
Ray Transforms

For a scalar field f we define the x-ray transform as the integral over a
lien through x in the direction of a unit vector ξ

Xf (x, ξ) =

∞∫
−∞

f (x + sξ)ds

For a rank-2 symmetric tensor field there are some obvious choices. We
can resolve the tensor field in the direction of ξ: we will write this as ξ · f ξ
by considering f as a matrix. This is called the longitudinal ray transform

If (x, ξ) =

∞∫
−∞

ξ · f (x + sξ)ξ ds



The Transverse Transform

Another option is to resolve in the direction perpendicular to the ray. The
matrix Pξ = I− ξξT projects vectors in the plane normal to ξ. For the
tensor field f the projection is PξfPξ and the integral of this gives the
transverse ray transform

Jf (x, ξ) =

∞∫
−∞

Pξf (x + sξ)Pξ ds

Note that this integral results in a matrix for each ray



The Truncated Transverse Transform

In photoelastic tomography we will meet a more complicated beast. Let
Qξ(f ) = PξfPξ − 1

2Trace(PξfPξ)Pξ
which projects normal to ξ but also sets the trace to zero
For example if ξT = (0, 0, 1) then

Qξ(f ) =
1

2

f11 − f22 2f22 0
2f22 f22 − f11 0

0 0 0


The Truncated Transverse Transforms (TTRT) is

Kf (x, ξ) =

∞∫
−∞

Qξ(f (x + sξ)) ds

a trace free matrix for each ray.



Calculus for symmetric tensors

The divergence of a symmetric tensor field f is a vector g = δf where

gi =
3∑

j=1

∂fij
∂xj

For example if f is the stress tensor δf is the force per unit volume.
The symmetric gradient of a vector field dg = ∇g + (∇g)T . For example
if g is the deformation vector field dg is twice the infinitesimal strain.
By analogy with vector calculus we say a rank-2 symmetric tensor field f
is potential if f = dg for some vector field g , and f is solenoidal if δf = 0.
This is important for us as If = 0 if and only if f is potential. The TTRT
K also has a null space consisting of scalar multiples of the identity (that
is isotropic tensor fields)



Inverting ray transforms

Consider first the scalar x-ray transform (in three-dimensional space).
There is an inversion formula of the filtered back projection type

f =
1

π
(−∆)1/2BXf

where B is back projection over all rays through each point and ∆ = ∇2

is the Laplacian.
This is not usually very useful as one does not typically measure a
complete (four dimensional) space of rays. For example in x-ray
tomography using parallel beams one measures only the rays normal to
some direction (the rotation axis). The importance of the inversion
formula is to understand the unstable problem inversion on a limited but
four-dimensional set of rays. For example tilting a rotation axis in two
directions, but only rotating about that axis through some range less
than π/2.
There are filtered back projection type formulas for J, K (up to an
isotropic tensor field), and for I (up to a potential tensor field). The
backprojection operator is the same, but the filter involves other
differential operators.



TRT Slice by slice inversion

For the scalar case with data corresponding to using parallel projection
and a single rotation axis, the problem reduces to the two dimensional
case (the Radon transform). One can then perform the reconstruction
using filtered backprojection on the data for each ‘slice’, that each plane
through the object normal to the axis.
For the TRT the same trick works. For a unit vector n, the rotation axis,
and for ξ · n = 0

nT Jf (x, ξ)n = X (nT f n)(x, ξ)

so we can use slice by slice scalar Radon transform inversion for nT f n.
Repeating this for six directions n with independent outer products we
can solve for f .



Which six directions determine a tensor?

Suppose you have a symmetric matrix A and you want to find aij from a
knowledge of bi = xTi Axi for six different xi . Which directions xi will do?

The equations have a null space if there is an A with xTi Axi = 0 for all xi
This the same as saying the directions xi lie on a projective conic.
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Pascal’s theorem

Euclidean lines through the origin are projective points, Euclidean planes
through the origin are projective lines (think of great circles on the
sphere)

Theorem
Six distinct points xi in the projective plane lie on a conic if and only if
for any partition of the points in to three pairs xik , xjk , k = 1, 2, 3 the
lines through pairs meet at points that themselves lie on a projective line



Pascal’s theorem

Figure: The classical Pascal theorem is explained using a hexagon joining the
six points ABCDEF. The opposite sides of the hexagon are extended and meet
at co-linear points PMN



TTRT Three axis inversion formula

L and Sharafutdinov derive an inversion formula for TTRT for the
anisotropic part of a general tensor field.
Off diagonal component K 1

n (x , ξ) = (ξ × n) · Kf (x , ξ)n
Diagonal component K 2

n (x , ξ) = n · Kf (x , ξ)n
Let Bn be the slice-by-slice backprojection normal to n and let y be the
Fourier transform variable then we set

λn(y) =
i

2
|Pny |

̂(
Bn
∂K 1

n f

∂p

)
µn(y) = |Pny |3 ̂(BnK 2

n f )



The system in Fourier space

Taking n to be the unit basis vectors we obtain the system

y2 f̂12 + y3 f̂13 = λe1

y1 f̂12 + y3 f̂23 = λe2

y1 f̂13 + y2 f̂23 = λe3

(2y2
2 + y2

3 )f̂22 + 2y2y3 f̂23 + (y2
2 + 2y2

3 )f̂33 = −µe1

(2y2
1 + y2

3 )f̂11 + 2y1y3 f̂13 + (y2
1 + 2y2

3 )f̂33 = −µe2

(2y2
1 + y2

2 )f̂11 + 2y1y2 f̂12 + (y2
1 + 2y2

2 )f̂22 = −µe3

f11 + f22 + f33 = 0

Which can be solved off the coordinate planes and works well numerically.



Application to photoelastic tomography

In photoelastic tomography f is the anisotropic part of the permittivity
tensor assumed to be linearly related to the deviatoric (=anisotropic)
stress.
The change in the polarization state of collimated monochromatic light is
measured through the sample.
Provided the anisotropic part of the permittivity is small the
measurements problem reduces to the TTRT. The ‘truncation’ is due the
overall phase change in the light not being measured.



Photo of apparatus

Apparatus in Tomlinson’s lab in Sheffield



X-ray diffraction strain tomography

Polycrytstaline materials such as metals illuminated with a beam of
monochromatic x-rays produce Bragg diffraction rings on a distant
screen. These are circular if the orientation of the crystals is uniformly
distributed (ie isotropic on a large scale)



The effect of deformation

We now consider the effect of the deformation on the separation d of the
planes normal to k in one crystal. Let d ′k ′ = DFdk , where DF = I +∇U
is the derivative of F , be the deformed separation vector we have

d ′2 = d2(1 + kT (∇UT +∇U)k + O(|∇U|2)) (1)

d ′ = d
√

1 + kT2εk + O(|∇U|2) (2)

= d(1 + kT εk) + O(|∇U|2) (3)

where ε = (∇UT +∇U)/2 is the infinitesimal strain tensor. Hence we
have the relative change in d

d ′ − d

d
= kT εk + O(|∇U|2). (4)

By contrast k ′ · k = 1 + kT∇UTk + O(|∇U|2) so to the leading order
term the direction is unchanged. We see that the circles in the diffraction
pattern of the unstrained case, Debye-Scherrer rings, are distorted by the
strain.



Small angles

Often for high energy, small λ, x-rays and low orders n the Bragg angles
2θ are small, perhaps two or three degrees.

ki approx parallel to the screen.
This gives rise to a the deformed Debye-Scherrer ring being simply an
ellipse defined by the points y ∈ ξ⊥ such that

|y | =
Lnλ

(1 + kT εk)
+ O(θ2) (5)

or with the small strain approximation.

|y | = Lnλ(1− kT εk) + O(θ2, |∇U|2) (6)

and using the small θ approximation in k we have approximatly

yT (I− Pξε)y = R2
i,n (7)

where Ri,n = nLλ/di is the radius of the unstrained Debye-Scherrer ring
for the crystallographic plane ki and order n.



Small angles

Often for high energy, small λ, x-rays and low orders n the Bragg angles
2θ are small, perhaps two or three degrees.
ki approx parallel to the screen.

This gives rise to a the deformed Debye-Scherrer ring being simply an
ellipse defined by the points y ∈ ξ⊥ such that

|y | =
Lnλ

(1 + kT εk)
+ O(θ2) (5)

or with the small strain approximation.

|y | = Lnλ(1− kT εk) + O(θ2, |∇U|2) (6)

and using the small θ approximation in k we have approximatly

yT (I− Pξε)y = R2
i,n (7)

where Ri,n = nLλ/di is the radius of the unstrained Debye-Scherrer ring
for the crystallographic plane ki and order n.



Small angles

Often for high energy, small λ, x-rays and low orders n the Bragg angles
2θ are small, perhaps two or three degrees.
ki approx parallel to the screen.
This gives rise to a the deformed Debye-Scherrer ring being simply an
ellipse defined by the points y ∈ ξ⊥ such that

|y | =
Lnλ

(1 + kT εk)
+ O(θ2) (5)

or with the small strain approximation.

|y | = Lnλ(1− kT εk) + O(θ2, |∇U|2) (6)

and using the small θ approximation in k we have approximatly

yT (I− Pξε)y = R2
i,n (7)

where Ri,n = nLλ/di is the radius of the unstrained Debye-Scherrer ring
for the crystallographic plane ki and order n.



Distributions of ellipses

This describes the situation for uniform strain. The diffraction pattern
observed will be the superposition of (slightly blurred) ellipses, and any
given point on the detector plane will include x-rays diffracted from
points along the line with different strains that meet the Bragg condition.

An ellipse centred at the origin in the plane can in general be represented
as a symmetric 2× 2 matrix A with the points on the ellipse satisfying
yTAy − 1 = 0. In our case A(s) is the matrix

d2

nλ2L2
Pξ (I− ε(x + sξ)) (8)

in a suitable basis on ξ⊥
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Density of ellipses

In general there is some density of ellipses g with

I ′(y) =

∫
{A:yTAy=1}

g(A) da11da22da12. (9)

For simplicity let us consider now y = y1e1 = (y1, 0)T so that (9)
becomes

I ′(y1e1) =

∫
{A:a11=1/y2

1 }
g(A) da11da22da12 =

∫
g(

(
1/y2

1 a12
a12 a22

)
) da22da12

(10)
We now define the moment of I ′ in the direction of any y as

M(y) =

∞∫
r=0

rI ′(r−1/2y) dr . (11)

as the substitution y1 = r−1/2 in (10) gives a11 = r .



M(e1) =

∞∫
r=0

r

∫
g(

(
r a12
a12 a22

)
) da22da12 dr =

∫ ∫ ∫
a11g(A) da22da12 da11,

(12)
noting that as A is positive definite a11 > 0. Applying a rotation of
coordinates we see that for a general unit vector y

M(y) =

∫
yTAyg(A) dA (13)

and so ∫
aii ds =M(ei )

for three axes we can get the line integral of of A(s).



Transverse Ray Transform for strain tomography

We see now that the moments of the diffraction pattern for this ray in
three directions along the ray give the TRT Jε. For the reconstruction
formula for the axial component of ε (eg ε33 rotation about the third
axis) we need only the moment in that direction eg M(e3) to perform a
slice-by slice reconstruction of that strain component.

However this is a lot of measurement and but does not use all the Bragg
ring data!
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An inversion formula formula for TRT with all rays

For x-ray CT there is an inversion formula f = (−∆)1/2BXf where the
backprojection B is over all lines through each point.
For the TRT we have

f =
4

π

(
4I− ITr− 4∆−1dδ + ∆−1d2Tr + ∆−1Iδ2

)
(−∆)1/2BJf (14)

Note that first we apply the inverse x-ray transform to each element,
then we apply derivatives and a filter.



A linear associative algebra

Let T = (1/3)ITr,S = ∆−1dδ,P = ∆−1d2Tr,Q = ∆−1Iδ2 and
R = ∆−2d2δ2 then we have the multiplication table

T S P Q R

T T Q/3 T Q Q/3
S P/3 (R + S)/2 P R R
P P R P 3R R
Q T Q 3T Q Q
R P/3 R P R R

Hence the associative algebra generated by these elements and the
identity is closed, and as the elements are linearly independent the
algebra is six dimensional. T ,P,Q and R are idempotent.
The inversion of J was performed by calculating an inverse in this algebra.



Bragg edge tomography does not work!
Neutrons also undergo Bragg diffraction from crystals. The idea is to use
polychromatic neutrons and a distinct dip in the neutrons transmitted
occurs when the Bragg angle 2θ = π and the neutrons are backscattered.

In the strained case the change in the average of the dip gives a measure
of the strain in the ray diection

∞∫
−∞

ξT ε(x + tξ)ξdt = Iε(x , ξ). (15)

Here ε = (1/2)dU. For simplicity take ξ = e3 and assume D is convex

∞∫
−∞

eT3 ε(x + te3)e3dt =

∞∫
−∞

ε3(x + te3)dt (16)

=

∞∫
−∞

∂U3/∂x3dx3 (17)

= U3(x+3 )− U3(x−3 ) (18)

so it measures change in thickness
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