integralwerte längs gewisser Mannigfaltigkeiten.
(Johann Radon, 1917):

An object can be reconstructed perfectly
from a full set of line integrals.
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Parameterizing Lines in the Plane

How to describe a line?
A familiar way: y = α x + β. Vertical lines excluded.
Alternative: “normal form”:

Lθ,s = {(x , y) | x cos θ + y sin θ = s}
s is the signed orthogonal distance of line to origin
θ is the angle between the x-axis and unit normal vector to Lθ,s

θ x

y

(cos θ
sin θ

) s

Lθ,s
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The Radon Transform for Parallel-Beam Geometry

Object f (x , y):

contained in a unit disk of radius 1

Line of integration Lθ,s given by:

θ: angle of line to be projected onto

s: position on line

Projection: all line integrals at angle θ:

pθ(s) =

∫
Lθ,s

f (x , y) d` for s ∈ [−1, 1].

The Radon transform is:

[Rf ](θ, s) = pθ(s) =

∫
Lθ,s

f (x , y) d`

for θ ∈ [0◦, 360◦[ and s ∈ [−1, 1].

θ x

y

s

s
pθ(s)
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Projections all around the object

The Radon transform describes the forward problem of how (ideal) X-ray
projection data arises in a parallel-beam scan geometry.
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Image and Sinogram

The output of the Radon transform is called a sinogram:

Example image
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Note that [0◦, 180◦] captures all necessary projections of the object. The
angular range [180◦, 360◦] gives a “mirror image.”
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Pen and Paper Exercise: Radon Transform of a Disk

Given an image with a small centered disk of radius r < 1:

f (x , y) =

{
1 for x2 + y2 ≤ r2

0 otherwise

Derive that the Radon transform is:

[Rf ](θ, s) =

{
2
√
r2 − s2 for |s| ≤ r

0 otherwise

Image Radon transformed image

-

Radon
transform
R
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Radon Transform of an Ellipse (Kak & Slaney)

θ
x

y

s

pθ(s)
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Radon Transform of an Ellipse (Kak & Slaney)

Given the ellipse with semi-axes A and B centered at the origin

f (x , y) =

{
c for x2

A2 + y2

B2 ≤ 1 (inside the ellipse)
0 otherwise (outside the ellipse.)

The corresponding Radon transform is

p0
θ(s) =

{
2cAB
a2(θ)

√
a2(θ)− s2 for |s| ≤ a(θ)

0 otherwise

where a2(θ) = A2 cos2 θ + B2 sin2 θ.

If centered at (xc, yc) and rotated by α, then given from p0
θ(s) above as

pθ(s) = p0
θ−α(s − zc cos(γc − θ))

with zc =
√

x2
c + y2

c and γc = tan−1(yc/xc).
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More sinogram examples
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Shepp-Logan test phantom

Commonly used test image (phantom): Superposition of ellipses,
simulating cross section of human head.
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Connection: Radon Transform and Lambert-Beer

The Radon transform

pθ(s) =

∫
Lθ,s

f (x , y) d`

and the Lambert-Beer law along the same line Lθ,s

Iθ,s = I0 exp

(
−
∫
Lθ,s

µ(x , y) d`

)

are connected through the identifications

f (x , y) = µ(x , y)

pθ(s) = − log

(
Iθ,s
I0

)
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Parametrized Form of Radon Transform

The Radon transform

pθ(s) =

∫
Lθ,s

f (x , y) d`

can be written explicitly using a parametrization of the line Lθ,s

pθ(s) =

∫ ∞
−∞

f (x(`), y(`)) d`,

where at fixed θ and s:

x(s) = s cos θ − ` sin θ

y(s) = s sin θ + ` cos θ

The line Lθ,s is traced
as ` runs from −∞ to ∞.

θ x

y

(cos θ
sin θ

)
(− sin θ

cos θ

)
s

Lθ,s
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Dirac Delta Function

A generalized function – or distribution – with heuristic definition:

δ(t) =

{
+∞ for t = 0
0 for t 6= 0

and

∫ ∞
−∞

δ(t)dt = 1 .

Important property of Dirac delta function:∫ ∞
−∞

f (t) δ(t − T ) dt = f (T ) .

This is called the sifting property: the Dirac delta function acts as a sieve
and “sifts out” (or “samples”) the value of f at t = T .
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A Convenient Explicit Form of Radon Transform

Useful alternative expression for the Radon transform
we need it later

pθ(s) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y) δ(x cos θ + y sin θ − s) dx dy .

Interpretation:
The line Lθ,s consists of exactly those (x , y) at which

x cos θ + y sin θ − s = 0 ,

which is the argument of the Dirac delta function δ.

Thus, the integrand is restricted to function values of f (x , y) on Lθ,s ,
which amounts to the corresponding line integral.
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Data Statistics

The measured intensity I in a detector pixel is proportional to I0 and

d = exp

{
−
∫
L
µ(x) dx

}
.

Moreover, I is a photon count which follows a Poisson distribution, i.e.,

I ∼ P(I0 d) , I0 d = expected value = variance.

For large values of I this can be approximated by a Gaussian distribution,

I ∼ N (I0 d , I0 d) or I = I0 d +
√

I0 d Z , Z ∼ N (0, 1) .

Hence the absorption b = − log I/I0 = −(log d + log I/(I0 d)) is

b = − log d − log

(
1 +

1√
I0 d

Z

)
≈ − log d − 1√

I0 d
Z ∼ N

(∫
L
µ(x) dx ,

1

I0 d

)
.
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Other error Sources

In addition to the Poisson noise, data can be affected by numerous other
issues.

Detector noise.

Scatter (some X-rays do not follow straight line).

X-rays are not monochromatic, but have full spectrum. Attenuation
coefficient depends on energy → beam hardening.

Bad detectors, e.g., void measurements.

Too dense features in the object, e.g., metal blocking rays completely.

Object changing during acquisition, e.g., motion.
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Exercises

Available from:
http://www2.compute.dtu.dk/~pcha/HDtomo/SCforCT.html

File:
ExWeek1Days1and2.pdf

Exercise 1: The Radon Transform.
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Outline

1 1 Data Model: Lambert-Beer’s Law and the Radon Transform

2 2 Reconstruction: the Filtered Back-Projection (FBP) Algorithm

3 3 Practical Aspects for Reconstruction from Real Data

4 4 Micro Project – Exterior Tomography
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Back Projection

Mathematically, back-projection is written as integration over all θ,

B[pθ(s)](x , y) =

∫ 2π

0
pθ(x cos θ + y sin θ) dθ.

Interpretation: “Smearing and summation”

Each point (x , y) and each angle θ define a unique location (θ, s) in the
sinogram, with s = x cos θ + y sin θ.

For a given θ, in the back-projection the image point (x , y) is assigned the
sinogram value at s, i.e., the value pθ(s). This is “smearing.”

Back-projection then sums all contributions, at each (x , y), by integrating
over θ. This is “summation.”
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Back-projection: Does it invert projection? No
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And Now: The Fourier Transform

Fourier transform (“Frequency representation”):
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Fourier Transform Pair Definitions j =
√
−1

1D Fourier transform and inverse:

f̂ (ω) = F1[f (t)](ω) =

∫ ∞
−∞

f (t) e−j2πωt dt

f (t) = F−1
1 [f̂ (ω)](t) =

∫ ∞
−∞

f̂ (ω) e+j2πωt dω

2D Fourier transform and inverse:

F (u, v) = F2[f (x , y)](u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y) e−j2π(ux+yv) dx dy

f (x , y) = F−1
2 [F (u, v)](x , y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v) e+j2π(ux+yv) du dv
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Fourier Slice Theorem: Key to Reconstruction

θ

v

u

Projection at angle θ 1D Fourier transform At angle θ in Fourier space

All 1D Fourier
transformed projections

=

2D Fourier transform

All angles θ ∈ [0◦, 180◦[ needed to build complete 2D Fourier transform
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Derivation of Fourier Slice Theorem (1)

Strategy: Manipulate 1D Fourier-transformed projection into slice through 2D
Fourier-transformed image.

p̂θ(ω) =

∫ ∞
−∞

pθ(s) e−j2πωs ds

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f (x , y) δ(x cos θ + y sin θ − s) e−j2πωs dx dy ds

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y)

∫ ∞
−∞

δ((x cos θ + y sin θ)− s) e−j2πωs ds dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y)

∫ ∞
−∞

δ(s − (x cos θ + y sin θ)) e−j2πωs ds dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y) e−j2πω(x cos θ+y sin θ) dx dy .

We used: the definition of the 1D Fourier transform, the Dirac delta expression of

pθ(s), reordering, the fact that δ(−t) = δ(t), and the sifting property.
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Derivation of Fourier Slice Theorem (2)

Now continue by reordering, and recognizing as 2D Fouirer transform

p̂θ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y) e−j2π(xω cos θ+yω sin θ) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y) e−j2π(xu+yv) dx dy

∣∣∣∣
u=ω cos θ,v=ω sin θ

= F (u, v)

∣∣∣∣
u=ω cos θ,v=ω sin θ

This yields finally the Fourier slice theorem:

p̂θ(ω) = F (ω cos θ, ω sin θ)

Interpretation: (u, v) = (ω cos θ, ω sin θ) for θ ∈ [0, π) and ω ∈ (−∞,∞)
specifies a line in 2D Fourier space rotated by θ relative to the positive u axis.
This corresponds to the s axis in real space.

Thus, the 1D Fourer transform of a projection is equivalent to the corresponding

slice/line through the 2D Fourier transform.
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Fourier Reconstruction Method
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Problems for the Fourier Reconstruction Method

In practice we do not have all θ and s since we record a finite
number of projections with a detector of fixed size.
Interpolation from polar to Cartesian grid, known as “regridding,” is
required for 2D inverse Fourier transform:

Accurate interpolation in the Fourier domain difficult.
2D inv. Fourier transform needs all data simultaneously.
Result: Fourier method rarely used in practice.
Alternative: Filtered Back-ProjectionJ. S. Jørgensen (02946 SC for CT) X-ray Computed Tomography 40 / 70



Derive Filtered Back-Projection, Part 1

Strategy: Rewrite inverse 2D Fourier transform:

f (x , y) = F−1
2 [F2f ]

[2D Fourier transform definitions]

=

∫ ∞
−∞

∫ ∞
−∞

F (u, v) e j2π(ux+vy) du dv

[Change to polar coordinates, including Jacobian ω]

=

∫ 2π

0

∫ ∞
0

F (ω cos θ, ω sin θ) e j2π(ω cos θx+ω sin θy) ω dω dθ

[Split integral over 2π in two:]

=

∫ π

0

∫ ∞
0

F (ω cos θ, ω sin θ) e j2π(ω cos θx+ω sin θy) ω dω dθ +∫ π

0

∫ ∞
0

F (ω cos(θ + π), ω sin(θ + π)) e j2π(ω cos(θ+π)x+ω sin(θ+π)y) ω dω dθ
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Derive Filtered Back-Projection, Part 2

[Using sin(θ + π) = − sin θ and cos(θ + π) = − cos θ :]

=

∫ π

0

∫ ∞
0

F (ω cos θ, ω sin θ) e j2π(ω cos θx+ω sin θy) ω dω dθ

+

∫ π

0

∫ ∞
0

F (−ω cos θ,−ω sin θ) e j2π(−ω cos θx−ω sin θy) ω dω dθ

[Change sign/bounds in second integral:]

=

∫ π

0

∫ ∞
0

F (ω cos θ, ω sin θ) e j2π(ω cos θx+ω sin θy) ω dω dθ

+

∫ π

0

∫ 0

−∞
F (ω cos θ, ω sin θ) e j2π(ω cos θx+ω sin θy) (−ω) dω dθ

Collect the two integrals using absolute value:

=

∫ 2π

0

∫ ∞
−∞

F (ω cos θ, ω sin θ) e j2πω(x cos θ+y sin θ) |ω| dω dθ
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Derive Filtered Back-Projection, Part 3

[Apply Fourier Slice Theorem:]

f (x , y) =

∫ 2π

0

∫ ∞
−∞

p̂θ(ω) e j2πω(x cos θ+y sin θ) |ω| dω dθ

[Use that x cos θ + y sin θ is constant wrt ω-integration, say s]

=

∫ 2π

0

[∫ ∞
−∞

p̂θ(ω) e j2πωs |ω| dω
]
s=x cos θ+y sin θ

dθ.

Recognizing the inner integral as 1D inverse Fourier transform, we define
the filtered projection:

qθ(s) =

∫ ∞
−∞

p̂θ(ω) e j2πωs |ω| dω

= F−1
1

[
p̂θ(ω) |ω|

]
(s) = F−1

1

[
F1[pθ](ω) |ω|

]
(s)

Projections are filtered by multiplying with the ramp filter |ω| in the
Fourier domain.
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Derive Filtered Back-Projection, Part 4

Finally we can write

f (x , y) =

∫ π

0
qθ(x cos θ + y sin θ) dθ = B[qθ](x , y)

by recognizing the back-projection operation.

This is the Filtered Back-Projection (FBP) inversion formula for the
Radon transform.

Interpretation:

At each point (x , y) in the image f to be reconstructed, each angle θ
defines a sinogram location s = x cos θ + y sin θ.

Through back-projection, the point (x , y) is assigned the singram’s value
at s via the filtered projection, and contributions at all angles θ are
summed up.
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Recall: Back-Projection Does NOT Invert Projection
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Filter Projections by “ramp” Before Back-Projection
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Maybe not convincing – but
see next slide!
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Back-Projection vs. Filtered Back-Projection

Projections must be filtered with a
“ramp” filter before back-projection.

In the Fourier domain: |ω|

ω
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Figure from Buzug.
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proj = 21

proj = 500
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Additional Filtering Needed in Practice

Ramp filter is part of the inversion formula, but it is a high-pass filter
which is problematic in practice when noise is present.

In practice additional low-pass filters ϕLP(ω) are used; they are multiplied
with |ω| in the frequency domain:
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Filtered Back-Projection (FBP) Step By Step

To compute FBP reconstructed image from projections:

1 Fourier-transform each projection (1D Fourier transform).

2 Apply ramp filter by multiplication with |ω|.
3 Optionally, apply additional low-pass filter ϕLP(ω) to handle noise.

4 Inverse Fourier-transform to obtain filtered projections.

5 Backproject the filtered projections and sum up.

In practice:

Often done automatically for you by scanner/instrument.

FBP implementations available.

Easy to use: main user input is the choice of low-pass filter.

In MATLAB: iradon.

In AIR Tools II: fbp.
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Reconstruction for Fan-Beam and Cone-Beam

Parallel-beam FBP:

Projections → Filter → Back-project → Reconstruction

Fan-beam – 2 strategies:

Rebinning of data, followed by FBP algorithm

Dedicated reconstruction algorithm

Cone-beam:

Dedicated reconstruction algorithm

Feldkamp-Davis-Kress (FDK), an
approximate algorithm, is standard

Projections → Weighting → Filter → Weighting → Back-project → Reconstruction
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Strengths and Weaknesses of FBP

Strengths:

Fast: Based on FFT and a single back-projection.

Few parameters to adjust.

Conceptually easy to understand and implement.

Reconstruction behavior well understood.

Typically works very well (for complete & good data)

Weaknesses:

Large number of projections required.

Full angular range required.

Only modest amount of noise in data can be tolerated.

Fixed scan geometries – others require own inversion formulas.

Cannot make use of prior knowledge such as non-negativity.
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Exercises

Exercise 2: Filtered Back-Projection.
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Tuesday

09:00 Real data reconstruction 2D (MATLAB)

11:00 Real data reconstruction 2D/3D - Core Imaging Library

12.00 - - - Lunch break - - -

13.00 Real data continued - reconstruct your own data?

14:30 Micro project - intro and group formation
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Outline

1 1 Data Model: Lambert-Beer’s Law and the Radon Transform

2 2 Reconstruction: the Filtered Back-Projection (FBP) Algorithm

3 3 Practical Aspects for Reconstruction from Real Data

4 4 Micro Project – Exterior Tomography
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Flat and Dark-Field Correction

Typical data acquired:

I : Measured intensity images (sample in, source on)

IF: Measure of the actual flux, called flat-field (sample out, source on)

ID: Background: dark field (sample out, source off)

FBP needs line integrals (Radon transform):

Conversion to linear problem in attenuation coefficient f :∫
L
f (x , y) d` = − log

I

I0
.

To obtain projection data:

Z = − logY , Y =
I − ID
IF − ID

← pixelwise division.
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Center-of-Rotation (COR) Correction

Standard FBP implementations, such as
MATLAB’s iradon, assume a perfectly
centered object.

In other words, the center of rotation
should be mapped to the central
detector pixel.

In practice only approximate centering
is physically possible.

Naive reconstruction yields artifacts.
Need to perform center-of-rotation
correction.

Can be done by “shifting” projections
by padding sinogram with sufficiently
many artifical detector pixel values.
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Region-of-Interest (ROI) Correction

In some cases the object to be scanned is too large to fit in the field
of view.

Or we want to focus on some small region-of-interest (ROI).

Projections are truncated – they do not cover entire object.

Can we still reconstruct the object? Or just the ROI?

Figure: Wang & Yu, Med. Phys., 36 (2009), 3575–3581.
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The Region-of-Interest (ROI) Problem

Can we exactly reconstruct the object or the ROI? No!

Interior Radon data are “contaminated” by exterior Radon data.

Interior reconstruction will also be “contaminated.”

Figure: Bilgot et al., IEEE Nuc. Sci. Symp. Conf. Rec. (2009), 4080–4085.
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ROI Correction in Practice

Boundaries are correct.

Large artifact apparent.

Padding of the sinogram
yields large
improvement, but the
intensities are still off.

The exercise data set is
ROI data!
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Many Other Possible Artifacts and Corrections

Figures: Aditya Mohan et al., ICASSP (2014), 6909–6913.

Ring artifacts

Beam hardening

Misalignment

Metal artifacts

Motion

...
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Exercises

Exercise 3: Reconstruction of a real data set (2D parallel-beam).
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Outline

1 1 Data Model: Lambert-Beer’s Law and the Radon Transform

2 2 Reconstruction: the Filtered Back-Projection (FBP) Algorithm

3 3 Practical Aspects for Reconstruction from Real Data

4 4 Micro Project – Exterior Tomography

J. S. Jørgensen (02946 SC for CT) X-ray Computed Tomography 62 / 70



Micro Project – Exterior Tomography

In deriving the FBP reconstruction formula, we assume full data is
available, i.e., θ ∈ [0◦, 180◦] and the sample is fully contained within
the field of view.

In many cases full data is not available. Examples: limited angular
range, few projections, or the region-of-interest/interior problem (all
encountered in the exercises).

In the ROI/interior problem, only rays passing through the central
part of the object are available – because the object is too large or we
have zoomed in on a small region.

In the exterior problem, only rays through outer annulus of object are
measured, not the rays through the center.

This can happen, e.g., in non-destructive testing of objects with dense
parts where the X-rays do not penetrate sufficiently.
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Shepp-Logan, Full Data 0◦–180◦

Original phantom and the corresponding sinogram.
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Shepp-Logan, Reconstruction from Full Data 0◦–180◦

Full sinogram and FBP reconstruction.
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Shepp-Logan, Reconstruction from Region-of-Interest Data

Region-of-interest/interior sinogram and reconstruction.

J. S. Jørgensen (02946 SC for CT) X-ray Computed Tomography 66 / 70



Shepp-Logan, Reconstruction from Exterior Data

Exterior sinogram.

Reconstruction?
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The Micro Project

This is where all the theory comes together.

Use course material and computer simulations to investigate the
exterior problem.

Try to establish what can and cannot be reconstructed.

The micro project is quite open-ended.

In the lectures and exercises you are introduced to theory, techniques
and tools for tomographic reconstruction.

In the project it is up to you to choose from this material and apply
to the exterior problem in order to understand the problem and the
limitations of reconstruction from exterior data.

J. S. Jørgensen (02946 SC for CT) X-ray Computed Tomography 68 / 70



Some Ideas

Design phantoms with features to illustrate how reconstruction
quality depends on the size of features, closeness to boundary, radius
of missing interior region, etc.

Apply FBP including practical corrections such as padding as used for
ROI data (Mon+Tues).

Apply SVD analysis and compare the singular values and vectors with
the full data case (Wed+Thurs).

Apply ideas from micro-local analysis to assess which features can be
reconstructed (Wed+Thurs).

Investigate the effect of having exterior data on one or more of the
real data sets provided by us or one that we acquired on Monday. Try
to improve reconstruction e.g. using padding.

You are free to pick from this list or pursue your own ideas within the
course material and exterior tomography – please do not hesitate to
discuss ideas with us.
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Work on the Micro Project

Get together 3–4 persons in each group.

Each group presents their work Friday afternoon - everyone must
contribute!

Start experimenting and familiarizing yourselves with the exterior
problem. For example:

Create code to simulate missing data in the sinogram caused by the
exterior problem.
Create interesting phantoms and do FBP reconstruction from
simulated exterior data.
...

Suggestions:

Take notes/keep a log of the experiments you do and what you learn
from each, etc.
Make separate scripts for each study you do, to make it easy for
yourself to remember and reproduce later as well as to create figures
for the oral presentation on Friday.
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