Choosing the Regularization Parameter

At our disposal: several regularization methods, based on filtering of the SVD components.

Often fairly straightforward to “eyeball” a good TSVD truncation parameter from the Picard plot.

Need: a reliable and automated technique for choosing the regularization parameter, such as k (for TSVD) or λ (for Tikhonov).

Specifically: an efficient, robust, and reliable method for computing the regularization parameter from the given data, which does not require the computation of the SVD or any human inspection of a plot.

Read sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6.
Once Again: Tikhonov Regularization

From now on, we consider a rectangular matrix A of dimensions $m \times n$.

Focus on Tikhonov regularization; ideas carry over to many other methods.

Recall that the Tikhonov solution x_λ solves the problem

$$\min_x \{ \|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2 \} ,$$

and that it is formally given by

$$x_\lambda = (A^T A + \lambda^2 I)^{-1} A^T b = A^\#_\lambda b,$$

where

$$A^\#_\lambda = (A^T A + \lambda^2 I)^{-1} A^T = \text{a “regularized inverse.”}$$

Our noise model

$$b = b^{\text{exact}} + e$$

where $b^{\text{exact}} = A x^{\text{exact}}$ and e is the error.
An Example (Image of Io, a Moon of Saturn)

Exact

Blurred

λ too large

$\lambda \approx$ ok

λ too small
Perspectives on Regularization

Problem formulation: balance the fit (residual) and the size of solution.

\[x_\lambda = \arg \min \left\{ \| Ax - b \|^2_2 + \lambda^2 \| x \|^2_2 \right\} . \]

Cannot be used for choosing \(\lambda \).

Forward error: balance regularization errors and perturbation errors.

\[x^{\text{exact}} - x_\lambda = x^{\text{exact}} - A_\lambda^\# (b^{\text{exact}} + e) \]
\[= (I - A_\lambda^\# A) x^{\text{exact}} - A_\lambda^\# e . \]

\(\Delta x_{\text{bias}} \) \quad \Delta x_{\text{pert}}

Backward/prediction error: balance contributions from the exact data and the perturbation.

\[b^{\text{exact}} - A x_\lambda = b^{\text{exact}} - A A_\lambda^\# (b^{\text{exact}} + e) \]
\[= (I - A A_\lambda^\#) b^{\text{exact}} - A A_\lambda^\# e . \]
More About the Forward Error

The forward error in the SVD basis:

\[x^{\text{exact}} - x_\lambda = x^{\text{exact}} - V \Phi[\lambda] \Sigma^{-1} U^T b \]

\[= x^{\text{exact}} - V \Phi[\lambda] \Sigma^{-1} U^T A x^{\text{exact}} - V \Phi[\lambda] \Sigma^{-1} U^T e \]

\[= V (I - \Phi[\lambda]) V^T x^{\text{exact}} - V \Phi[\lambda] \Sigma^{-1} U^T e. \]

The first term is the \textit{regularization error}

\[\Delta x_{\text{bias}} = V (I - \Phi[\lambda]) V^T x^{\text{exact}} = \sum_{i=1}^{n} (1 - \varphi_i[\lambda]) (v_i^T x^{\text{exact}}) v_i \]

which introduces a bias in the solution.

The second error term is the \textit{perturbation error}:

\[\Delta x_{\text{pert}} = V \Phi[\lambda] \Sigma^{-1} U^T e \]

which is caused by the errors in the data.
Regularization and Perturbation Errors – TSVD

For TSVD solutions, the regularization and perturbation errors take the form

\[\Delta x_{\text{bias}} = \sum_{i=k+1}^{n} (v_i^T x^{\text{exact}}) v_i, \quad \Delta x_{\text{pert}} = \sum_{i=1}^{k} \frac{u_i^T e}{\sigma_i} v_i. \]

We use the truncation parameter \(k \) to prevent the perturbation error from blowing up (due to the division by the small singular values), at the cost of introducing bias in the regularized solution.

A “good” choice of the truncation parameter \(k \) should balance these two components of the forward error (see next slide).

The behavior of \(\| x_k \|_2 \) and \(\| A x_k - b \|_2 \) is closely related to these errors – see the analysis in §5.1.
The norm of the regularization and perturbation error for TSVD as a function of the truncation parameter k. The two different errors approximately balance each other for $k = 11$.
The Discrepancy Principle

The *discrepancy principle* (DP) seeks to find a regularized solution such that the residual is of the same size as the errors, by solving

\[\|A x_\lambda - b\|_2^2 = \tau \|e\|_2^2 , \]

where \(\tau \) is some parameter \(\tau = O(1) \).

A statistician’s point of view. Write \(x_\lambda = A_\lambda^\# b \) and assume that \(\text{Cov}(b) = \eta^2 I \); choose the \(\lambda \) that solves

\[\|A x_\lambda - b\|_2^2 = \|e\|_2^2 - \eta^2 \text{trace}(A A_\lambda^\#) . \]

Note that the right-hand side now depends on \(\lambda \).

If \(e \) is white noise with variance \(\eta^2 \) then \(\mathcal{E}(\|e\|_2^2) = n \eta^2 \), which we can use in the DP. In the alternative approach we can use \(\eta^2 (m - \text{trace}(A A_\lambda^\#)) \).
Parallel-beam CT example: 64×64 image; 91 detector pixels; projection angles $3^\circ, 6^\circ, 9^\circ, \ldots, 180^\circ$ (left) and $8^\circ, 16^\circ, 24^\circ, \ldots, 180^\circ$ (right).

Figures show the TSVD reconstruction error $\| \bar{x} - x_k \|_2$ and residual norm $\| b - Ax_k \|_2$ versus k, together with threshold $\eta^2 m$ and the function $\eta^2 (m - t_k)$ where $t_k = \text{trace term}$. Plain vanilla DP is not doing well.
The L-Curve for Tikhonov Regularization

Recall that the L-curve is a log-log-plot of the solution norm versus the residual norm, with λ as the parameter. It is very useful for monitoring the influence of λ.

![L-Curve Diagram]
Recall that the L-curve basically consists of two parts.
- A “flat” part where the regularization errors dominates.
- A “steep” part where the perturbation error dominates.

The component b^{exact} dominates when λ is large:

$$\|x_\lambda\|_2 \approx \|x^{\text{exact}}\|_2 \text{ (constant)}$$

$$\|b - Ax_\lambda\|_2 \text{ increases with } \lambda.$$

The error e dominates when λ is small:

$$\|x_\lambda\|_2 \text{ increases with } \lambda^{-1}$$

$$\|b - Ax_\lambda\|_2 \approx \|e\|_2 \text{ (constant.)}$$
The L-Curve Criterion

The flat and the steep parts of the L-curve represent solutions that are dominated by regularization errors and perturbation errors.

- Intuitively, we expect that the balance between these two errors must occur near the L-curve’s corner.
- The two parts – and the corner – are emphasized in log-log scale.
- Log-log scale is insensitive to scalings of A and b.

An operational definition of the corner is required.

Write the L-curve as

$$(\log \|Ax_\lambda - b\|_2, \log \|x_\lambda\|_2)$$

and seek the point with maximum curvature.
The Curvature of the L-Curve

We want to derive an analytical expression for the L-curve’s curvature ζ in log-log scale. Define

$$\xi = \|x_\lambda\|^2_2, \quad \rho = \|Ax_\lambda - b\|^2_2$$

and

$$\hat{\xi} = \log \xi, \quad \hat{\rho} = \log \rho.$$

Then the curvature is given by

$$\hat{c}_\lambda = 2 \frac{\hat{\rho}' \hat{\xi}'' - \hat{\rho}'' \hat{\xi}'}{((\hat{\rho}')^2 + (\hat{\xi}')^2)^{3/2}},$$

where a prime denotes differentiation with respect to λ.

This can be used to define the “corner” of the L-curve as the point with maximum curvature.
An L-curve and the corresponding curvature \hat{c}_λ as a function of λ. The corner, which corresponds to the point with maximum curvature, is marked by the red circle; it occurs for $\lambda_L = 4.86 \cdot 10^{-3}$.
The Prediction Error and (Ordinary) Cross-Validation

A different kind of goal: find the value of λ or k such that $A x_\lambda$ or $A x_k$ predicts the exact data $b^{\text{exact}} = A x^{\text{exact}}$ as well as possible.

(Ordinary) cross validation is based on a leave-one-out approach: skip ith element b_i and predict this element.

$$
A^{(i)} = A([1: i - 1, i + 1: m], :) \\
b^{(i)} = b([1: i - 1, i + 1: m]) \\
x^{(i)}_\lambda = (A^{(i)})^\#_\lambda b^{(i)} \quad \text{(Tikh. sol. to reduced problem)} \\
b_i^{\text{predict}} = A(i, :) x^{(i)}_\lambda \quad \text{(prediction of “missing” element.)}
$$

The optimal λ minimizes the quantity

$$
C(\lambda) = \sum_{i=1}^{m} \left(b_i - b_i^{\text{predict}} \right)^2 .
$$

But λ is really hard to compute, and depends on the ordering of the data.
Generalized Cross-Validation

Want a scheme for which λ is independent of any orthogonal transformation of b (incl. a permutation of the elements).

Minimize the GCV function

\[
G(\lambda) = \frac{\| Ax_\lambda - b \|_2^2}{\text{trace}(I_m - AA_\lambda^\#)^2}
\]

where

\[
\text{trace}(I_m - AA_\lambda^\#) = m - \sum_{i=1}^{n} \varphi_i^{[\lambda]}
\]

Easy to compute the trace term when the SVD is available.

For TSVD the trace term is particularly simple:

\[
m - \sum_{i=1}^{n} \varphi_i^{[\lambda]} = m - k
\]
The GCV function $G(\lambda)$ for Tikhonov regularization; the red circle shows the parameter λ_{GCV} as the minimum of the GCV function, while the cross indicates the location of the optimal parameter.
Occasional Failure

Occasional failure leading to a too small λ; more pronounced for correlated noise.
Extracting Signal in Noise

An observation about the residual vector.

- If λ is too large, not all information in b has not been extracted.
- If λ is too small, only noise is left in the residual.

Choose the λ for which the residual vector changes character from “signal” to “noise.”

Our tool: the normalized cumulative periodogram (NCP).

Let $p_\lambda \in \mathbb{R}^{n/2}$ be the residual’s power spectrum, with elements

$$(p_\lambda)_k = |\text{dft}(Ax_\lambda - b)_k|^2, \quad k = 1, 2, \ldots, n/2 .$$

Then the vector $c(r_\lambda) \in \mathbb{R}^{n/2-1}$ with elements

$$c(r_\lambda) = \frac{\|p_\lambda(2: k+1)\|_1}{\|p_\lambda(2: n/2)\|_1}, \quad k = 1, \ldots, n/2 - 1$$

is the NCP for the residual vector.
NCP Analysis

Left to right: 10 instances of white-noise residuals, 10 instances of residuals dominated by low-frequency components, and 10 instances of residuals dominated by high-frequency components.

The dashed lines show the Kolmogorov-Smirnov limits $\pm 1.35 q^{-1/2} \approx \pm 0.12$ for a 5% significance level, with $q = n/2 − 1$.
The Transition of the NCPs

Plots of NCPs for various regularization parameters λ, for the test problem deriv2(128,2) with rel. noise level $\|e\|_2/\|b^\text{exact}\|_2 = 10^{-5}$.
Implementation of NCP Criterion

Two ways to implement a \textbf{pragmatic NCP criterion}.

- Adjust the regularization parameter until the NCP lies solely within the K-S limits.
- Choose the regularization parameter for which the NCP is closest to a straight line $c_{\text{white}} = (1/q, 2/q, \ldots, 1)^T$.

The latter is implemented in Regularization Tools.
Summary of Methods (Tikhonov)

Discrepancy principle (discrep):

Choose $\lambda = \lambda_{DP}$ such that $\|Ax_\lambda - b\|_2 = \nu_{dp}\|e\|_2$.

L-curve criterion (l_curve):

Choose $\lambda = \lambda_L$ such that the curvature \hat{c}_λ is maximum.

GCV criterion (gcv):

Choose $\lambda = \lambda_{GCV}$ as the minimizer of $G(\lambda) = \frac{\|Ax_\lambda - b\|_2^2}{\left(m - \sum_{i=1}^{n}\varphi_{i}\right)^2}$.

NCP criterion (ncp):

Choose $\lambda = \lambda_{NCP}$ as the minimizer of $d(\lambda) = \|c(r_\lambda) - c_{white}\|_2$.
Comparison of Methods

To evaluate the performance of the four methods, we need the optimal regularization parameter λ_{opt}:

$$\lambda_{\text{opt}} = \arg\min_{\lambda} \| x^{\text{exact}} - x_\lambda \|_2.$$

This allows us to compute the four ratios

$$R_{\text{DP}} = \frac{\lambda_{\text{DP}}}{\lambda_{\text{opt}}}, \quad R_{L} = \frac{\lambda_{\text{L}}}{\lambda_{\text{opt}}}, \quad R_{\text{GCV}} = \frac{\lambda_{\text{GCV}}}{\lambda_{\text{opt}}}, \quad R_{\text{NCP}} = \frac{\lambda_{\text{NCP}}}{\lambda_{\text{opt}}},$$

one for each parameter-choice method, and study their distributions via plots of their histograms (in log scale).

The closer these ratios are to one, the better, so a spiked histogram located at one is preferable.
First Example: gravity

Discrep. Pr.

L-curve

GCV

NCP

\(\eta = 10^{-4}\) \(\eta = 10^{-2}\)
Second Example: shaw

Discrep. Pr.

L-curve

GCV

NCP

\(\eta = 10^{-4} \quad \eta = 10^{-2} \)
The **discrepancy principle** is a simple method that seeks to reveal when the residual vector is noise-only. It relies on a good estimate of $\|e\|_2$ which may be difficult to obtain in practise.

The **L-curve criterion** is based on an intuitive heuristic and seeks to balance the two error components via inspection (manually or automated) of the L-curve. This method fails when the solution is very smooth.

The **GCV criterion** seeks to minimize the prediction error, and it is often a very robust method – with occasional failure, often leading to ridiculous under-smoothing that reveals itself.

The **NCP criterion** is a statistically-based method for revealing when the residual vector is noise-only, based on the power spectrum. It can mistake LF noise for signal and thus lead to under-smoothing.