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Exercises
12.1. Quadratic Approximation for Poisson Data

In Example 12.6 we stated (12.21) as a quadratic approximation of the ML estima-
tion problem (12.20). Verify this approximation by using a second-order Taylor
expansion of Di at bi given by

Dipτq � Dipbiq �D1
ipbiqpτ � biq � 1

2
D2
i pbiqpτ � biq2 , (12.42)

where Di is defined as

Dipτq � expp�biq τ � expp�τq , i � 1, . . . ,m , (12.43)

and D1
i and D2

i denote the first- and second-order derivatives of Di, respectively.
12.2. Tikhonov Solutions

Define the objective function g for the Tikhonov regularization problem (12.3) by

gpxq � 1

2
}b�Ax}22 � α

1

2
}x}22. (12.44)

The gradient ∇g and the Hessian matrix ∇2g are defined in Eqs. (13.5) and
(13.10), respectively.

1. Compute the gradient ∇g, and then show that ∇g � 0 if and only if the
normal equations (12.5) hold. Here you will need the relations

}x}22 � xTx,
∇pxTBxq � Bx�BTx

for a vector x and a matrix B.

2. Compute the Hessian matrix ∇2g, and then show that it is symmetric positive
definite.

12.3. Influence of Regularization Parameters on the Tikhonov Solutions
In this exercise we use a small example to study the influence of the regularization
parameter on the Tikhonov solutions. The matrix, the unperturbed right-hand side,
and the unperturbed solution are

A �
�

0.41 1.00
�0.15 0.06



, b �

�
1.41
�0.09



, x �

�
1.00
1.00



.

Generate 25 random perturbations b � b � e with the perturbation scaled such
that }e}2{}b}2 � 0.15. In MATLAB this computation takes the following form:
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A = [0.41, 1.00; -0.15, 0.06];
x = [1.00; 1.00];
nfb = [1.41; -0.09];
norm_nfb = norm(nfb);

noise = randn(2,25);
norm_noise = sqrt(noise(1,:).^2 + noise(2,:).^2);
noise = noise./norm_noise*0.15*norm_nfb;
b = repmat(nfb,1,25) + noise;

Each column in b corresponds to one generated random perturbation. Then for
each perturbed problem we computed the Tikhonov solutions defined in (12.6)
withα � 0, 0.05, 0.5, and 2.5. With a givenα, we can use the following MATLAB
commands to compute an array psol whose columns are the Tikhonov solutions
for each column in b:

sm = A’*A+alpha*eye(2,2);
psol = sm\(A’*b);

Further, we calculate the Tikhonov solution without perturbations:

usol = sm\(A’*nfb);

Now let us plot the solutions:

figure,
plot(usol(1),usol(2),’r+’, psol(1,:), psol(2,:),’b.’)
axis([-0.5,2.5,0.2,1.6])

Observe how the sensitivity of the Tikhonov solutions to the perturbations changes
when the regularization parameter α increases. What is your conclusion?

12.4. Tikhonov Solutions in General Form
Define the objective function g for the Tikhonov regularization problem in general
form (12.27) by

gpxq � 1

2
}b�Ax}22 � α

1

2
}Dx}22 . (12.45)

1. Compute the gradient ∇g, and derive the normal equation ∇g � 0.

2. Compute the Hessian matrix ∇2g, and then show that it is symmetric positive
definite if the condition (12.33) holds.

12.5. Finite Difference Approximation of the Gradient

1. Consider a 1D function xptq on 0 ¤ t ¤ n. Let h � 1 and ti � pi � 1{2qh
for i � 1, . . . , n. We discretize the function x as a vector x P Rn with
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xi � xptiq. Then the first-order derivative of x can be approximated by the
forward finite difference scheme

x1ptiq � xi�1 � xi
h

, i � 1, . . . , n . (12.46)

Assume a symmetric boundary condition, i.e., xn�1 � xn. Using (12.46),
show that a vector with values of the gradient x1 at t1, . . . , tn can be approx-
imated byDn x, where x � px1, . . . , xnqT andDn is defined as in (12.28).

2. Consider a 2D function xps, tq on 0 ¤ s ¤ M and 0 ¤ t ¤ N . Let h � 1,
si � pi�1{2qh, and tj � pj�1{2qh for i � 1, . . . ,M and j � 1, . . . , N . We
discretize the function x as a matrix X P RM�N with xi,j � xpsi, tjq. Then
the first-order partial derivatives along the vertical and horizontal directions
can be approximated by the forward finite difference scheme

Bx
Bs psi, tjq �

xi�1,j � xi,j
h

, (12.47)

Bx
Bt psi, tjq �

xi,j�1 � xi,j
h

(12.48)

for i � 1, . . . ,M and j � 1, . . . , N . Assume a symmetric boundary con-
dition, i.e., xM�1,j � xM,j and xi,N�1 � xi,N for i � 1, . . . ,M and
j � 1, . . . , N . If we concatenate all columns in X to obtain a vector x P Rn
with n � MN , show that the gradient ∇x � p BxBs , BxBt q can be approximated
by DM�Nx with DM�N defined as in (12.29). Note that the first n entries
inDM�N approximate Bx

Bs , and the last n entries approximate Bx
Bt .

12.6. Importance of the Choice of Regularization Term
This exercise is inspired by Figure 8.1 in [71]. Consider a simple ill-posed 1D
inverse problem with missing data, where x P RP consists of samples of the sine
function and the right-hand side b is a subset of these samples:

b � Ax , A �
�
Ileft 0 0
0 0 Iright



,

where Ileft and Iright are two identity matrices. For example, in MATLAB you
can use the following code:

P = 24;
t = linspace(0.2,2.5,P);
x = sin(t)’;
l = p/3;
A = [eye(l),zeros(l,l),zeros(l,l);zeros(l,l),zeros(l,l),eye(l)];
b = A*x;
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Based on the normal equations given in (12.5) and derived in Exercise 12.4, we
can calculate the Tikhonov solution, as well as Tikhonov solutions in general form
withD �DP defined as in (12.28). An alternative is to useD �Dp2q

P with

D
p2q
P �

�������
�1 1
1 �2 1

. . . . . . . . .
1 �2 1

1 �1

������
P RP�P , (12.49)

which represents the second-order derivative with a symmetric boundary condi-
tion. In this test problem, we can simply set the regularization parameter α �
0.002. Plot the reconstruction results and compare how the missing data is filled
in when you use the three different regularization terms 1

2}x}22, 1
2}DPx}22, and

1
2}D

p2q
P x}22. Comment on the appearance of the reconstructions according to the

corresponding regularization terms.
12.7. TV for a 2D Function

Consider a function fptq with the polar representation

fpr, θq �

$'&'%
1, 0 ¤ r   R ,

1� R
h � r

h , R ¤ r ¤ R� h ,

0, R� h   r.

This function is one inside the disk with radius r � R and zero outside the disk
with radius r � R � h, and it has a linear radial slope between zero and one.
Verify the following expressions for the smoothing norms associated with the 1-
and 2-norms of the gradient ∇f , which correspond to the anisotropic TV regular-
ization and Tikhonov regularization in general form with the first-order derivative
operator, respectively:��∇f��

1
�

» 8

�8

» 8

�8

����� BfBt1
����� ���� BfBt2

����
 dt1 dt2 � 2πR� πh,

��∇f��2

2
�

» 8

�8

» 8

�8

� Bf
Bt1


2

�
� Bf
Bt2


2

dt1 dt2 � 2πR

h
� π.

Referring to Example 12.13, if we use the 1-norm or 2-norm of ∇f as a regular-
izer, which kind of solutions should we expect?

12.8. Numerical Computation of TV
In this exercise, we implement the anisotropic and isotropic TV according to their
definitions in (12.39) and (12.40), respectively. We first generate two test images
of size 512� 512 in MATLAB:
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m = 512;
n = m;
Xtest = ones(m,n);
[X,Y] = meshgrid(linspace(-1,1,m),linspace(-1,1,n));

mask1 = (X(:).^2+Y(:).^2<=0.6);
mask1 = reshape(mask1, m, n);
Xtest1 = Xtest.* mask1;

mask2 = (abs(X(:))<=0.5) & (abs(Y(:))<=0.5);
mask2 = reshape(mask2, m, n);
Xtest2 = Xtest.*mask2;

By calling the MATLAB function imagesc, we can see that one test image is a
disk and the other is a square.

Then we create two submatrices in the definition ofDM�N in (12.29):

Dm = sparse(1:m-1, 1:m-1, -1, m, m)+sparse(1:m-1,2:m,1,m,m);
Dn = sparse(1:n-1, 1:n-1, -1, n, n)+sparse(1:n-1,2:n,1,n,n);

Dmn_1 = kron(speye(n),Dm);
Dmn_2 = kron(Dn,speye(m));

Now you are ready to finish the MATLAB codes for calculating the anisotropic and
isotropic TVs according to their definitions in (12.39) and (12.40), respectively.


