

VILLUM FONDEN

Computational Uncertainty Quantification for Inverse problems

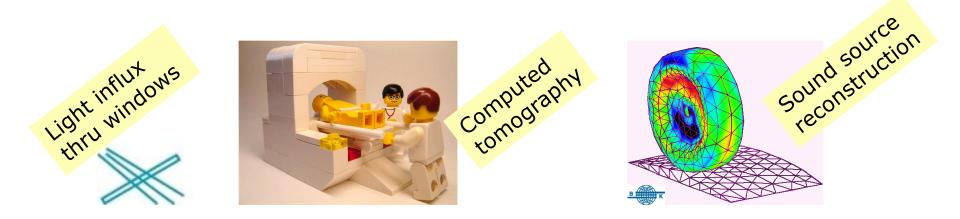
Per Christian Hansen

Professor of Scientific Computing Villum Investigator

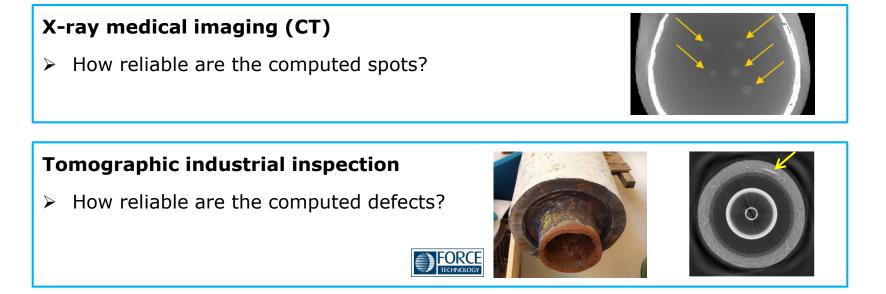
DTU Compute Department of Applied Mathematics and Computer Science

Inverse Problems

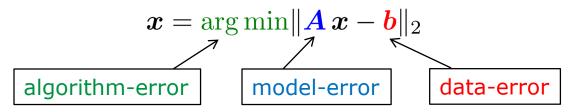
The inverse problem: solve millions of equations



Uncertainty Quantification (UQ)



All kinds of errors have influence on, e.g., a least squares solution:



UQ: the mathematical study of the impact of all forms of error and uncertainty.

OK – I Know How to Do That ...

Linear model with Gaussian noise and a Gaussian prior for \boldsymbol{x} :

$$oldsymbol{b} = oldsymbol{A} \, oldsymbol{x} + oldsymbol{n} \ , \qquad oldsymbol{n} \sim \mathcal{N}(oldsymbol{0}, \lambda^{-1} oldsymbol{I}) \ , \qquad oldsymbol{x} \sim \mathcal{N}(oldsymbol{0}, \delta^{-1} oldsymbol{I}) \ .$$

The *posterior* for the solution \boldsymbol{x} is

$$p(oldsymbol{x}|oldsymbol{b},\lambda,\delta) \propto \exp\left(-rac{\lambda}{2} \|oldsymbol{A}oldsymbol{x}-oldsymbol{b}\|_2^2
ight) \cdot \exp\left(-rac{\delta}{2} \|oldsymbol{x}\|_2^2
ight)$$

and it gives a complete statistical quantification of the uncertainty in \boldsymbol{x} .

But this basic result can **only** be used:

- for least squares problems
- with Gaussian noise, uncertainties, and priors
- and without constraints (e.g. non-negativity).

CU 1. Define a common **framework** for general UQ problems.

2. Develop new sampling **methods** and yet unknown **algorithms**.

Statistics 101

Case: UQ for Electric Conductivity

x = a

L = a + b

 ρ_b, σ

ambient

Mirza Karamehmedovic DTU Compute

Unknown: the length a.

Cannot use Ohm's law.

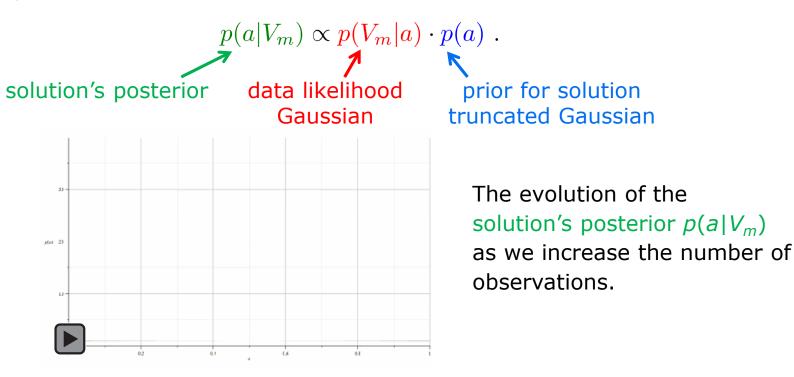
Use a stochastic differential equation to model the current.

Bayes theorem:

x = a + b

 $V = V_m$

x



 ρ_a, σ

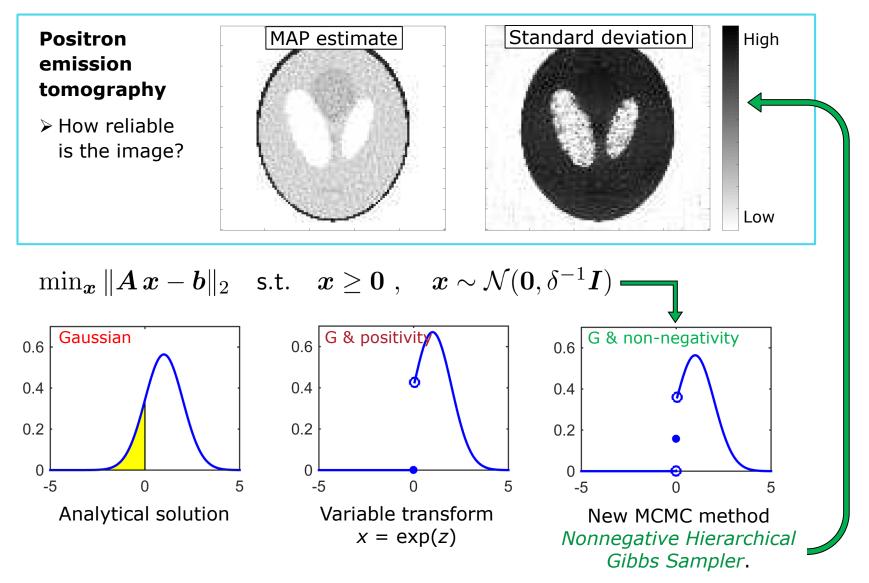
inclusion

x = 0

V = 0

Case: UQ for Non-Negative Prior

Johnathan M. Bardsley Univ. of Montana PCH, DTU Compute



Scientific Computing

Today: 500 lines of code

Case: UQ for compressed sensing

 $\min_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2$ s.t. $\|\boldsymbol{x}\|_1 \leq \delta$

Future: 5 lines of model description	
<pre>variable x(n,1)</pre>	% Define unknown vector.
<pre>parameter delta:Gauss(mean=0.1,std=0.02)</pre>	<pre>% Parameter with Gauss distrib.</pre>
UQ_data_model(b,Poisson,mean=A*x_exact)	% Data with Poisson noise
UQ_minimize misfit(A*x,b)	% Solution that fits data
<pre>subject_to UQ_prior(x,sparse,delta)</pre>	% with a sparsity prior.

- **CU** 1. **Mathematical models** for non-Gaussian cases.
 - 2. Algorithms for sampling large-scale UQ problems.
 - 3. **Modeling platforms** with software to aid non-experts.

KLICK

More Examples and Stuff

Please visit CUQI's homepage: compute.dtu.dk/ cuqi

